Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
J Neurosci ; 43(50): 8596-8606, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37863654

RESUMO

Leucine-rich glioma inactivated 1 (LGI1) is a glycoprotein secreted by neurons, the deletion of which leads to autosomal dominant lateral temporal lobe epilepsy. We previously showed that LGI1 deficiency in a mouse model (i.e., knock-out for LGI1 or KO-Lgi1) decreased Kv1.1 channel density at the axon initial segment (AIS) and at presynaptic terminals, thus enhancing both intrinsic excitability and glutamate release. However, it is not known whether normal excitability can be restored in epileptic neurons. Here, we show that the selective expression of LGI1 in KO-Lgi1 neurons from mice of both sexes, using single-cell electroporation, reduces intrinsic excitability and restores both the Kv1.1-mediated D-type current and Kv1.1 channels at the AIS. In addition, we show that the homeostatic-like shortening of the AIS length observed in KO-Lgi1 neurons is prevented in neurons electroporated with the Lgi1 gene. Furthermore, we reveal a spatial gradient of intrinsic excitability that is centered on the electroporated neuron. We conclude that expression of LGI1 restores normal excitability through functional Kv1 channels at the AIS.SIGNIFICANCE STATEMENT The lack of leucine-rich glioma inactivated 1 (LGI1) protein induces severe epileptic seizures that leads to death. Enhanced intrinsic and synaptic excitation in KO-Lgi1 mice is because of the decrease in Kv1.1 channels in CA3 neurons. However, the conditions to restore normal excitability profile in epileptic neurons remain to be defined. We show here that the expression of LGI1 in KO-Lgi1 neurons in single neurons reduces intrinsic excitability, and restores both the Kv1.1-mediated D-type current and Kv1.1 channels at the axon initial segment (AIS). Furthermore, the homeostatic shortening of the AIS length observed in KO-Lgi1 neurons is prevented in neurons in which the Lgi1 gene has been rescued. We conclude that LGI1 constitutes a critical factor to restore normal excitability in epileptic neurons.


Assuntos
Epilepsia do Lobo Frontal , Glioma , Neurônios , Animais , Feminino , Masculino , Camundongos , Epilepsia do Lobo Frontal/genética , Epilepsia do Lobo Frontal/metabolismo , Leucina/metabolismo , Neurônios/fisiologia , Convulsões/genética
2.
Epilepsia ; 63(7): 1671-1681, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35429174

RESUMO

OBJECTIVE: Neuropsychological profiles are heterogeneous both across and within epilepsy syndromes, but especially in frontal lobe epilepsy (FLE), which has complex semiology and epileptogenicity. This study aimed to characterize the cognitive heterogeneity within FLE by identifying cognitive phenotypes and determining their demographic and clinical characteristics. METHOD: One hundred and six patients (age 16-66; 44% female) with FLE completed comprehensive neuropsychological testing, including measures within five cognitive domains: language, attention, executive function, processing speed, and verbal/visual learning. Patients were categorized into one of four phenotypes based on the number of impaired domains. Patterns of domain impairment and clinical and demographic characteristics were examined across phenotypes. RESULTS: Twenty-five percent of patients met criteria for the Generalized Phenotype (impairment in at least four domains), 20% met criteria for the Tri-Domain Phenotype (impairment in three domains), 36% met criteria for the Domain-Specific Phenotype (impairment in one or two domains), and 19% met criteria for the Intact Phenotype (no impairment). Language was the most common domain-specific impairment, followed by attention, executive function, and processing speed. In contrast, learning was the least impacted cognitive domain. The Generalized Phenotype had fewer years of education compared to the Intact Phenotype, but otherwise, there was no differentiation between phenotypes in demographic and clinical variables. However, qualitative analysis suggested that the Generalized and Tri-Domain Phenotypes had a more widespread area of epileptogenicity, whereas the Intact Phenotype most frequently had seizures limited to the lateral frontal region. SIGNIFICANCE: This study identified four cognitive phenotypes in FLE that were largely indistinguishable in clinical and demographic features, aside from education and extent of epileptogenic zone. These findings enhance our appreciation of the cognitive heterogeneity within FLE and provide additional support for the development and use of cognitive taxonomies in epilepsy.


Assuntos
Epilepsia do Lobo Frontal , Epilepsia do Lobo Temporal , Cognição , Epilepsia do Lobo Frontal/genética , Epilepsia do Lobo Temporal/psicologia , Função Executiva , Feminino , Lobo Frontal , Humanos , Masculino , Testes Neuropsicológicos , Fenótipo
3.
J Neurol ; 269(6): 3363-3371, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35006387

RESUMO

Frontal lobe seizures (FLS) are debilitating for patients, highly diverse and often challenging for clinicians to evaluate. Frontal lobe epilepsy is the second most common localization for focal epilepsy, and if pharmacoresistant, can be amenable to resective surgery. Detailed study of frontal seizure semiology in conjunction with careful anatomical and electrophysiological correlation based on intracerebral recording with stereoelectroencephalography (SEEG) has allowed demonstration that ictal motor semiology reflects a hierarchical rostro-caudal axis of frontal lobe functional organization, thus helping with presurgical localization. Main semiological features allowing distinction between different frontal sublobar regions include motor signs and emotional signs. Frontal lobe seizure semiology also represents a valuable source of in vivo human behavioral data from a neuroscientific perspective. Advances in defining underlying etiologies of FLE are likely to be crucial for appropriate selection and exploration of potential surgical candidates, which could improve upon current surgical outcomes. Future research on investigating the genetic basis of epilepsies and relation to structural substrate (e.g. focal cortical dysplasia) and seizure organization and expression, could permit a "genotype-phenotype" approach that could be complementary to anatomical electroclinical correlations in better defining the spectrum of FLS. This could help with optimizing patient selection and prognostication with regards to therapeutic choices.


Assuntos
Epilepsias Parciais , Epilepsia do Lobo Frontal , Eletroencefalografia , Epilepsia do Lobo Frontal/diagnóstico , Epilepsia do Lobo Frontal/genética , Epilepsia do Lobo Frontal/terapia , Lobo Frontal/diagnóstico por imagem , Humanos , Convulsões/diagnóstico , Convulsões/etiologia
4.
Br J Pharmacol ; 179(8): 1620-1639, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33689168

RESUMO

Autosomal dominant sleep-related hypermotor epilepsy (ADSHE; previously autosomal dominant nocturnal frontal lobe epilepsy, ADNFLE), originally reported in 1994, was the first distinct genetic epilepsy shown to be caused by CHNRA4 mutation. In the past two decades, we have identified several functional abnormalities of mutant ion channels and their associated transmissions using several experiments involving single-cell and genetic animal (rodent) models. Currently, epileptologists understand that functional abnormalities underlying epileptogenesis/ictogenesis in humans and rodents are more complicated than previously believed and that the function of mutant molecules alone cannot contribute to the development of epileptogenesis/ictogenesis but play important roles in the development of epileptogenesis/ictogenesis through formation of abnormalities in various other transmission systems before epilepsy onset. Based on our recent findings using genetic rat ADSHE models, harbouring Chrna4 mutant, corresponding to human S284L-mutant CRHNA4, this review proposes a hypothesis associated with tripartite synaptic transmission in ADSHE pathomechanisms induced by mutant ACh receptors. LINKED ARTICLES: This article is part of a themed issue on Building Bridges in Neuropharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.8/issuetoc.


Assuntos
Artrogripose , Epilepsia do Lobo Frontal , Receptores Nicotínicos , Animais , Epilepsia do Lobo Frontal/genética , Ratos , Receptores Nicotínicos/genética , Roedores
5.
PLoS One ; 16(3): e0247825, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33657187

RESUMO

Sleep-related hypermotor epilepsy (SHE) is a group of seizure disorders prominently associated with mutations in nicotinic acetylcholine receptors (nAChR). The most prevalent central nervous system nAChR subtype contains α4 and ß2 subunits, in two ratios. (α4ß2)2ß2-nAChR have high agonist sensitivity (HS-isoform), whereas (α4ß2)2α4-nAChR agonist responses exhibit a small high-sensitivity, and a predominant low-sensitivity, phase of function (LS-isoform). Multiple non-synonymous mutations in the second and third transmembrane domains of α4 and ß2 subunits are associated with SHE. We recently demonstrated that two additional, SHE-associated, missense mutations in the major cytoplasmic loops of these subunits [α4(R336H) and ß2(V337G)] cause increased macroscopic function-per receptor. Here, we use single-channel patch-clamp electrophysiology to show that these mutations influence single-channel amplitudes and open- and closed-state kinetics. Pure populations of HS- or LS-isoform α4ß2-nAChR were expressed by injecting either 1:10 or 30:1 α4:ß2 cRNA ratios, respectively, into Xenopus laevis oocytes. Functional properties of the resulting mutant α4ß2-nAChR isoforms were compared to their wildtype counterparts. α4(R336H) subunit incorporation minimally affected single-channel amplitudes, whereas ß2(V337G) subunit incorporation reduced them significantly in both isoforms. However, for both mutant subunits, increased function-per-receptor was predominantly caused by altered single channel kinetics. The α4(R336H) mutation primarily destabilizes desensitized states between openings. By contrast, the ß2(V337G) mutation principally stabilizes receptor open states. The use of naturally-occurring and physiologically-impactful mutations has allowed us to define valuable new insights regarding the functional roles of nAChR intracellular domains. Further mechanistic context is provided by intracellular-domain structures recently published for other members of the Cys-loop receptor superfamily (α3ß4-nAChR and 5-HT3AR).


Assuntos
Epilepsia do Lobo Frontal/genética , Epilepsia do Lobo Frontal/fisiopatologia , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Sono , Substituição de Aminoácidos , Animais , Microscopia Crioeletrônica , Humanos , Cinética , Mutação , Agonistas Nicotínicos/farmacologia , Oócitos , Técnicas de Patch-Clamp , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Xenopus laevis
6.
Brain Dev ; 42(9): 691-695, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32773162

RESUMO

INTRODUCTION: KCNT2 was recently recognized as a gene associated with neurodevelopmental disorder and epilepsy. CASE REPORT: We present an additional observation of a 16-year-old male patient with a novel de novo KCNT2 likely pathogenic variant and review the five previously reported cases of de novo variants in this gene. DISCUSSION: Whole exome sequencing identified the missense variant c.725C > A p.(Thr242Asn), which was confirmed by Sanger sequencing. Our patient has a refractory stereotyped and monomorphic type of hyperkinetic focal motor seizure, similar to what is seen in frontal lobe epilepsy, occurring only during sleep. This type of seizure is not usually seen in epileptic encephalopathies.


Assuntos
Encefalopatias/genética , Epilepsia do Lobo Frontal/genética , Canais de Potássio Ativados por Sódio/genética , Adolescente , Encefalopatias/metabolismo , Criança , Epilepsia do Lobo Frontal/diagnóstico , Epilepsia Generalizada/genética , Feminino , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Canais de Potássio Ativados por Sódio/metabolismo , Sequenciamento do Exoma , Adulto Jovem
7.
Epileptic Disord ; 22(4): 443-448, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32723706

RESUMO

Reelin mutations are responsible for a minority of families with autosomal dominant lateral temporal lobe epilepsy. Here, we report a novel nuclear family with distinct clinical and neuroradiological findings. We studied the proband and her mother by means of EEG, video-EEG, 3T MRI, FDG-PET and genetic testing. Both patients had a focal drug-resistant epilepsy with onset at the age of 16 and focal seizures with typical auditory features combined with fear, followed by loss of contact or evolving to bilateral tonic-clonic seizures. The proband's ictal EEG showed clear left temporal seizure onset, and cerebral MRI revealed subtle left temporal changes (mild hypotrophy, slight blurring of the white and grey matter and hyperintensity) with corresponding left temporal mesial focal hypometabolism on FDG-PET. Genetic testing identified a missense variant, c.6631C>T (p.Arg2211Cys), in reelin repeat #5 in both patients, which markedly affected the secretion of the protein. The data from this family support previous findings indicating that reelin mutations are a cause of autosomal dominant lateral temporal lobe epilepsy which has a clinical spectrum that may also encompass drug-resistant epilepsy associated with mild MRI temporal changes.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Epilepsia do Lobo Frontal/diagnóstico , Epilepsia do Lobo Frontal/genética , Proteínas da Matriz Extracelular/genética , Proteínas do Tecido Nervoso/genética , Serina Endopeptidases/genética , Transtornos do Sono-Vigília/diagnóstico , Transtornos do Sono-Vigília/genética , Adulto , Idoso , Eletroencefalografia , Epilepsia do Lobo Frontal/patologia , Epilepsia do Lobo Frontal/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Linhagem , Proteína Reelina , Transtornos do Sono-Vigília/patologia , Transtornos do Sono-Vigília/fisiopatologia
8.
Can J Neurol Sci ; 47(6): 800-809, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32536355

RESUMO

PURPOSE: Our purpose was to determine the role of CHRNA4 and CHRNB2 in insular epilepsy. METHOD: We identified two patients with drug-resistant predominantly sleep-related hypermotor seizures, one harboring a heterozygous missense variant (c.77C>T; p. Thr26Met) in the CHRNB2 gene and the other a heterozygous missense variant (c.1079G>A; p. Arg360Gln) in the CHRNA4 gene. The patients underwent electrophysiological and neuroimaging studies, and we performed functional characterization of the p. Thr26Met (c.77C>T) in the CHRNB2 gene. RESULTS: We localized the epileptic foci to the left insula in the first case (now seizure-free following epilepsy surgery) and to both insulae in the second case. Based on tools predicting the possible impact of amino acid substitutions on the structure and function of proteins (sorting intolerant from tolerant and PolyPhen-2), variants identified in this report could be deleterious. Functional expression in human cell lines of α4ß2 (wild-type), α4ß2-Thr26Met (homozygote), and α4ß2/ß2-Thr26Met (heterozygote) nicotinic acetylcholine receptors revealed that the mutant subunit led to significantly higher whole-cell nicotinic currents. This feature was observed in both homo- and heterozygous conditions and was not accompanied by major alterations of the current reversal potential or the shape of the concentration-response relation. CONCLUSIONS: This study suggests that variants in CHRNB2 and CHRNA4, initially linked to autosomal dominant nocturnal frontal lobe epilepsy, are also found in patients with predominantly sleep-related insular epilepsy. Although the reported variants should be considered of unknown clinical significance for the moment, identification of additional similar cases and further functional studies could eventually strengthen this association.


Assuntos
Epilepsia do Lobo Frontal , Receptores Nicotínicos , Córtex Cerebral , Epilepsia do Lobo Frontal/genética , Humanos , Mutação de Sentido Incorreto , Receptores Nicotínicos/genética
9.
Neurosurg Clin N Am ; 31(3): 319-324, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32475482

RESUMO

Epilepsy affects about 1% of the general population. Frontal lobe epilepsy is the second most common focal epilepsy accounting for nearly 25% of medically refractory epilepsies. This paper reviews frontal lobe epilepsy from a perspective of a network disease that may help us to understand epilepsy from the microscale of genes, to local neuronal circuits, to the macrolevel of a whole-brain network. Surgical interventions, such as ablation and resection act by removing the active target nodes in the network, while responsive neurostimulation and vagus nerve stimulation act by modulating networks at the local neuronal circuit level and whole-brain level.


Assuntos
Encéfalo/fisiopatologia , Epilepsia do Lobo Frontal/genética , Epilepsia do Lobo Frontal/fisiopatologia , Modelos Neurológicos , Convulsões/genética , Convulsões/fisiopatologia , Humanos , Vias Neurais/fisiopatologia , Neurônios/fisiologia , Transdução de Sinais
10.
Eur J Med Genet ; 63(4): 103799, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31655144

RESUMO

Mutations in ATP6V1B2, which encodes the B2 subunit of the vacuolar H + ATPase have previously been associated with Zimmermann-Laband syndrome 2 (ZLS2) and deafness-onychodystrophy (DDOD) syndrome. Recently epilepsy has also been described as a potentially associated phenotype. Here we further uncover the role of ATP61VB2 in epilepsy and report autosomal dominant inheritance of a novel missense variant in ATP6V1B2 in a large Polish family with relatively mild gingival and nail problems, no phalangeal hypoplasia and with generalized epilepsy. In light of our findings and review of the literature, we propose that the ATP6V1B2 gene should be considered in families with autosomal dominant epilepsy both with or without intellectual disability, and that presence of subtle gingival and nail problems may be another characteristic calling card of affected individuals with ATP6V1B2 mutations.


Assuntos
Epilepsia do Lobo Frontal/patologia , Exoma/genética , Doenças da Gengiva/patologia , Deficiência Intelectual/patologia , Mutação de Sentido Incorreto , Doenças da Unha/patologia , Transtornos do Sono-Vigília/patologia , ATPases Vacuolares Próton-Translocadoras/genética , Adolescente , Sequência de Aminoácidos , Criança , Pré-Escolar , Epilepsia do Lobo Frontal/genética , Feminino , Doenças da Gengiva/genética , Humanos , Deficiência Intelectual/genética , Masculino , Doenças da Unha/genética , Linhagem , Fenótipo , Homologia de Sequência , Transtornos do Sono-Vigília/genética
11.
Epilepsia ; 60(6): e67-e73, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31111464

RESUMO

Despite tremendous progress through next generation sequencing technologies, familial focal epilepsies are insufficiently understood. We sought to identify the genetic basis in multiplex Palestinian families with familial focal epilepsy with variable foci (FFEVF). Family I with 10 affected individuals and Family II with five affected individuals underwent detailed phenotyping over three generations. The phenotypic spectrum of the two families varied from nonlesional focal epilepsy including nocturnal frontal lobe epilepsy to severe structural epilepsy due to hemimegalencephaly. Whole-exome sequencing and single nucleotide polymorphism array analysis revealed pathogenic variants in NPRL3 in each family, a partial ~38-kb deletion encompassing eight exons (exons 8-15) and the 3'-untranslated region of the NPRL3 gene in Family I, and a de novo nonsense variant c.1063C>T, p.Gln355* in Family II. Furthermore, we identified a truncating variant in the PDCD10 gene in addition to the NPRL3 variant in a patient with focal epilepsy from Family I. The individual also had developmental delay and multiple cerebral cavernomas, possibly demonstrating a digenic contribution to the individual's phenotype. Our results implicate the association of NPRL3 with hemimegalencephaly, expanding the phenotypic spectrum of NPRL3 in FFEVF and underlining that partial deletions are part of the genotypic spectrum of NPRL3 variants.


Assuntos
Epilepsias Parciais/complicações , Epilepsias Parciais/genética , Proteínas Ativadoras de GTPase/genética , Megalencefalia/etiologia , Megalencefalia/genética , Adolescente , Adulto , Idade de Início , Proteínas Reguladoras de Apoptose/genética , Criança , Pré-Escolar , Deficiências do Desenvolvimento/etiologia , Deficiências do Desenvolvimento/genética , Epilepsia do Lobo Frontal/complicações , Epilepsia do Lobo Frontal/genética , Exoma/genética , Família , Feminino , Deleção de Genes , Variação Genética , Genótipo , Humanos , Lactente , Masculino , Proteínas de Membrana/genética , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas/genética
12.
J Cell Sci ; 132(2)2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30598502

RESUMO

The distribution of the voltage-gated Kv1 K+ channels at the axon initial segment (AIS) influences neuronal intrinsic excitability. The Kv1.1 and Kv1.2 (also known as KCNA1 and KCNA2, respectively) subunits are associated with cell adhesion molecules (CAMs), including Caspr2 (also known as CNTNAP2) and LGI1, which are implicated in autoimmune and genetic neurological diseases with seizures. In particular, mutations in the LGI1 gene cause autosomal dominant lateral temporal lobe epilepsy (ADLTE). Here, by using rat hippocampal neurons in culture, we showed that LGI1 is recruited to the AIS where it colocalizes with ADAM22 and Kv1 channels. Strikingly, the missense mutations S473L and R474Q of LGI1 identified in ADLTE prevent its association with ADAM22 and enrichment at the AIS. Moreover, we observed that ADAM22 and ADAM23 modulate the trafficking of LGI1, and promote its ER export and expression at the overall neuronal cell surface. Live-cell imaging indicated that LGI1 is co-transported in axonal vesicles with ADAM22 and ADAM23. Finally, we showed that ADAM22 and ADAM23 also associate with Caspr2 and TAG-1 (also known as CNTN2) to be selectively targeted to different axonal sub-regions. Hence, the combinatorial expression of Kv1-associated CAMs may be critical to tune intrinsic excitability in physiological and epileptogenic contexts.


Assuntos
Proteínas ADAM/metabolismo , Axônios/metabolismo , Epilepsia do Lobo Frontal/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mutação de Sentido Incorreto , Transtornos do Sono-Vigília/metabolismo , Proteínas ADAM/genética , Substituição de Aminoácidos , Animais , Axônios/patologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Epilepsia do Lobo Frontal/genética , Epilepsia do Lobo Frontal/patologia , Células HEK293 , Hipocampo , Humanos , Transporte Proteico/genética , Ratos , Superfamília Shaker de Canais de Potássio/genética , Superfamília Shaker de Canais de Potássio/metabolismo , Transtornos do Sono-Vigília/genética , Transtornos do Sono-Vigília/patologia
13.
Pharmacol Res ; 139: 215-227, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30472464

RESUMO

Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a genetic form of epilepsy that is caused by mutations in several genes, including genes encoding for the α4 and ß2 subunits of the nicotinic acetylcholine (nACh) receptor. Pentameric α4ß2 nACh receptors are the most abundant nicotinic receptor in the mammalian brain and form two stoichiometries, the (α4)3(ß2)2 and (α4)2(ß2)3 receptors that differ in their physiological and pharmacological properties. The purpose of this study was to investigate how ADNFLE mutations ß2V287M, ß2V287L or α4T293I manifest themselves in different receptor stoichiometries. We expressed wild-type and mutant receptors in Xenopus oocytes and measured the response to ACh and other agonists at both receptor stoichiometries. For all three mutations, the efficacy of ACh at (α4)2(ß2)3 receptors was increased. At (α4)3(ß2)2 receptors, the efficacy of activation was increased both when two molecules of agonist, either ACh or the site-selective agonist sazetidine-A, were bound at the α4-ß2 interfaces, and when a third ACh molecule was bound at the α4-α4 site. Regardless of stoichiometry, the mutations increased the current elicited by low concentrations of ACh. Further, the smoking cessation agents, nicotine, varenicline and cytisine increased activation of mutant (α4)3(ß2)2 receptors, while only nicotine increased activation of mutant (α4)2(ß2)3 receptors. Chronic exposure of all agonists reduced ACh-activation levels at low and high ACh concentrations. From this, we concluded that mutations that cause ADNFLE manifest themselves in a change in efficacy regardless of the stoichiometry of the receptor.


Assuntos
Epilepsia do Lobo Frontal/genética , Receptores Nicotínicos/fisiologia , Acetilcolina/farmacologia , Alcaloides/farmacologia , Animais , Azocinas/farmacologia , Epilepsia do Lobo Frontal/fisiopatologia , Feminino , Mutação , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Oócitos/fisiologia , Quinolizinas/farmacologia , Vareniclina/farmacologia , Xenopus laevis
14.
Sleep Med ; 48: 8-15, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29843024

RESUMO

OBJECTIVE: The aim of this study was to characterize the neuropsychological features of a representative sample of Sleep-related Hypermotor Epilepsy (SHE) patients and to highlight clinical associations. METHODS: This cross-sectional study included 60 consecutive patients with video/video-electroencephalography-documented SHE. All were assessed by measures of intelligence. Individuals with normal scores underwent a standardized battery of tests. The Fisher exact test and Wilcoxon rank-sum test for statistical analysis. RESULTS: Mean total IQ was 96.96 ± 21.50, with significant differences between verbal and performance scores (p < 0.0001). Nine patients (15%) had intellectual disability (ID)/cognitive deterioration. Of the 49 assessed by the extensive battery, 23 (46.9%) showed deficits in at least one test evaluating phonemic fluency (24.5%), memory (24.5%), inhibitory control (22.4%), or working memory (10.2%). Patients with mutations in SHE genes had lower IQ than patients without mutations, irrespective of the specific gene (p = 0.0176). Similarly, pathological neurological examination (NE) and "any underlying brain disorder" (at least one among pathological NE, abnormal brain magnetic resonance imaging findings, perinatal insult) were associated with ID (p = 0.029, p = 0.036). A higher seizure frequency at last assessment and poor prognosis correlated with worse scores in visuo-spatial memory (p = 0.038, p = 0.040) and visuo-spatial abilities (p = 0.016). Status epilepticus (p = 0.035), poor response to antiepileptic drugs (p = 0.033), and poor prognosis (p = 0.020) correlated with lower shifting abilities, whereas bilateral convulsive seizures correlated with worse working memory (p = 0.049). CONCLUSION: In all, 53.3% of SHE patients had neuropsychological deficits. The profile of impairment showed worse verbal IQ, as well as deficits in extrafrontal and selective frontal functions. Our data support the contribution of genetics in ID by different biological mechanisms. Variables of clinical severity affect memory and executive functioning.


Assuntos
Transtornos Cognitivos/diagnóstico , Epilepsia do Lobo Frontal , Testes Neuropsicológicos/estatística & dados numéricos , Sono/fisiologia , Adulto , Anticonvulsivantes/uso terapêutico , Transtornos Cognitivos/genética , Estudos Transversais , Eletroencefalografia , Epilepsia do Lobo Frontal/tratamento farmacológico , Epilepsia do Lobo Frontal/genética , Feminino , Humanos , Inteligência/genética , Inteligência/fisiologia , Masculino , Convulsões
15.
Zhonghua Nei Ke Za Zhi ; 57(1): 44-47, 2018 Jan 01.
Artigo em Chinês | MEDLINE | ID: mdl-29325310

RESUMO

Objective: To explore the genetic characteristics in a Chinese family with autosomal dominant lateral temporal lobe epilepsy (ADLTE) and analyze the correlation between genotype and phenotype. Methods: The natural history, clinical data and peripheral blood sample were collected in all patients and two healthy members of this ADLTE family. Whole exon sequence (WES) analysis strategy was used to explore the underlying mutations. Possible causative genetic variation was further confirmed by direct PCR and Sanger sequencing. The genotype-phenotype features were compared with previously reported cases. Results: A novel pathogenetic LGI1 frameshift mutation p.T134fs was identified in this study. The clinical phenotype was different from reported. Conclusion: This study reports a pathogenic LGI1 mutation in a Chinese ADLTE family for the first time, which suggests that LGI1 is a new genetic abnormality of ADLTE in Chinese.


Assuntos
Povo Asiático/genética , Epilepsia do Lobo Frontal/genética , Éxons/genética , Proteínas/genética , Transtornos do Sono-Vigília/genética , Epilepsia do Lobo Frontal/diagnóstico , Epilepsia do Lobo Temporal , Genótipo , Humanos , Mutação , Linhagem , Fenótipo , Análise de Sequência , Deleção de Sequência , Transtornos do Sono-Vigília/diagnóstico
16.
Neurology ; 90(1): e67-e72, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29196578

RESUMO

OBJECTIVE: To evaluate quinidine as a precision therapy for severe epilepsy due to gain of function mutations in the potassium channel gene KCNT1. METHODS: A single-center, inpatient, order-randomized, blinded, placebo-controlled, crossover trial of oral quinidine included 6 patients with severe autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) due to KCNT1 mutation. Order was block randomized and blinded. Four-day treatment blocks were used with a 2-day washout between. Dose started at 900 mg over 3 divided doses then, in subsequent participants, was reduced to 600 mg, then 300 mg. Primary outcome was seizure frequency measured on continuous video-EEG in those completing the trial. RESULTS: Prolonged QT interval occurred in the first 2 patients at doses of 900 and 600 mg quinidine per day, respectively, despite serum quinidine levels well below the therapeutic range (0.61 and 0.51 µg/mL, reference range 1.3-5.0 µg/mL). Four patients completed treatment with 300 mg/d without adverse events. Patients completing the trial had very frequent seizures (mean 14 per day, SD 7, median 13, interquartile range 10-18). Seizures per day were nonsignificantly increased by quinidine (median 2, 95% confidence interval -1.5 to +5, p = 0.15) and no patient had a 50% seizure reduction. CONCLUSION: Quinidine did not show efficacy in adults and teenagers with ADNFLE. Dose-limiting cardiac side effects were observed even in the presence of low measured serum quinidine levels. Although small, this trial suggests use of quinidine in ADNFLE is likely to be ineffective coupled with considerable cardiac risks. CLINICAL TRIALS REGISTRATION: Australian Therapeutic Goods Administration Clinical Trial Registry (trial number 2015/0151). CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that for persons with severe epilepsy due to gain of function mutations in the potassium channel gene KCNT1, quinidine does not significantly reduce seizure frequency.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia do Lobo Frontal/tratamento farmacológico , Epilepsia do Lobo Frontal/genética , Proteínas do Tecido Nervoso/genética , Canais de Potássio/genética , Medicina de Precisão , Quinidina/uso terapêutico , Adolescente , Adulto , Anticonvulsivantes/efeitos adversos , Anticonvulsivantes/sangue , Estudos Cross-Over , Método Duplo-Cego , Epilepsia do Lobo Frontal/sangue , Mutação com Ganho de Função , Humanos , Pessoa de Meia-Idade , Canais de Potássio Ativados por Sódio , Quinidina/efeitos adversos , Quinidina/sangue , Convulsões/sangue , Convulsões/tratamento farmacológico , Convulsões/genética , Falha de Tratamento
17.
Epilepsia ; 58(10): 1762-1770, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28766701

RESUMO

OBJECTIVE: Nocturnal frontal lobe epilepsy (NFLE) is an idiopathic partial epilepsy with a family history in about 25% of cases, with autosomal dominant inheritance (autosomal dominant NFLE [ADNFLE]). Traditional antiepileptic drugs are effective in about 55% of patients, whereas the rest remains refractory. One of the key pathogenetic mechanisms is a gain of function of neuronal nicotinic acetylcholine receptors (nAChRs) containing the mutated α4 or ß2 subunits. Fenofibrate, a common lipid-regulating drug, is an agonist at peroxisome proliferator-activated receptor alpha (PPARα) that is a ligand-activated transcription factor, which negatively modulates the function of ß2-containing nAChR. To test clinical efficacy of adjunctive therapy with fenofibrate in pharmacoresistant ADNFLE\NFLE patients, we first demonstrated the effectiveness of fenofibrate in a mutated mouse model displaying both disease genotype and phenotype. METHODS: We first tested the efficacy of fenofibrate in transgenic mice carrying the mutation in the α4-nAChR subunit (Chrna4S252F) homologous to that found in humans. Subsequently, an add-on protocol was implemented in a clinical setting and fenofibrate was administered to pharmacoresistant NFLE patients. RESULTS: Here, we show that a chronic fenofibrate diet markedly reduced the frequency of large inhibitory postsynaptic currents (IPSCs) recorded from cortical pyramidal neurons in Chrna4S252F mice, and prevented nicotine-induced increase of IPSC frequency. Moreover, fenofibrate abolished differences between genotypes in the frequency of sleep-related movements observed under basal conditions. Patients affected by NFLE, nonresponders to traditional therapy, by means of adjunctive therapy with fenofibrate displayed a reduction of seizure frequency. Furthermore, digital video-polysomnographic recordings acquired in NFLE subjects after 6 months of adjunctive fenofibrate substantiated the significant effects on control of motor-behavioral seizures. SIGNIFICANCE: Our preclinical and clinical studies suggest PPARα as a novel disease-modifying target for antiepileptic drugs due to its ability to regulate dysfunctional nAChRs.


Assuntos
Anticonvulsivantes/farmacologia , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia do Lobo Frontal/tratamento farmacológico , Fenofibrato/uso terapêutico , PPAR alfa/agonistas , Adulto , Animais , Benzodiazepinas/uso terapêutico , Carbamazepina/análogos & derivados , Carbamazepina/uso terapêutico , Clobazam , Modelos Animais de Doenças , Epilepsia Resistente a Medicamentos/genética , Quimioterapia Combinada , Eletroencefalografia , Epilepsia do Lobo Frontal/genética , Feminino , Fenofibrato/farmacologia , Humanos , Lamotrigina , Levetiracetam , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Mutação , Oxcarbazepina , Piracetam/análogos & derivados , Piracetam/uso terapêutico , Polissonografia , Receptores Nicotínicos/genética , Triazinas/uso terapêutico , Ácido Valproico/uso terapêutico , Adulto Jovem
18.
Epileptic Disord ; 19(3): 345-350, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28832001

RESUMO

Epileptic encephalopathies with continuous spike-and-waves during sleep (CSWS) are characterized by cognitive or language impairment, and are occasionally associated with pathogenic variants of the GRIN2A gene. In these disorders, speech dysfunction could be either related to cerebral dysfunction caused by the GRIN2A deleterious variant or intense interictal epileptic activity. Here, we present a patient with apraxia of speech, clearly linked to severity of epilepsy, carrying a GRIN2A variant. A 6-year-old boy developed acute regression of expressive language following epileptic seizures, leading to complete mutism, at which time EEG revealed CSWS. MEG showed bilateral superior parietal and opercular independent CSWS onsets and PET with fluorodeoxyglucose demonstrated significant increase in relative glucose metabolism in bilateral superior parietal regions. Corticosteroids induced a regression of CSWS together with impressive improvement in speech abilities. This case supports the hypothesis of a triggering role for epileptic discharges in speech deterioration observed in children carrying a deleterious variant of GRIN2A. When classic antiepileptic drugs fail to control epileptic activity, corticosteroids should be considered. Multimodal functional neuroimaging suggests a role for opercular and superior parietal areas in acquired epileptic opercular syndrome. [Published with video sequences on www.epilepticdisorders.com].


Assuntos
Encéfalo/fisiopatologia , Epilepsia do Lobo Frontal/genética , Receptores de N-Metil-D-Aspartato/genética , Criança , Eletroencefalografia , Epilepsia do Lobo Frontal/fisiopatologia , Humanos , Masculino
19.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 46(1): 15-21, 2017 01 25.
Artigo em Chinês | MEDLINE | ID: mdl-28436626

RESUMO

Epilepsy is a chronic neurological disorder, which is not only related to the imbalance between excitatory glutamic neurons and inhibitory GABAergic neurons, but also related to abnormal central cholinergic regulation. This article summarizes the scientific background and experimental data about cholinergic dysfunction in epilepsy from both cellular and network levels, further discusses the exact role of cholinergic system in epilepsy. In the cellular level, several types of epilepsy are believed to be associated with aberrant metabotropic muscarinic receptors in several different brain areas, while the mutations of ionotropic nicotinic receptors have been reported to result in a specific type of epilepsy-autosomal dominant nocturnal frontal lobe epilepsy. In the network level, cholinergic projection neurons as well as their interaction with other neurons may regulate the development of epilepsy, especially the cholinergic circuit from basal forebrain to hippocampus, while cholinergic local interneurons have not been reported to be associated with epilepsy. With the development of optogenetics and other techniques, dissect and regulate cholinergic related epilepsy circuit has become a hotspot of epilepsy research.


Assuntos
Neurônios Colinérgicos/química , Neurônios Colinérgicos/patologia , Neurônios Colinérgicos/fisiologia , Epilepsia/genética , Epilepsia/patologia , Epilepsia/fisiopatologia , Sistema Colinérgico não Neuronal/fisiologia , Acetilcolina/fisiologia , Prosencéfalo Basal/patologia , Química Encefálica/genética , Química Encefálica/fisiologia , Neurônios Colinérgicos/classificação , Epilepsia do Lobo Frontal/genética , Neurônios GABAérgicos/fisiologia , Hipocampo/patologia , Humanos , Mutação/genética , Mutação/fisiologia , Neurônios , Sistema Colinérgico não Neuronal/genética , Receptores Muscarínicos/genética , Receptores Muscarínicos/fisiologia , Receptores Nicotínicos/genética , Receptores Nicotínicos/fisiologia , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia
20.
Neuroscience ; 351: 65-70, 2017 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-28366665

RESUMO

Sodium-activated potassium (KNa) channels contribute to firing frequency adaptation and slow after hyperpolarization. The KCNT1 gene (also known as SLACK) encodes a KNa subunit that is expressed throughout the central and peripheral nervous systems. Missense mutations of the SLACK C-terminus have been reported in several patients with rare forms of early onset epilepsy and in some cases severely delayed myelination. To date, such mutations identified in patients with autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), epilepsy of infancy with migrating focal seizures (EIMFS) and Ohtahara syndrome (OS) have been reported to be gain-of-function mutations (Villa and Combi, 2016). An exome sequencing study identified a p.Phe932Ile KCNT1 mutation as the disease-causing change in a child with severe early infantile epileptic encephalopathy and abnormal myelination (Vanderver et al., 2014). We characterized an analogous mutation in the rat Slack channel and unexpectedly found this mutation to produce a loss-of-function phenotype. In an effort to restore current, we tested the known Slack channel opener loxapine. Loxapine exhibited no effect, indicating that this mutation either caused the channel to be insensitive to this established opener or proper translation and trafficking to the membrane was disrupted. Protein analysis confirmed that while total mutant protein did not differ from wild type, membrane expression of the mutant channel was substantially reduced. Although gain-of-function mutations to the Slack channel are linked to epileptic phenotypes, this is the first reported loss-of-function mutation linked to severe epilepsy and delayed myelination.


Assuntos
Epilepsia do Lobo Frontal/genética , Leucoencefalopatias/metabolismo , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio/metabolismo , Animais , Células CHO/metabolismo , Cricetulus , Modelos Animais de Doenças , Epilepsia do Lobo Frontal/metabolismo , Leucoencefalopatias/genética , Proteínas do Tecido Nervoso/genética , Fenótipo , Canais de Potássio/genética , Canais de Potássio Ativados por Sódio , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...