Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 900
Filtrar
2.
Am J Clin Dermatol ; 23(1): 27-36, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34687433

RESUMO

Diet has long been understood to have an intricate association with atopic dermatitis, although much remains unelucidated. Skin barrier dysfunction with dysbiosis and consequent impairment of immune tolerance likely underly the pathogenesis of coincident atopic dermatitis and food allergy. There is a wide range of possible skin reactions to food, complicating the diagnosis and understanding of food allergies. Many patients, parents, and providers incorrectly suspect diet as causative of atopic dermatitis symptoms and many have tried elimination diets. This frequently leads to inaccurate labeling of food allergies, contributing to a dangerous spiral of inappropriate testing, referrals, and dietary changes, while neglecting established atopic dermatitis treatment essentials. Alternatively, certain dietary supplements or the introduction of certain foods may be beneficial for atopic dermatitis management or prevention. Greater consensus on the role of diet among providers of patients with atopic dermatitis is strongly encouraged to improve the management of atopic dermatitis.


Assuntos
Dermatite Atópica/dietoterapia , Dieta , Alérgenos/análise , Cannabis , Dermatite Atópica/fisiopatologia , Suplementos Nutricionais , Disbiose/fisiopatologia , Epitélio/fisiopatologia , Hipersensibilidade Alimentar/diagnóstico , Histidina/uso terapêutico , Humanos , Extratos Vegetais/uso terapêutico , Guias de Prática Clínica como Assunto , Chá
3.
Contact Dermatitis ; 85(6): 615-626, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34420214

RESUMO

The "epithelial barrier hypothesis" proposes that the exposure to various epithelial barrier-damaging agents linked to industrialization and urbanization underlies the increase in allergic diseases. The epithelial barrier constitutes the first line of physical, chemical, and immunological defense against environmental factors. Recent reports have shown that industrial products disrupt the epithelial barriers. Innate and adaptive immune responses play an important role in epithelial barrier damage. In addition, recent studies suggest that epithelial barrier dysfunction plays an essential role in the pathogenesis of the atopic march by allergen sensitization through the transcutaneous route. It is evident that external factors interact with the immune system, triggering a cascade of complex reactions that damage the epithelial barrier. Epigenetic and microbiome changes modulate the integrity of the epithelial barrier. Robust and simple measurements of the skin barrier dysfunction at the point-of-care are of significant value as a biomarker, as recently reported using electrical impedance spectroscopy to directly measure barrier defects. Understanding epithelial barrier dysfunction and its mechanism is key to developing novel strategies for the prevention and treatment of allergic diseases. The aim of this review is to summarize recent studies on the pathophysiological mechanisms triggered by environmental factors that contribute to the dysregulation of epithelial barrier function.


Assuntos
Dermatite Atópica/fisiopatologia , Exposição Ambiental , Epitélio/fisiopatologia , Imunidade Adaptativa , Alérgenos/efeitos adversos , Dermatite Atópica/etiologia , Dermatite Atópica/genética , Dermatite Atópica/imunologia , Epigênese Genética , Epitélio/anatomia & histologia , Humanos , Imunidade Inata , Microbiota/fisiologia , Permeabilidade
4.
Nat Commun ; 12(1): 4566, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315881

RESUMO

The airway epithelium serves as the interface between the host and external environment. In many chronic lung diseases, the airway is the site of substantial remodeling after injury. While, idiopathic pulmonary fibrosis (IPF) has traditionally been considered a disease of the alveolus and lung matrix, the dominant environmental (cigarette smoking) and genetic (gain of function MUC5B promoter variant) risk factor primarily affect the distal airway epithelium. Moreover, airway-specific pathogenic features of IPF include bronchiolization of the distal airspace with abnormal airway cell-types and honeycomb cystic terminal airway-like structures with concurrent loss of terminal bronchioles in regions of minimal fibrosis. However, the pathogenic role of the airway epithelium in IPF is unknown. Combining biophysical, genetic, and signaling analyses of primary airway epithelial cells, we demonstrate that healthy and IPF airway epithelia are biophysically distinct, identifying pathologic activation of the ERBB-YAP axis as a specific and modifiable driver of prolongation of the unjammed-to-jammed transition in IPF epithelia. Furthermore, we demonstrate that this biophysical state and signaling axis correlates with epithelial-driven activation of the underlying mesenchyme. Our data illustrate the active mechanisms regulating airway epithelial-driven fibrosis and identify targets to modulate disease progression.


Assuntos
Epitélio/fisiopatologia , Fibrose Pulmonar Idiopática/fisiopatologia , Pulmão/fisiopatologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Anfirregulina/genética , Anfirregulina/metabolismo , Fenômenos Biofísicos/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Receptores ErbB/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Predisposição Genética para Doença , Humanos , Fibrose Pulmonar Idiopática/genética , Queratina-5/genética , Queratina-5/metabolismo , Pulmão/efeitos dos fármacos , Mucina-5B/genética , Mucina-5B/metabolismo , Quinazolinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Risco , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Tirfostinas/farmacologia , Verteporfina/farmacologia , Proteínas de Sinalização YAP
5.
J Gastroenterol ; 56(6): 581-592, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33796937

RESUMO

BACKGROUND: Intraductal papillary mucinous neoplasm (IPMN) of the pancreas is categorized into four distinct types: the gastric, intestinal, pancreatobiliary, and oncocytic. Each type is associated with specific clinicopathological features. We aimed to uncover the molecular mechanisms underlying the development of these types of IPMN. METHODS: We obtained 103 lesions of various types, including 49 gastric, 26 intestinal, 22 pancreatobiliary, and 6 oncocytic lesions, from 43 IPMNs, including 36 with multiple types. Comparative analysis was performed by targeted sequencing of 37 genes in different lesion types within each pancreas. RESULTS: Gastric-type low-grade lesions were observed in all 36 tumors with multiple types, with 245 mutations identified across all samples. The average number of mutations was significantly different between different lesion grades and types: 1.88 for low-grade lesions, 2.77 for high-grade lesions, and 2.38 for invasive lesions (p = 0.0067); and 1.96 for gastric-type lesion, 2.92 for intestinal-type lesion, 2.73 for pancreatobiliary-type lesion, and 2.17 for oncocytic-type lesion (p = 0.0163). Tracing of mutations between lesions containing multiple types in the same pancreas suggested three developmental pathways, denoted as "progressive", "divergent", and "independent". The progressive and divergent pathways indicate an ancestral lesion that was mostly gastric-type and low-grade may progress or diversify into lesions of other types and/or higher grades. The independent pathway suggests that some high-grade lesions of any type may develop independently. CONCLUSION: These findings suggest that gastric-type low-grade lesions have a risk of progression into high-grade lesions of other types. Therefore, low-grade gastric-type IPMNs should be under constant surveillance.


Assuntos
Epitélio/fisiopatologia , Neoplasias Intraductais Pancreáticas/fisiopatologia , Humanos , Imuno-Histoquímica/métodos , Japão/epidemiologia , Neoplasias Intraductais Pancreáticas/epidemiologia
6.
J Endocrinol Invest ; 44(8): 1571-1579, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33683663

RESUMO

Thyroid hormones (THs) are key endocrine regulators of tissue development and homeostasis. They are constantly released into the bloodstream and help to regulate many cell functions. The principal products released by the follicular epithelial cells are T3 and T4. T4, which is the less active form of TH, is produced in greater amounts than T3, which is the most active form of TH. This mechanism highlights the importance of the peripheral regulation of TH levels that goes beyond the central axis. Skin, muscle, liver, bone and heart are finely regulated by TH. In particular, skin is among the target organs most influenced by TH, which is essential for skin homeostasis. Accordingly, skin diseases are associated with an altered thyroid status. Alopecia, dermatitis and vitiligo are associated with thyroiditis and alopecia and eczema are frequently correlated with the Graves' disease. However, only in recent decades have studies started to clarify the molecular mechanisms underlying the effects of TH in epidermal homeostasis. Herein, we summarize the most frequent clinical epidermal alterations linked to thyroid diseases and review the principal mechanisms involved in TH control of keratinocyte proliferation and functional differentiation. Our aim is to define the open questions in this field that are beginning to be elucidated thanks to the advent of mouse models of altered TH metabolism and to obtain novel insights into the physiopathological consequences of TH metabolism on the skin.


Assuntos
Dermatopatias , Doenças da Glândula Tireoide , Hormônios Tireóideos/metabolismo , Animais , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Epitélio/fisiopatologia , Homeostase/fisiologia , Humanos , Modelos Animais , Dermatopatias/etiologia , Dermatopatias/patologia , Doenças da Glândula Tireoide/complicações , Doenças da Glândula Tireoide/metabolismo
7.
Nutrients ; 13(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540724

RESUMO

Juicing vegetables is thought to be an anticancer treatment. Support exists for a rank order of anticancer greens (kale > dandelion > lettuce > spinach) based on degrees of bioavailability of different phytochemicals, also offset by some noxious molecules (i.e., calcium-oxalate). We developed a new in vitro transepithelial anti-neuroblastoma model system. The juices were diluted as predicted once in the small intestine. They were applied to apical Caco-2Bbe1 cells atop dividing SH-SY5Y neuroblastoma cells, and changes in transepithelial electrical resistance (TEER) and cell growth were considered with juice spectroscopies. Studied first in monoculture, kale and dandelion were the most cytostatic juices on SH-SY5Ys, lettuce showed no effect, and high (4.2%) spinach was cytotoxic. In co-culture, high (4.2%) kale was quickest (three days) to inhibit neuroblastoma growth. By five days, dandelion and kale were equally robust. Lettuce showed small anti-proliferative effects at five days and spinach remained cytotoxic. Spinach's cytotoxicity corresponded with major infrared bands indicative of oxalate. Kale juice uniquely induced reactive oxygen species and S-phase cell cycle arrest in SH-SY5Y. The superiority of kale and dandelion was also apparent on the epithelium, because raising TEER levels is considered healthy. Kale's unique features corresponded with a major fluorescent peak that co-eluted with kaempferol during high performance liquid chromatography. Because the anticancer rank order was upheld, the model appears validated for screening anticancer juices.


Assuntos
Brassica/química , Técnicas de Cocultura , Neuroblastoma/tratamento farmacológico , Compostos Fitoquímicos/administração & dosagem , Antineoplásicos Fitogênicos/administração & dosagem , Disponibilidade Biológica , Células CACO-2 , Linhagem Celular Tumoral , Impedância Elétrica , Epitélio/efeitos dos fármacos , Epitélio/fisiopatologia , Sucos de Frutas e Vegetais , Humanos , Spinacia oleracea/química , Taraxacum/química
8.
Elife ; 102021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33393458

RESUMO

Skin epithelium can accumulate a high burden of oncogenic mutations without morphological or functional consequences. To investigate the mechanism of oncogenic tolerance, we induced HrasG12V in single murine epidermal cells and followed them long term. We observed that HrasG12V promotes an early and transient clonal expansion driven by increased progenitor renewal that is replaced with an increase in progenitor differentiation leading to reduced growth. We attribute this dynamic effect to emergence of two populations within oncogenic clones: renewing progenitors along the edge and differentiating ones within the central core. As clone expansion is accompanied by progressive enlargement of the core and diminishment of the edge compartment, the intraclonal competition between the two populations results in stabilized oncogenic growth. To identify the molecular mechanism of HrasG12V-driven differentiation, we screened known Ras-effector in vivo and identified Rassf5 as a novel regulator of progenitor fate choice that is necessary and sufficient for oncogene-specific differentiation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Carcinogênese/genética , Células Epidérmicas/fisiologia , Células Epiteliais/fisiologia , Animais , Epitélio/fisiopatologia , Feminino , Genes ras/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Célula Única , Pele/fisiopatologia
9.
Sci Rep ; 10(1): 17448, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060783

RESUMO

Duodenal hyperpermeability and low-grade inflammation in functional dyspepsia is potentially related to duodenal acid exposure. We aimed to evaluate in healthy volunteers the involvement of mast cell activation on the duodenogastric reflex and epithelial integrity during duodenal acidification. This study consisted of 2 parts: (1) Duodenal infusion of acid or saline during thirty minutes in a randomized, double-blind cross-over manner with measurement of intragastric pressure (IGP) using high resolution manometry and collection of duodenal biopsies to measure epithelial barrier function and the expression of cell-to-cell adhesion proteins. Mast cells and eosinophils were counted and activation and degranulation status were assessed. (2) Oral treatment with placebo or mast cell stabilizer disodiumcromoglycate (DSCG) prior to duodenal perfusion with acid, followed by the procedures described above. Compared with saline, acidification resulted in lower IGP (P < 0.01), increased duodenal permeability (P < 0.01) and lower protein expression of claudin-3 (P < 0.001). Protein expression of tryptase (P < 0.001) was increased after acid perfusion. Nevertheless, an ultrastructural examination did not reveal degranulation of mast cells. DSCG did not modify the drop in IGP and barrier dysfunction induced by acid. Duodenal acidification activates an inhibitory duodenogastric motor reflex and, impairs epithelial integrity in healthy volunteers. However, these acid mediated effects occur independently from mast cell activation.


Assuntos
Duodeno/fisiopatologia , Epitélio/fisiopatologia , Mastócitos/citologia , Estômago/fisiopatologia , Ácidos/química , Adulto , Animais , Biópsia , Adesão Celular , Degranulação Celular , Cromolina Sódica/química , Estudos Cross-Over , Método Duplo-Cego , Duodeno/química , Eletrodos , Feminino , Voluntários Saudáveis , Humanos , Concentração de Íons de Hidrogênio , Inflamação , Masculino , Camundongos , Permeabilidade , Pressão , Solução Salina
10.
Crit Rev Eukaryot Gene Expr ; 30(3): 191-197, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32749105

RESUMO

Cystic fibrosis (CF) is an inherited recessive autosomal disorder that affects the lungs, the digestive system, and secretory glands. It is a lethal condition caused by a mutation in the gene cystic-fibrosis-transmembrane-conductance- regulator (CFTR), which leads to defects in ion channels and results in obstruction of mucus in airway channels. Unbalanced ion exchange causes impaired water transport and accumulation of viscous mucus in the air way leads to bacterial colonization, for example, with Staphylococcus aureus. The most common mutation is the deletion of nucleotides in epithelial membrane; hence, it is a multiple-organ-defective disease that mostly effects the lungs. Researchers are working on gene therapy that aims to introduce a normal CFTR gene copy into the epithelial cells of lungs. Several approaches have been designed to improve transepithelial ion transport in CF patients. Normal CFTR gene delivery has been performed using viral and nonviral vectors, but these approaches are not more efficient against the cell barriers. Enzymes may be used that inhibit the sphingolipid to provide proper microenvironment for the CFTR gene product. Thymosin alpha-1 has also been reported as a potential corrector in treatment of CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Fibrose Cística/terapia , Tratamento Farmacológico , Terapia Genética , Fibrose Cística/complicações , Epitélio/fisiopatologia , Glucosilceramidase/antagonistas & inibidores , Humanos , Transporte de Íons , Lipossomos/metabolismo , Proteínas de Membrana/fisiologia , Mutação , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Timalfasina/uso terapêutico
11.
Reproduction ; 160(1): R1-R11, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32485667

RESUMO

Appropriate human trophoblast lineage specification and differentiation is crucial for the establishment of normal placentation and maintenance of pregnancy. However, due to the lack of proper modeling systems, the molecular mechanisms of these processes are still largely unknown. Much of the early studies in this area have been based on animal models and tumor-derived trophoblast cell lines, both of which are suboptimal for modeling this unique human organ. Recent advances in regenerative and stem cell biology methods have led to development of novel in vitro model systems for studying human trophoblast. These include derivation of human embryonic and induced pluripotent stem cells and establishment of methods for the differentiation of these cells into trophoblast, as well as the more recent derivation of human trophoblast stem cells. In addition, advances in culture conditions, from traditional two-dimensional monolayer culture to 3D culturing systems, have led to development of trophoblast organoid and placenta-on-a-chip model, enabling us to study human trophoblast function in context of more physiologically accurate environment. In this review, we will discuss these various model systems, with a focus on human trophoblast, and their ability to help elucidate the key mechanisms underlying placental development and function. This review focuses on model systems of human trophoblast differentiation, including advantages and limitations of stem cell-based culture, trophoblast organoid, and organ-on-a-chip methods and their applications in understanding placental development and disease.


Assuntos
Diferenciação Celular , Epitélio/fisiopatologia , Troca Materno-Fetal , Modelos Biológicos , Placenta/citologia , Placentação , Trofoblastos/citologia , Feminino , Humanos , Placenta/fisiologia , Gravidez , Trofoblastos/fisiologia
12.
Arch Razi Inst ; 75(1): 109-121, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32292009

RESUMO

The transition from normal forage to a highly fermentable diet to achieve rapid weight gain in the cattle industry can induce ruminal acidosis. The molecular host mechanisms that occur in acidosis are largely unknown. Therefore, the histology and transcriptome profiling of rumen epithelium was investigated in normal and acidosis animals to understand the molecular mechanisms involved in the disease. The rumen epithelial transcriptome from acidosis (n=3) and control (n=3) Holstein steers was obtained using RNA-sequencing. The mean values of clean reads were 70,975,460&plusmn;984,046 and 71,142,189&plusmn;834,526 in normal and acidosis samples, respectively. In total, 1,074 differentially expressed genes were identified in the two groups (P&lt;0.05), of which 624 and 450 genes were up- and down-regulated in the acidosis samples, respectively. Functional analysis indicated that the majority of the up-regulated genes had a function in filament organization, positive regulation of epithelial and muscle fiber concentration, biomineral tissue development, negative regulation of fat cell differential, regulation of ion transmembrane transport, regulation of cell adhesion and butyrate, as well as short-chain fatty acid absorption that was metabolized as an energy source. Functional analysis of the down-regulated genes revealed effects in immune response, positive regulation of T-cell migration, regulation of metabolic processes, and localization. Furthermore, the results showed a differential expression of genes involved in the Map Kinase and Toll-like receptor signaling pathways. The IL1B, CXCL5, IL36A, and IL36B were significantly down-regulated in acidosis rumen tissue samples. The results suggest that rapid shifts to rich fermentable carbohydrates diets cause an increase in the concentration of ruminal volatile fatty acids, tissue damage, and significant changes in transcriptome profiles of rumen epithelial.


Assuntos
Acidose/veterinária , Doenças dos Bovinos/metabolismo , Rúmen/fisiopatologia , Gastropatias/veterinária , Transcriptoma , Acidose/metabolismo , Animais , Bovinos , Epitélio/fisiopatologia , Perfilação da Expressão Gênica/veterinária , Masculino , Análise de Sequência de RNA/veterinária , Gastropatias/metabolismo
13.
Arch Pediatr ; 27 Suppl 1: eS19-eS24, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32172931

RESUMO

Cystic fibrosis (CF) is the most frequent genetic disorder in the Caucasian population benefiting from systematic newborn screening tests. It is also the most frequent indication of prenatal and preimplantation genetic diagnosis for a single gene disorder. During the past thirty years, thanks in part to the evolution of diagnostic techniques, our knowledge on CFTR genetics and pathophysiological mechanisms involved in CF have significantly improved. With the implementation of newborn screening in France and in several countries, the diagnosis now often occurs in clinically asymptomatic infants and this has modified the criteria for CF diagnosis. Recently, guidelines for CF diagnosis have been reformulated in Europe and the US, in regard to sweat chloride usual values and disease terminology. This review describes the methods and molecular approaches that are used in routine practice or are being developed to detect CFTR protein dysfunction and to identify disease-causing CFTR variants. Ultimately, an optimal use of all these functional and genetic resources may improve patient care and therapeutic decision-making. © 2020 French Society of Pediatrics. Published by Elsevier Masson SAS. All rights reserved.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/diagnóstico , Mutação/genética , Biologia Computacional , Fibrose Cística/genética , Variações do Número de Cópias de DNA , Bases de Dados Genéticas , Epitélio/fisiopatologia , Testes Genéticos , Humanos , Polimorfismo de Nucleotídeo Único , Suor/química
14.
Gut ; 69(1): 146-157, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30723104

RESUMO

OBJECTIVE: We explored the hypothesis that TGR5, the bile acid (BA) G-protein-coupled receptor highly expressed in biliary epithelial cells, protects the liver against BA overload through the regulation of biliary epithelium permeability. DESIGN: Experiments were performed under basal and TGR5 agonist treatment. In vitro transepithelial electric resistance (TER) and FITC-dextran diffusion were measured in different cell lines. In vivo FITC-dextran was injected in the gallbladder (GB) lumen and traced in plasma. Tight junction proteins and TGR5-induced signalling were investigated in vitro and in vivo (wild-type [WT] and TGR5-KO livers and GB). WT and TGR5-KO mice were submitted to bile duct ligation or alpha-naphtylisothiocyanate intoxication under vehicle or TGR5 agonist treatment, and liver injury was studied. RESULTS: In vitro TGR5 stimulation increased TER and reduced paracellular permeability for dextran. In vivo dextran diffusion after GB injection was increased in TGR5-knock-out (KO) as compared with WT mice and decreased on TGR5 stimulation. In TGR5-KO bile ducts and GB, junctional adhesion molecule A (JAM-A) was hypophosphorylated and selectively downregulated among TJP analysed. TGR5 stimulation induced JAM-A phosphorylation and stabilisation both in vitro and in vivo, associated with protein kinase C-ζ activation. TGR5 agonist-induced TER increase as well as JAM-A protein stabilisation was dependent on JAM-A Ser285 phosphorylation. TGR5 agonist-treated mice were protected from cholestasis-induced liver injury, and this protection was significantly impaired in JAM-A-KO mice. CONCLUSION: The BA receptor TGR5 regulates biliary epithelial barrier function in vitro and in vivo through an impact on JAM-A expression and phosphorylation, thereby protecting liver parenchyma against bile leakage.


Assuntos
Sistema Biliar/fisiopatologia , Colestase Intra-Hepática/prevenção & controle , Receptores Acoplados a Proteínas G/fisiologia , Animais , Bile/metabolismo , Ácidos e Sais Biliares/metabolismo , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Colestase Intra-Hepática/metabolismo , Impedância Elétrica , Epitélio/fisiopatologia , Ácidos Isonipecóticos/farmacologia , Ácidos Isonipecóticos/uso terapêutico , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oximas/farmacologia , Oximas/uso terapêutico , Permeabilidade , Fosforilação/fisiologia , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Transdução de Sinais/fisiologia , Proteínas de Junções Íntimas/metabolismo
15.
Curr Opin Cell Biol ; 62: 31-36, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31514044

RESUMO

Tissue repair is essential for all organisms, as it protects the integrity and function of tissues and prevents infections and diseases. It takes place at multiple scales, from macroscopic to microscopic levels. Most mechanisms driving tissue repair rely on the correct polarisation of collective cell behaviours, such as migration and proliferation, and polarisation of cytoskeletal and junctional components. Furthermore, re-establishment and maintenance of cell polarity are fundamental for a tissue to be fully repaired and for withstanding mechanical stress during homeostasis and repair. Recent evidence highlights an important role for the interplay between cell polarity and tissue mechanics that are critical in tissue repair.


Assuntos
Polaridade Celular/fisiologia , Epitélio/fisiopatologia , Animais , Humanos
16.
Sci Rep ; 9(1): 19035, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836726

RESUMO

E-cigarette flavored pods are increasing in use among young adults. Although marketed as a safer alternative to conventional cigarettes, the health effects of e-cigarette flavored pods are unknown. We hypothesized that e-cigarette flavored pods would cause oxidative stress, barrier dysfunction, and an inflammatory response in monocytes and lung epithelial cells. JUUL pod flavors (Fruit Medley, Virginia Tobacco, Cool Mint, Crème Brulee, Cool Cucumber, Mango, and Classic Menthol) and similar pod flavors (Just Mango-Strawberry Coconut and Caffé Latte) were tested. These pod flavors generated significant amounts of acellular ROS and induced significant mitochondrial superoxide production in bronchial epithelial cells (16-HBE). Lung epithelial cells (16-HBE, BEAS-2B) and monocytes (U937) exposed to various pod aerosols resulted in increased inflammatory mediators, such as IL-8 or PGE2. JUUL pod flavors, Crème Brulee and Cool Cucumber, caused epithelial barrier dysfunction in 16-HBE cells. Moreover, tested flavors also showed DNA damage upon exposure in monocytes. We determined the chemical constituents present in various flavors. Our data suggest that these constituents in flavored pods induce oxidative stress, inflammation, epithelial barrier dysfunction, and DNA damage in lung cells. These data provide insights into the regulation of e-cigarette flavored pods, as well as constituents in these flavors.


Assuntos
Dano ao DNA , Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/patologia , Epitélio/fisiopatologia , Aromatizantes/efeitos adversos , Inflamação/patologia , Pulmão/patologia , Monócitos/patologia , Linhagem Celular , Dinoprostona/metabolismo , Células Epiteliais/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Interleucina-8/metabolismo , Mitocôndrias/metabolismo , Monócitos/efeitos dos fármacos , Superóxidos/metabolismo
17.
Pancreas ; 48(10): 1380-1385, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31688605

RESUMO

OBJECTIVES: Injury of the pancreatic duct epithelial barrier plays a critical role in the development of acute pancreatitis. The activity of the nuclear factor-kappa B (NF-κB) pathway is involved in the disruption of the pancreatic duct epithelial barrier. This study investigated how NF-κB impacts the dysfunction of the pancreatic duct epithelial barrier. METHODS: A human pancreatic ductal adenocarcinoma cell line was treated with tumor necrosis factor-alpha (TNF-α) and pyrrolidine dithiocarbamate. The expression levels of p65 and p-p65 were detected to evaluate NF-κB activity. Tricellulin (TRIC) expression levels were measured to assess the change in tight junction (TJ)-related proteins. The expression and localization of myosin light chain kinase (MLCK) were investigated. The structure of TJs and monolayer permeability were also examined. RESULTS: NF-κB was activated by TNF-α and suppressed by pyrrolidine dithiocarbamate. Activation of NF-κB upregulated the expression levels of TRIC and MLCK. Broadened TJs were observed after NF-κB was activated. Lower monolayer permeability was observed when NF-κB was suppressed. CONCLUSIONS: Activation of the NF-κB pathway induced by TNF-α leads to increased TRIC and MLCK expression, resulting in broadened TJs and high permeability, which contribute to damage to the pancreatic duct epithelial barrier.


Assuntos
Carcinoma Ductal Pancreático/complicações , NF-kappa B/fisiologia , Neoplasias Pancreáticas/complicações , Pancreatite/etiologia , Linhagem Celular Tumoral , Epitélio/fisiopatologia , Humanos , Proteína 2 com Domínio MARVEL/análise , Quinase de Cadeia Leve de Miosina/análise , Ductos Pancreáticos/fisiopatologia , Permeabilidade , Transdução de Sinais/fisiologia , Junções Íntimas/fisiologia , Fator de Necrose Tumoral alfa/farmacologia
18.
Biomed Pharmacother ; 118: 109363, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31545277

RESUMO

OBJECTIVE: Alveolar epithelial barrier dysfunction in response to inflammatory reaction contributes to pulmonary edema in acute lung injury(ALI).Irisin,a newly-found myokine,exerts the anti-inflammatory effects. This study aims to investigate the protective effects of irisin on lipopolysaccharide (LPS)-induced ALIin vivo and in vitro, and to explore its underlying mechanism. METHODS: Male SD rats and A549 cells were divided into 4 groups: control group, LPS group, Irisin pretreated group, and Irisin/Compound C(a special inhibitor of AMPK)-treated group. The ALI model was established by intravenous injection of LPS in rats, and LPS challenge in A549 cells. Pulmonary specimens were harvested for microscopic examination of the pathological changes, and the expression of AMPK,SIRT1,NF-κB, p66Shc and caspase-3 in lung tissues. The pulmonary permeability were examined by wet/dry lung weight ratio(W/D) and lung permeability index(LPI). The apoptotic index, and the expression of tumor necrosis factor-α(TNF-α), interleukin-1ß(IL-1ß), monocyte chemoattractant activating protein-1 (MCP-1), tight junctions (occludin,ZO-1) were determined both in lung tissue and A549 cells. RESULTS: Irisin alleviated lung histological changes and decreased pulmonary microvascular permeability in LPS-induced rats. Irisin up-regulated the expression of occludin, ZO-1,AMPK,SIRT1, down-regulated the expression of TNF-α,IL-1ß,MCP-1,NF-κB, p66Shc caspase-3, and decreased the apoptotic index in LPS-induced rats and A549 cells. All these protective effects of irisin could be reversed by Compound C. CONCLUSION: Irisin improved LPS-induced alveolar epithelial barrier dysfunction via suppressing inflammation and apoptosis, and this protective effect might be mediated by activating AMPK/SIRT1 pathways.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Lesão Pulmonar Aguda/fisiopatologia , Epitélio/fisiopatologia , Fibronectinas/uso terapêutico , Pulmão/fisiopatologia , Transdução de Sinais , Sirtuína 1/metabolismo , Células A549 , Lesão Pulmonar Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células Epiteliais/ultraestrutura , Epitélio/ultraestrutura , Fibronectinas/farmacologia , Humanos , Inflamação/patologia , Pulmão/patologia , Pulmão/ultraestrutura , Masculino , Permeabilidade , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Regulação para Cima/efeitos dos fármacos
19.
Tissue Barriers ; 7(3): e1651158, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31389292

RESUMO

The gingival epithelium acts as a physical barrier to separate the biofilm from the gingival tissue, providing the first line of defense against bacterial invasion in periodontal disease. Disruption of the gingival epithelial barrier, and the subsequent penetration of exogenous pathogens into the host tissues, triggers an inflammatory response, establishing chronic infection. Currently, more than 700 different bacterial species have been identified in the oral cavity, some of which are known to be periodontopathic. These bacteria contribute to epithelial barrier dysfunction in the gingiva by producing several virulence factors. However, some bacteria in the oral cavity appear to be beneficial, helping gingival epithelial cells maintain their integrity and barrier function. This review aims to discuss current findings regarding microorganism interactions and epithelial barrier function in the oral cavity, with reference to investigations in the gut, where this interaction has been extensively studied.


Assuntos
Células Epiteliais/metabolismo , Epitélio/fisiopatologia , Gengiva/patologia , Doenças Periodontais/fisiopatologia , Junções Íntimas/metabolismo , Células Cultivadas , Humanos
20.
Stem Cell Res Ther ; 10(1): 276, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31464646

RESUMO

BACKGROUND: Tooth loss caused by caries or injuries has a negative effect on human health; thus, it is important to develop a reliable method of tooth regeneration. Research on tooth regeneration has mainly focused on mouse pluripotent stem cells, mouse embryonic stem cells, and adult stem cells from various sources in mice, whereas little has examined the differentiation of human embryonic stem (hES) cells into dental epithelium (DE) and odontogenic potential in vivo. METHODS: In this study, we induced hES cells to differentiate into dental epithelium using different concentrations of bone morphogenetic protein 4 (BMP4). With 1 pM BMP4, the hES cells differentiated into oral ectoderm (OE). These cells were then stimulated with 30 pM BMP4. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunofluorescence showed the differentiation of OE and DE. The DE generated was mixed with embryonic day 14.5 mouse dental mesenchyme (DM) and transplanted into the renal capsules of nude mice. Thirty days later, the resulting tooth-like structures were examined by micro-computed tomography and hematoxylin and eosin staining. RESULTS: After 4 days of 1 pM BMP4 stimulation, Pitx1-positive OE formed. qRT-PCR and immunofluorescence revealed that induction with 30 pM BMP4 for 2 days caused the OE to differentiate into Pitx2/Dlx2/AMBN-positive DE-like cells. These cells also expressed ß-catenin and p-Smad1/5/8, which are key proteins in the Wnt/ß-catenin and Bmp signaling pathways, respectively. Thirty days after in vivo transplantation, six teeth with enamel and dentin had formed on the kidney. CONCLUSIONS: These results show that hES cells differentiated into DE after sequential stimulation with different concentrations of BMP4, and the DE thus generated showed odontogenic potential.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Diferenciação Celular/fisiologia , Epitélio/metabolismo , Epitélio/fisiopatologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/fisiologia , Odontogênese/fisiologia , Animais , Células Cultivadas , Humanos , Camundongos , Transdução de Sinais/fisiologia , Proteínas Smad Reguladas por Receptor/metabolismo , Dente/metabolismo , Dente/fisiologia , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...