Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 327
Filtrar
1.
Viruses ; 16(4)2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675987

RESUMO

Consistent with the biochemistry of coronaviruses as well established over decades, SARS-CoV-2 makes its initial attachment to host cells through the binding of its spike protein (SP) to sialylated glycans (containing the monosaccharide sialic acid) on the cell surface. The virus can then slide over and enter via ACE2. SARS-CoV-2 SP attaches particularly tightly to the trillions of red blood cells (RBCs), platelets and endothelial cells in the human body, each cell very densely coated with sialic acid surface molecules but having no ACE2 or minimal ACE2. These interlaced attachments trigger the blood cell aggregation, microvascular occlusion and vascular damage that underlie the hypoxia, blood clotting and related morbidities of severe COVID-19. Notably, the two human betacoronaviruses that express a sialic acid-cleaving enzyme are benign, while the other three-SARS, SARS-CoV-2 and MERS-are virulent. RBC aggregation experimentally induced in several animal species using an injected polysaccharide caused most of the same morbidities of severe COVID-19. This glycan biochemistry is key to disentangling controversies that have arisen over the efficacy of certain generic COVID-19 treatment agents and the safety of SP-based COVID-19 vaccines. More broadly, disregard for the active physiological role of RBCs yields unreliable or erroneous reporting of pharmacokinetic parameters as routinely obtained for most drugs and other bioactive agents using detection in plasma, with whole-blood levels being up to 30-fold higher. Appreciation of the active role of RBCs can elucidate the microvascular underpinnings of other health conditions, including cardiovascular disease, and therapeutic opportunities to address them.


Assuntos
COVID-19 , Polissacarídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , COVID-19/metabolismo , COVID-19/virologia , SARS-CoV-2/metabolismo , Polissacarídeos/metabolismo , Animais , Glicoproteína da Espícula de Coronavírus/metabolismo , Betacoronavirus/metabolismo , Infecções por Coronavirus/metabolismo , Eritrócitos/metabolismo , Eritrócitos/virologia , Pandemias , Microvasos/metabolismo , Microvasos/virologia , Ligação Viral , Tratamento Farmacológico da COVID-19 , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Enzima de Conversão de Angiotensina 2/metabolismo , Agregação Eritrocítica
2.
J Fish Dis ; 47(6): e13939, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38481093

RESUMO

The relationship of histopathological changes and the infection of Piscine orthoreovirus 2 (PRV-2) was investigated in coho salmon that were suffering from the erythrocytic inclusion body syndrome (EIBS). Immunohistochemical observations revealed abundant σ1 protein of PRV-2 in the spongy layer of the ventricle of the heart, where severe myocarditis was observed. In the spleen, the virus protein was detected in many erythrocytes, some of which were spherical-shaped and apparently dead. The number of erythrocytes was decreased in the spleen compared to the apparently healthy fish. The virus protein was also detected in some erythrocytes in blood vessels. The viral protein was often detected in many macrophages ingesting erythrocytes or dead cell debris in the spleen or in the kidney sinusoids. Large amounts of the viral genomic segment L2 were also detected in these organs by RT-qPCR. Many necrotic foci were found in the liver, although the virus protein was not detected in the hepatocytes. These results suggest that the primary targets of PRV-2 are myocardial cells and erythrocytes and that clinical symptoms such as anaemia or jaundice and histopathological changes such as myocarditis in EIBS-affected coho salmon are caused by PRV-2 infection.


Assuntos
Doenças dos Peixes , Oncorhynchus kisutch , Orthoreovirus , Infecções por Reoviridae , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/patologia , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Infecções por Reoviridae/patologia , Orthoreovirus/fisiologia , Oncorhynchus kisutch/virologia , Eritrócitos/virologia , Eritrócitos/patologia , Baço/virologia , Baço/patologia
3.
Pathol Res Pract ; 231: 153782, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35121363

RESUMO

The novel Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19 outbreak, spread rapidly and infected more than 140 million people with more than three million victims worldwide. The SARS-CoV-2 causes destructive changes in the immunological and hematological system of the host. These alterations appear to play a critical role in disease pathology and the emerging of clinical manifestations. In this review, we aimed to discuss the effect of COVID-19 on the count, function and morphology of immune and blood cells and the role of these changes in the pathophysiology of the disease. Knowledge of these changes may help with better management and treatment of COVID-19 patients.


Assuntos
Plaquetas/virologia , Eritrócitos/virologia , Granulócitos/virologia , Monócitos/virologia , SARS-CoV-2 , COVID-19/sangue , COVID-19/virologia , Contagem de Células , Forma Celular , Humanos
4.
Viruses ; 14(2)2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35215905

RESUMO

Infectious salmon anaemia virus (ISAV) binds circulating Atlantic salmon erythrocytes, but the relevance of this interaction for the course of infection and development of disease remains unclear. We here characterise ISAV-erythrocyte interactions in experimentally infected Atlantic salmon and show that ISAV-binding to erythrocytes is common and precedes the development of disease. Viral RNA and infective particles were enriched in the cellular fraction of blood. While erythrocyte-associated ISAV remained infectious, erythrocytes dose-dependently limited the infection of cultured cells. Surprisingly, immunostaining of blood smears revealed expression of ISAV proteins in a small fraction of erythrocytes in one of the examined trials, confirming that ISAV can be internalised in this cell type and engage the cellular machinery in transcription and translation. However, viral protein expression in erythrocytes was rare and not required for development of disease and mortality. Furthermore, active transcription of ISAV mRNA was higher in tissues than in blood, supporting the assumption that ISAV replication predominantly takes place in endothelial cells. In conclusion, Atlantic salmon erythrocytes bind ISAV and sequester infective virus particles during infection, but do not appear to significantly contribute to ISAV replication. We discuss the implications of our findings for infection dynamics and pathogenesis of infectious salmon anaemia.


Assuntos
Eritrócitos/virologia , Doenças dos Peixes/virologia , Isavirus/fisiologia , Infecções por Orthomyxoviridae/veterinária , Salmo salar/virologia , Animais , Células Endoteliais/virologia , Doenças dos Peixes/sangue , Isavirus/genética , Isavirus/isolamento & purificação , Infecções por Orthomyxoviridae/sangue , Infecções por Orthomyxoviridae/virologia , Salmo salar/sangue , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/genética , Vírion/isolamento & purificação , Vírion/fisiologia , Replicação Viral
5.
Int J Mol Sci ; 23(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35216286

RESUMO

Several diseases (such as diabetes, cancer, and neurodegenerative disorders) affect the morpho-functional aspects of red blood cells, sometimes altering their normal metabolism. In this review, the hematological changes are evaluated, with particular focus on the morphology and metabolic aspects of erythrocytes. Changes in the functionality of such cells may, in fact, help provide important information about disease severity and progression. The viral infection causes significant damage to the blood cells that are altered in size, rigidity, and distribution width. Lower levels of hemoglobin and anemia have been reported in several studies, and an alteration in the concentration of antioxidant enzymes has been shown to promote a dangerous state of oxidative stress in red blood cells. Patients with severe COVID-19 showed an increase in hematological changes, indicating a progressive worsening as COVID-19 severity progressed. Therefore, monitored hematological alterations in patients with COVID-19 may play an important role in the management of the disease and prevent the risk of a severe course of the disease. Finally, monitored changes in erythrocytes and blood, in general, may be one of the causes of the condition known as Long COVID.


Assuntos
COVID-19/sangue , COVID-19/dietoterapia , Eritrócitos/virologia , Anemia/virologia , Antivirais/farmacologia , COVID-19/complicações , COVID-19/etiologia , COVID-19/metabolismo , Eritrócitos/metabolismo , Eritrócitos/patologia , Hemoglobinas/metabolismo , Hemólise , Humanos , Estresse Oxidativo , Síndrome de COVID-19 Pós-Aguda
6.
Sci Rep ; 11(1): 20502, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654867

RESUMO

The COVID-19 is difficult to contain due to its high transmissibility rate and a long incubation period of 5 to 14 days. Moreover, more than half of the infected patients were young and asymptomatic. Virus transmission through asymptomatic patients is a major challenge to disease containment. Due to limited treatment options, preventive measures play major role in controlling the disease spread. Gargling with antiseptic formulation may have potential role in eliminating the virus in the throat. Four commercially available mouthwash/gargle formulations were tested for virucidal activity against SARS-CoV-2 in both clean (0.3 g/l BSA) and dirty (0.3 g/l BSA + 3 mL/L human erythrocytes) conditions at time points 30 and 60 s. The virus was isolated and propagated in Vero E6 cells. The cytotoxicity of the products to the Vero E6 was evaluated by kill time assay based on the European Standard EN14476:2013/FprA1:2015 protocol. Virus titres were calculated as 50% tissue culture infectious dose (TCID50/mL) using the Spearman-Karber method. A reduction in virus titer of 4 log10 corresponds to an inactivation of ≥ 99.99%. Formulations with cetylperidinium chloride, chlorhexidine and hexitidine achieved > 4 log10 reduction in viral titres when exposed within 30 s under both clean and dirty conditions. Thymol formulations achieved only 0.5 log10 reduction in viral titres. In addition, salt water was not proven effective. Gargle formulations with cetylperidinium chloride, chlorhexidine and hexetidine have great potential in reducing SAR-CoV-2 at the source of entry into the body, thus minimizing risk of transmission of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/prevenção & controle , Eritrócitos/virologia , Antissépticos Bucais , SARS-CoV-2/efeitos dos fármacos , Animais , Anti-Infecciosos Locais , Antivirais , Cetilpiridínio , Clorexidina/análogos & derivados , Clorexidina/química , Chlorocebus aethiops , Eritrócitos/efeitos dos fármacos , Humanos , Timol/química , Células Vero , Carga Viral , Água
7.
Nat Commun ; 12(1): 5449, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521834

RESUMO

During circulation in humans and natural selection to escape antibody recognition for decades, A/H3N2 influenza viruses emerged with altered receptor specificities. These viruses lost the ability to agglutinate erythrocytes critical for antigenic characterization and give low yields and acquire adaptive mutations when cultured in eggs and cells, contributing to recent vaccine challenges. Examination of receptor specificities of A/H3N2 viruses reveals that recent viruses compensated for decreased binding of the prototypic human receptor by recognizing α2,6-sialosides on extended LacNAc moieties. Erythrocyte glycomics shows an absence of extended glycans providing a rationale for lack of agglutination by recent A/H3N2 viruses. A glycan remodeling approach installing functional receptors on erythrocytes, allows antigenic characterization of recent A/H3N2 viruses confirming the cocirculation of antigenically different viruses in humans. Computational analysis of HAs in complex with sialosides having extended LacNAc moieties reveals that mutations distal to the RBD reoriented the Y159 side chain resulting in an extended receptor binding site.


Assuntos
Eritrócitos/virologia , Glicosídeos/química , Hemaglutininas Virais/química , Vírus da Influenza A Subtipo H3N2/genética , Polissacarídeos/química , Receptores Virais/química , Antígenos Virais/química , Antígenos Virais/genética , Antígenos Virais/metabolismo , Sítios de Ligação , Sequência de Carboidratos , Eritrócitos/metabolismo , Glicômica/métodos , Glicosídeos/metabolismo , Testes de Inibição da Hemaglutinação , Hemaglutininas Virais/genética , Hemaglutininas Virais/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Vírus da Influenza A Subtipo H3N2/metabolismo , Influenza Humana/virologia , Análise em Microsséries/métodos , Polissacarídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Receptores Virais/genética , Receptores Virais/metabolismo , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34583992

RESUMO

Membrane-associated mucins protect epithelial cell surfaces against pathogenic threats by serving as nonproductive decoys that capture infectious agents and clear them from the cell surface and by erecting a physical barrier that restricts their access to target receptors on host cells. However, the mechanisms through which mucins function are still poorly defined because of a limited repertoire of tools available for tailoring their structure and composition in living cells with molecular precision. Using synthetic glycopolymer mimetics of mucins, we modeled the mucosal glycocalyx on red blood cells (RBCs) and evaluated its influence on lectin (SNA) and virus (H1N1) adhesion to endogenous sialic acid receptors. The glycocalyx inhibited the rate of SNA and H1N1 adhesion in a size- and density-dependent manner, consistent with the current view of mucins as providing a protective shield against pathogens. Counterintuitively, increasing the density of the mucin mimetics enhanced the retention of bound lectins and viruses. Careful characterization of SNA behavior at the RBC surface using a range of biophysical and imaging techniques revealed lectin-induced crowding and reorganization of the glycocalyx with concomitant enhancement in lectin clustering, presumably through the formation of a more extensive glycan receptor patch at the cell membrane. Our findings indicate that glycan-targeting pathogens may exploit the biophysical and biomechanical properties of mucins to overcome the mucosal glycocalyx barrier.


Assuntos
Eritrócitos/metabolismo , Glicocálix/metabolismo , Lectinas/metabolismo , Mucinas/metabolismo , Polissacarídeos/metabolismo , Biomimética/métodos , Membrana Celular/metabolismo , Membrana Celular/virologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Eritrócitos/virologia , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Mucosa/metabolismo , Mucosa/virologia , Receptores de Superfície Celular/metabolismo
9.
Adv Sci (Weinh) ; 8(18): e2100323, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34278739

RESUMO

Blood cell analysis is a major pillar of biomedical research and healthcare. These analyses are performed in central laboratories. Rapid shipment from collection site to the central laboratories is currently needed because cells and biomarkers degrade rapidly. The dried blood spot from a fingerstick allows the preservation of cellular molecules for months but entire cells are never recovered. Here leucocyte elution is optimized from dried blood spots. Flow cytometry and mRNA expression profiling are used to analyze the recovered cells. 50-70% of the leucocytes that are dried on a polyester solid support via elution after shaking the support with buffer are recovered. While red blood cells lyse upon drying, it is found that the majority of leucocytes are preserved. Leucocytes have an altered structure that is improved by adding fixative in the elution buffer. Leucocytes are permeabilized, allowing an easy staining of all cellular compartments. Common immunophenotyping and mRNAs are preserved. The ability of a new biomarker (CD169) to discriminate between patients with and without Severe Acute Respiratory Syndrome induced by Coronavirus 2 (SARS-CoV-2) infections is also preserved. Leucocytes from blood can be dried, shipped, and/or stored for at least 1 month, then recovered for a wide variety of analyses, potentially facilitating biomedical applications worldwide.


Assuntos
Doenças Transmissíveis/diagnóstico , Testes Diagnósticos de Rotina/métodos , Teste em Amostras de Sangue Seco/métodos , Hematologia/métodos , Imunofenotipagem/métodos , Anticorpos Antivirais/sangue , Biomarcadores/sangue , Coleta de Amostras Sanguíneas/métodos , COVID-19/diagnóstico , Separação Celular/métodos , Doenças Transmissíveis/virologia , Eritrócitos/virologia , Citometria de Fluxo/métodos , Humanos , Leucócitos/virologia , RNA Mensageiro/sangue , SARS-CoV-2/genética
10.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L485-L489, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34231390

RESUMO

COVID-19, the disease caused by the SARS-CoV-2 virus, can progress to multisystem organ failure and viral sepsis characterized by respiratory failure, arrhythmias, thromboembolic complications, and shock with high mortality. Autopsy and preclinical evidence implicate aberrant complement activation in endothelial injury and organ failure. Erythrocytes express complement receptors and are capable of binding immune complexes; therefore, we investigated complement activation in patients with COVID-19 using erythrocytes as a tool to diagnose complement activation. We discovered enhanced C3b and C4d deposition on erythrocytes in COVID-19 sepsis patients and non-COVID sepsis patients compared with healthy controls, supporting the role of complement in sepsis-associated organ injury. Our data suggest that erythrocytes may contribute to a precision medicine approach to sepsis and have diagnostic value in monitoring complement dysregulation in COVID-19-sepsis and non-COVID sepsis and identifying patients who may benefit from complement targeted therapies.


Assuntos
COVID-19/complicações , Ativação do Complemento/imunologia , Complemento C3b/imunologia , Complemento C4b/imunologia , Eritrócitos/imunologia , Fragmentos de Peptídeos/imunologia , Insuficiência Respiratória/diagnóstico , Sepse/diagnóstico , COVID-19/imunologia , COVID-19/virologia , Complemento C3b/metabolismo , Complemento C4b/metabolismo , Eritrócitos/metabolismo , Eritrócitos/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/metabolismo , Insuficiência Respiratória/imunologia , Insuficiência Respiratória/metabolismo , Insuficiência Respiratória/virologia , SARS-CoV-2/isolamento & purificação , Sepse/imunologia , Sepse/metabolismo , Sepse/virologia
11.
Viruses ; 13(5)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068469

RESUMO

Grass carp reovirus (GCRV) causes serious losses to the grass carp industry. At present, infectious tissues of GCRV have been studied, but target cells remain unclear. In this study, peripheral blood cells were isolated, cultured, and infected with GCRV. Using quantitative real-time polymerase chain reaction (qRT-PCR), Western Blot, indirect immunofluorescence, flow cytometry, and transmission electron microscopy observation, a model of GCRV infected blood cells in vitro was established. The experimental results showed GCRV could be detectable in leukocytes only, while erythrocytes and thrombocytes could not. The virus particles in leukocytes are wrapped by empty membrane vesicles that resemble phagocytic vesicles. The empty membrane vesicles of leukocytes are different from virus inclusion bodies in C. idella kidney (CIK) cells. Meanwhile, the expression levels of IFN1, IL-1ß, Mx2, TNFα were significantly up-regulated in leukocytes, indicating that GCRV could cause the production of the related immune responses. Therefore, GCRV can infect leukocytes in vitro, but not infect erythrocytes and thrombocytes. Leukocytes are target cells in blood cells of GCRV infections. This study lays a theoretical foundation for the study of the GCRV infection mechanism and anti-GCRV immunity.


Assuntos
Carpas , Doenças dos Peixes/virologia , Leucócitos/virologia , Infecções por Reoviridae/veterinária , Reoviridae/fisiologia , Animais , Plaquetas/metabolismo , Plaquetas/ultraestrutura , Plaquetas/virologia , Células Cultivadas , Eritrócitos/metabolismo , Eritrócitos/ultraestrutura , Eritrócitos/virologia , Citometria de Fluxo , Leucócitos/metabolismo , Leucócitos/ultraestrutura , Reoviridae/ultraestrutura , Carga Viral
12.
Vet Microbiol ; 257: 109081, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33901803

RESUMO

As the most abundant cell type in the blood, red blood cells (RBCs) are serving for transporting oxygen. However, the mechanism by which RBCs binding virus remains largely unknown. Here, we demonstrated that porcine epidemic diarrhea virus (PEDV), a kind of coronavirus, could hijack RBCs and cause typical diarrhea in neonatal piglets. In an epidemiology investigation of PEDV, the RBCs samples from diarrheic pigs in several pig farms were found to be PEDV-positive. PEDV could bind to neonatal RBCs through CD71 and clathrin-mediated endocytosis, and its viability was maintained for 12 h. PEDV-loaded RBCs could transfer the virus to CD3+ T cells by conjugation and reach the intestine mucosa, where it caused infection. Finally, a further animal challenge revealed that transfusing with PEDV-loaded RBCs could cause intestinal epithelial cells (IECs) infection and typical diarrhea symptom. Therefore, our studies illustrated the mechanism by which PEDV could cause intestinal infection through hijacking RBCs, further providing a novel insight into the role of RBCs as potential cells for viral transmission in coronavirus pathogenesis.


Assuntos
Transfusão de Sangue/veterinária , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/veterinária , Diarreia/veterinária , Eritrócitos/virologia , Vírus da Diarreia Epidêmica Suína/patogenicidade , Doenças dos Suínos/transmissão , Animais , Animais Recém-Nascidos , Chlorocebus aethiops , Diarreia/virologia , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Suínos , Doenças dos Suínos/virologia , Linfócitos T/virologia , Células Vero , Ligação Viral
13.
Int J Lab Hematol ; 43(2): 160-168, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33264492

RESUMO

In December 2019, a new type of coronavirus was detected for the first time in Wuhan, Hubei Province, China. According to the reported data, the emerging coronavirus has spread worldwide, infecting more than fifty-seven million individuals, leading to more than one million deaths. The current study aimed to review and discuss the hematological findings of COVID-19. Laboratory changes and hematologic abnormalities have been reported repeatedly in COVID-19 patients. WBC count and peripheral blood lymphocytes are normal or slightly reduced while these indicators may change with the progression of the disease. In addition, several studies demonstrated that decreased hemoglobin levels in COVID-19 patients were associated with the severity of the disease. Moreover, thrombocytopenia, which is reported in 5%-40% of patients, is known to be associated with poor prognosis of the disease. COVID-19 can present with various hematologic manifestations. In this regard, accurate evaluation of laboratory indicators at the beginning and during COVID-19 can help physicians to adjust appropriate treatment and provide special and prompt care for those in need.


Assuntos
COVID-19/sangue , COVID-19/epidemiologia , Hematologia/métodos , Pandemias , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Biomarcadores/sangue , Plaquetas/imunologia , Plaquetas/patologia , Plaquetas/virologia , COVID-19/patologia , COVID-19/virologia , China/epidemiologia , Eritrócitos/imunologia , Eritrócitos/patologia , Eritrócitos/virologia , Hematologia/instrumentação , Humanos , Laboratórios , Leucócitos/imunologia , Leucócitos/patologia , Leucócitos/virologia , Receptores Virais/genética , Receptores Virais/imunologia , SARS-CoV-2/fisiologia , Serina Endopeptidases/genética , Serina Endopeptidases/imunologia , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Internalização do Vírus
14.
Int J Mol Sci ; 21(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153161

RESUMO

Progressive respiratory failure is seen as a major cause of death in severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2)-induced infection. Relatively little is known about the associated morphologic and molecular changes in the circulation of these patients. In particular, platelet and erythrocyte pathology might result in severe vascular issues, and the manifestations may include thrombotic complications. These thrombotic pathologies may be both extrapulmonary and intrapulmonary and may be central to respiratory failure. Previously, we reported the presence of amyloid microclots in the circulation of patients with coronavirus disease 2019 (COVID-19). Here, we investigate the presence of related circulating biomarkers, including C-reactive protein (CRP), serum ferritin, and P-selectin. These biomarkers are well-known to interact with, and cause pathology to, platelets and erythrocytes. We also study the structure of platelets and erythrocytes using fluorescence microscopy (using the markers PAC-1 and CD62PE) and scanning electron microscopy. Thromboelastography and viscometry were also used to study coagulation parameters and plasma viscosity. We conclude that structural pathologies found in platelets and erythrocytes, together with spontaneously formed amyloid microclots, may be central to vascular changes observed during COVID-19 progression, including thrombotic microangiopathy, diffuse intravascular coagulation, and large-vessel thrombosis, as well as ground-glass opacities in the lungs. Consequently, this clinical snapshot of COVID-19 strongly suggests that it is also a true vascular disease and considering it as such should form an essential part of a clinical treatment regime.


Assuntos
Plaquetas/patologia , Doenças Cardiovasculares/virologia , Infecções por Coronavirus/sangue , Infecções por Coronavirus/patologia , Eritrócitos/patologia , Ferritinas/sangue , Selectina-P/sangue , Pneumonia Viral/sangue , Pneumonia Viral/patologia , Betacoronavirus/isolamento & purificação , Coagulação Sanguínea/fisiologia , Plaquetas/virologia , COVID-19 , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/patologia , Infecções por Coronavirus/virologia , Eritrócitos/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Trombose/patologia , Trombose/virologia
15.
Eur Rev Med Pharmacol Sci ; 24(16): 8585-8591, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32894566

RESUMO

Some surface proteins of the newly identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can bind to the hemoglobin molecule of an erythrocyte, which leads to the destruction of the structure of the heme and the release of harmful iron ions to the bloodstream. The degradation of hemoglobin results in the impairment of oxygen-carrying capacity of the blood, and the accumulation of free iron enhances the production of reactive oxygen species. Both events can lead to the development of oxidative stress. In this case, oxidative damage to the lungs leads then to the injuries of all other tissues and organs. The use of uridine, which preserves the structure of pulmonary alveoli and the air-blood barrier of the lungs in the course of experimental severe hypoxia, and dihydroquercetin, an effective free radical scavenger, is promising for the treatment of COVID-19. These drugs can also be used for the recovery of the body after the severe disease.


Assuntos
Infecções por Coronavirus/patologia , Estresse Oxidativo , Pneumonia Viral/patologia , Betacoronavirus , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Citocinas/metabolismo , Eritrócitos/citologia , Eritrócitos/metabolismo , Eritrócitos/virologia , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/uso terapêutico , Hemoglobinas/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/fisiologia , Quercetina/análogos & derivados , Quercetina/farmacologia , Quercetina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , SARS-CoV-2 , Uridina/farmacologia , Uridina/uso terapêutico
17.
Biosci Rep ; 40(8)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32725148

RESUMO

The new 2019 coronavirus disease (COVID-19), according to the World Health Organization (WHO), has been characterized as a pandemic. As more is being discovered about this virus, we aim to report findings of the complete blood count (CBC) of COVID-19 patients. This would serve in providing physicians with important knowledge on the changes that can be expected from the CBC of mild and normal COVID-19 patients. A total of 208 mild and common patients were admitted at the Dongnan Hospital located in the city of Xiaogan, Hubei, China. The CBCs of these patients, following a confirmed diagnosis of COVID-19, were retrospectively analyzed and a significant P<0.05 was found after a full statistical analysis was conducted using the Statistical Package for the Social Sciences (IBM SPSS). CBC analysis revealed changes in the levels of red blood cells (RBCs), hemoglobin (HGB), hematocrit (HCT), mean corpuscular volume (MCV), and C-reactive protein (CRP). Clinicians should expect similar findings when dealing with the new COVID-19.


Assuntos
Betacoronavirus/patogenicidade , Doença das Coronárias/diagnóstico , Infecções por Coronavirus/diagnóstico , Diabetes Mellitus/diagnóstico , Hipertensão/diagnóstico , Pneumonia Viral/diagnóstico , Insuficiência Respiratória/diagnóstico , Adulto , Idoso , Doenças Assintomáticas , Contagem de Células Sanguíneas , Proteína C-Reativa/metabolismo , COVID-19 , China/epidemiologia , Comorbidade , Doença das Coronárias/sangue , Doença das Coronárias/epidemiologia , Doença das Coronárias/fisiopatologia , Infecções por Coronavirus/sangue , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/fisiopatologia , Diabetes Mellitus/sangue , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/fisiopatologia , Índices de Eritrócitos , Eritrócitos/patologia , Eritrócitos/virologia , Feminino , Hematócrito , Hemoglobinas/metabolismo , Humanos , Hipertensão/sangue , Hipertensão/epidemiologia , Hipertensão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/epidemiologia , Pneumonia Viral/fisiopatologia , Insuficiência Respiratória/sangue , Insuficiência Respiratória/epidemiologia , Insuficiência Respiratória/fisiopatologia , Estudos Retrospectivos , SARS-CoV-2 , Índice de Gravidade de Doença
18.
Cell ; 182(2): 532-532.e1, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32707094

RESUMO

Influenza is one of the best-studied viruses of all time, and as such, it serves as a testbed to extend our biological knowledge to the nanoscale. Many of the key processes underlying influenza infection and our antibody response against the virus have been thoroughly investigated. This SnapShot describes these key numbers for prototypical lab-adapted strains of the human influenza A virus. To view this SnapShot, open or download the PDF.


Assuntos
Vírus da Influenza A/metabolismo , Influenza Humana/patologia , Formação de Anticorpos , Eritrócitos/virologia , Hemaglutininas/química , Hemaglutininas/metabolismo , Humanos , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Influenza Humana/virologia , Neuraminidase/química , Neuraminidase/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Ácidos Siálicos/metabolismo
19.
Sci Rep ; 10(1): 12636, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724066

RESUMO

Rotavirus is the most common cause of acute gastroenteritis (AGE) in young children. Bacillus clausii (B. clausii) is a spore-forming probiotic that is able to colonize the gut. A mixture of four B. clausii strains (O/C, T, SIN and N/R) is commonly used for the treatment of AGE, and it has been demonstrated that it can reduce the duration and severity of diarrhea in children with AGE. Few studies have sought to characterize the mechanisms responsible for such beneficial effects. Intestinal effects of probiotics are likely to be strain-specific. We conducted a series of in vitro experiments investigating the activities of this mixture of B. clausii strains on biomarkers of mucosal barrier integrity and immune function in a cellular model of Rotavirus infection. B. clausii protected enterocytes against Rotavirus-induced decrease in trans-epithelial electrical resistance, and up-regulated expression of mucin 5AC and tight junction proteins (occludin and zonula occludens-1), all of which are important for effective mucosal barrier function. B. clausii also inhibited reactive oxygen species production and release of pro-inflammatory cytokines (interleukin-8 and interferon-ß) in Rotavirus-infected cells, and down-regulated pro-inflammatory Toll-like receptor 3 pathway gene expression. Such mechanisms likely contributed to the observed protective effects of B. clausii against reduced cell proliferation and increased apoptosis in Rotavirus-infected enterocytes.


Assuntos
Bacillus clausii/crescimento & desenvolvimento , Enterócitos/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Probióticos/administração & dosagem , Infecções por Rotavirus/prevenção & controle , Rotavirus/efeitos dos fármacos , Apoptose , Ciclo Celular , Proliferação de Células , Enterócitos/virologia , Eritrócitos/virologia , Humanos , Técnicas In Vitro , Interferon beta/metabolismo , Interleucina-8/metabolismo , Mucina-5AC/genética , Mucina-5AC/metabolismo , Ocludina/genética , Ocludina/metabolismo , Substâncias Protetoras , Rotavirus/isolamento & purificação , Infecções por Rotavirus/virologia , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
20.
Clin Chim Acta ; 508: 98-102, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32405079

RESUMO

BACKGROUND: Novel coronavirus infectious disease (COVID-19) has been spreading worldwide, and tracking laboratory indexes during the diagnosis and treatment of patients with severe COVID-19 can provide a reference for patients in other countries and regions. METHODS: We closely tracked the epidemiological history, diagnosis and treatment process, as well as dynamic changes in routine blood indicators, of a severe COVID-19 patient who was hospitalized for 26 days. RESULTS: Our study found that the patient's condition worsened in the first week after admission, white blood cells (WBCs), neutrophils, lymphocytes, monocytes, eosinophils, red blood cells (RBCs), hemoglobin, neutrophil lymphocyte ratio (NLR), platelets (PLT) and platelet lymphocyte ratio (PLR) decreased. On the 7th day of admission, the levels of these cells decreased to their lowest values, though the red blood cell distribution width (RDW) and C-reactive protein (CRP) level remained at high values. From 8 to 14 days of admission, the patient's condition improved, hypoxemia was corrected, and mechanical ventilation was discontinued. The number of WBCs, neutrophils, monocytes, eosinophils and lymphocytes increased gradually, and the erythrocyte parameters stopped declining and stabilized in a certain range; CRP decreased rapidly. On the 20th day of admission, the nucleic acid test was negative, WBC, neutrophil, CRP, NLR and PLR decreased gradually, and monocyte, lymphocyte, and eosinophil counts increased. Although RBCs and hemoglobin (Hb) levels continued to decrease, RDW gradually increased, indicating the recovery of hematopoiesis. In addition, it should be noted that monocytes and eosinophils were at extremely low levels within 10 days after admission; the recovery time of eosinophils was approximately 12 days after admission, which was earlier than other parameters, which might be of great value in judging the progress of the disease. CONCLUSIONS: Dynamic changes in routine blood parameters might be helpful for the prognosis of COVID-19 patients and evaluation of the treatment effect.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/sangue , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/sangue , Pneumonia Viral/diagnóstico , Antibacterianos/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Biomarcadores/sangue , Plaquetas/efeitos dos fármacos , Plaquetas/patologia , Plaquetas/virologia , Proteína C-Reativa/metabolismo , COVID-19 , Contagem de Células , Convalescença , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/terapia , Eritrócitos/efeitos dos fármacos , Eritrócitos/patologia , Eritrócitos/virologia , Feminino , Humanos , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/patologia , Monócitos/virologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/patologia , Neutrófilos/virologia , Oseltamivir/uso terapêutico , Pandemias , Pneumonia Viral/fisiopatologia , Pneumonia Viral/terapia , Prognóstico , Respiração Artificial , SARS-CoV-2 , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...