Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Top Med Chem ; 18(22): 1987-1997, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30499407

RESUMO

Malaria continues to impinge heavily on mankind, with five continents still under its clasp. Widespread and rapid emergence of drug resistance in the Plasmodium parasite to current therapies accentuate the quest for novel drug targets and antimalarial compounds. Plasmodium parasites, maintain a non-photosynthetic relict organelle known as Apicoplast. Among the four major pathways of Apicoplast, biosynthesis of isoprenoids via Methylerythritol phosphate (MEP) pathway is the only indispensable function of Apicoplast that occurs during different stages of the malaria parasite. Moreover, the human host lacks MEP pathway. MEP pathway is a validated repertoire of novel antimalarial and antibacterial drug targets. Fosmidomycin, an efficacious antimalarial compound against IspC enzyme of MEP pathway is already in clinical trials as a combination drugs. Exploitation of other enzymes of MEP pathway would provide a much-needed impetus to the antimalarial drug discovery programs for the elimination of malaria. We outline the cardinal features of the MEP pathway enzymes and progress made towards the characterization of new inhibitors.


Assuntos
Apicoplastos/metabolismo , Eritritol/análogos & derivados , Plasmodium falciparum/metabolismo , Fosfatos Açúcares/metabolismo , Antimaláricos/química , Antimaláricos/farmacologia , Apicoplastos/efeitos dos fármacos , Eritritol/antagonistas & inibidores , Eritritol/química , Eritritol/metabolismo , Humanos , Fosfotransferases/antagonistas & inibidores , Fosfotransferases/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Fosfatos Açúcares/antagonistas & inibidores , Fosfatos Açúcares/química , Terpenos/química , Terpenos/metabolismo , Transferases/antagonistas & inibidores , Transferases/metabolismo
2.
Molecules ; 20(5): 7574-85, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25919278

RESUMO

Nitric oxide (NO), a well-known signaling molecule plays an important role in abiotic and biotic stress-induced production of plant secondary metabolites. In this study, roles of NO in water stress-induced tanshinone production in Salvia miltiorrhiza hairy roots were investigated. The results showed that accumulations of four tanshinone compounds in S. miltiorrhiza hairy roots were significantly stimulated by sodium nitroprusside (SNP, a NO donor) at 100 µM. Effects of SNP were just partially arrested by the mevalonate (MVA) pathway inhibitor (mevinolin), but were completely inhibited by the 2-C-methyl-d-erythritol-4-phosphate pathway (MEP) inhibitor (fosmidomycin). The increase of tanshinone accumulation and the up-regulation of HMGR and DXR expression by PEG and ABA treatments were partially inhibited by an inhibitor of NO biosynthesis (Nω-nitro-L-arginine methyl ester (L-NAME)) and a NO scavenger (2-(4-Carboxyphenyl)- 4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO)). Simultaneously, NO generation in the hairy roots was triggered by PEG and ABA, and the effects were also arrested by c-PTIO and L-NAME. These results indicated that NO signaling probably plays a central role in water stress-induced tanshinone production in S. miltiorrhiza hairy roots. SNP mainly stimulated the MEP pathway to increase tanshinone accumulation.


Assuntos
Abietanos/biossíntese , Desidratação/metabolismo , Óxido Nítrico/metabolismo , Raízes de Plantas/metabolismo , Salvia miltiorrhiza/metabolismo , Ácido Abscísico/química , Ácido Abscísico/metabolismo , Secas , Eritritol/análogos & derivados , Eritritol/antagonistas & inibidores , Fosfomicina/análogos & derivados , Fosfomicina/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lovastatina/farmacologia , Ácido Mevalônico/metabolismo , NG-Nitroarginina Metil Éster/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico/química , Nitroprussiato/farmacologia , Polietilenoglicóis/metabolismo , Transdução de Sinais , Fosfatos Açúcares/antagonistas & inibidores
3.
Bioorg Med Chem Lett ; 25(7): 1515-9, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25754494

RESUMO

Compounds that target isoprenoid biosynthesis in Plasmodium falciparum could be a welcome addition to malaria chemotherapy, since the methylerythritol phosphate (MEP) pathway used by the parasite is not present in humans. We previously reported that MMV008138 targets the apicoplast of P. falciparum and that its target in the MEP pathway differs from that of Fosmidomycin. In this Letter, we determine that the active stereoisomer of MMV008138 is 4a, which is (1R,3S)-configured. 2',4'-Disubstitution of the D ring was also found to be crucial for inhibition of the parasite growth. Limited variation of the C3-carboxylic acid substituent was carried out, and methylamide derivative 8a was found to be more potent than 4a; other amides, acylhydrazines, and esters were less potent. Finally, lead compounds 4a, 4e, 4f, 4h, 8a, and 8e did not inhibit growth of Escherichia coli, suggesting that protozoan-selective inhibition of the MEP pathway of P. falciparum can be achieved.


Assuntos
Antimaláricos/farmacologia , Carbolinas/farmacologia , Eritritol/análogos & derivados , Ácidos Pipecólicos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Fosfatos Açúcares/antagonistas & inibidores , Antimaláricos/química , Carbolinas/química , Relação Dose-Resposta a Droga , Eritritol/antagonistas & inibidores , Eritritol/metabolismo , Estrutura Molecular , Testes de Sensibilidade Parasitária , Ácidos Pipecólicos/química , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade , Fosfatos Açúcares/metabolismo
4.
J Med Chem ; 57(23): 9740-63, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25210872

RESUMO

Important pathogens such as Mycobacterium tuberculosis and Plasmodium falciparum, the causative agents of tuberculosis and malaria, respectively, and plants, utilize the 2C-methyl-D-erythritol 4-phosphate (MEP, 5) pathway for the biosynthesis of isopentenyl diphosphate (1) and dimethylallyl diphosphate (2), the universal precursors of isoprenoids, while humans exclusively utilize the alternative mevalonate pathway for the synthesis of 1 and 2. This distinct distribution, together with the fact that the MEP pathway is essential in numerous organisms, makes the enzymes of the MEP pathway attractive drug targets for the development of anti-infective agents and herbicides. Herein, we review the inhibitors reported over the past 2 years, in the context of the most important older developments and with a particular focus on the results obtained against enzymes of pathogenic organisms. We will also discuss new discoveries in terms of structural and mechanistic features, which can help to guide a rational development of inhibitors.


Assuntos
Anti-Infecciosos/síntese química , Inibidores Enzimáticos/síntese química , Eritritol/análogos & derivados , Fosfatos Açúcares/antagonistas & inibidores , Aldose-Cetose Isomerases/antagonistas & inibidores , Anti-Infecciosos/farmacologia , Desenho de Fármacos , Eritritol/antagonistas & inibidores , Proteínas de Escherichia coli/antagonistas & inibidores , Modelos Moleculares , Complexos Multienzimáticos/antagonistas & inibidores , Oxirredutases/antagonistas & inibidores , Fósforo-Oxigênio Liases/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores
5.
Cell Res ; 20(6): 688-700, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20404857

RESUMO

1-Deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) is an important enzyme involved in the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway which provides the basic five-carbon units for isoprenoid biosynthesis. To investigate the role of the MEP pathway in plant development and metabolism, we carried out detailed analyses on a dxr mutant (GK_215C01) and two DXR transgenic co-suppression lines, OX-DXR-L2 and OX-DXR-L7. We found that the dxr mutant was albino and dwarf. It never bolted, had significantly reduced number of trichomes and most of the stomata could not close normally in the leaves. The two co-suppression lines produced more yellow inflorescences and albino sepals with no trichomes. The transcription levels of genes involved in trichome initiation were found to be strongly affected, including GLABRA1, TRANSPARENT TESTA GLABROUS 1, TRIPTYCHON and SPINDLY, expression of which is regulated by gibberellic acids (GAs). Exogenous application of GA(3) could partially rescue the dwarf phenotype and the trichome initiation of dxr, whereas exogenous application of abscisic acid (ABA) could rescue the stomata closure defect, suggesting that lower levels of both GA and ABA contribute to the phenotype in the dxr mutants. We further found that genes involved in the biosynthetic pathways of GA and ABA were coordinately regulated. These results indicate that disruption of the plastidial MEP pathway leads to biosynthetic deficiency of photosynthetic pigments, GAs and ABA, and thus the developmental abnormalities, and that the flux from the cytoplasmic mevalonate pathway is not sufficient to rescue the deficiency caused by the blockage of the plastidial MEP pathway. These results reveal a critical role for the MEP biosynthetic pathway in controlling the biosynthesis of isoprenoids.


Assuntos
Aldose-Cetose Isomerases/genética , Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação Enzimológica da Expressão Gênica/genética , Inativação Gênica , Complexos Multienzimáticos/genética , Oxirredutases/genética , Estômatos de Plantas/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Ácido Abscísico/biossíntese , Ácido Abscísico/genética , Aldose-Cetose Isomerases/deficiência , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Eritritol/análogos & derivados , Eritritol/antagonistas & inibidores , Eritritol/biossíntese , Regulação da Expressão Gênica de Plantas/genética , Giberelinas/biossíntese , Giberelinas/genética , Complexos Multienzimáticos/deficiência , Mutação/genética , Oxirredutases/deficiência , Pigmentação/genética , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Estômatos de Plantas/enzimologia , Estômatos de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Sementes/enzimologia , Fosfatos Açúcares/antagonistas & inibidores , Fosfatos Açúcares/biossíntese , Terpenos/metabolismo
6.
Prikl Biokhim Mikrobiol ; 43(2): 133-57, 2007.
Artigo em Russo | MEDLINE | ID: mdl-17476799

RESUMO

Specific inhibitors of 2-C-methylerythritol phosphate pathway (MEP-pathway), including compounds obtained based on its metabolites, may compose a new class of antibiotics combining high efficiency and low toxicity. MEP-pathway of isoprenoid biosynthesis is a promising target in identifying new herbicides, immunomodulators, and other physiologically active compounds.


Assuntos
Antibacterianos , Eritritol/análogos & derivados , Herbicidas , Fatores Imunológicos , Terpenos/metabolismo , Antibacterianos/química , Eritritol/antagonistas & inibidores , Eritritol/biossíntese , Eritritol/química , Herbicidas/química , Fatores Imunológicos/química
7.
Curr Pharm Des ; 13(11): 1161-77, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17430177

RESUMO

The 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway for isoprenoid biosynthesis has come under increased scrutiny as a target for novel antimalarial, antibacterial and herbicidal agents. 1-Deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) is a key enzyme of the pathway that catalyzes the rearrangement and nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of 1-deoxy-D-xylulose 5-phosphate (DXP) to MEP. The unique properties of DXR make it a remarkable and rational target for drug design. First, it is a vital enzyme for synthesis of isoprenoids in algae, plants, several eubacteria including the pathogenic bacteria like Bacillus anthracis, Helicobacter pylori, Yersinia pestis, Mycobacterium tuberculosis and the malarial parasite, Plasmodium falciparum. Second, there are no functional equivalents to DXR in humans, making it an attractive target for therapeutic intervention. Third, DXR appears to be a valid target and the results from fosmidomycin (1), the only available DXR inhibitor under clinical trials, suggests synergistic effects with the lincosamide antibiotics, lincomycin and clindamycin. Despite drug design efforts in this area, no successful drug specifically designed to inhibit DXR has emerged yet. This review summarizes the recent and promising developments with respect to the current knowledge of the MEP pathway with emphasis on the understanding of the structure and the catalytic mechanism of the DXR enzyme and the global quest for therapeutically useful inhibitors of DXR.


Assuntos
Aldose-Cetose Isomerases/antagonistas & inibidores , Antibacterianos/síntese química , Antimaláricos/síntese química , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Eritritol/análogos & derivados , Herbicidas/síntese química , Complexos Multienzimáticos/antagonistas & inibidores , Oxirredutases/antagonistas & inibidores , Fosfatos Açúcares/antagonistas & inibidores , Aldose-Cetose Isomerases/metabolismo , Animais , Antibacterianos/administração & dosagem , Antimaláricos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Inibidores Enzimáticos/administração & dosagem , Eritritol/antagonistas & inibidores , Eritritol/metabolismo , Herbicidas/administração & dosagem , Humanos , Complexos Multienzimáticos/metabolismo , Oxirredutases/metabolismo , Fosfatos Açúcares/metabolismo
8.
Curr Pharm Des ; 10(19): 2391-400, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15279616

RESUMO

Isoprenoids, a diverse group of compounds derived from the five-carbon building units isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP), are essential for survival in all organisms. Animals synthesize their isoprenoids from mevalonic acid (MVA), whereas most pathogenic bacteria and the malaria parasites utilize a completely different pathway for IPP and DMAPP synthesis, the methylerythritol phosphate (MEP) pathway. Plants use both pathways for the synthesis of isoprenoid precursors. The recent elucidation of the MEP pathway has opened the possibility to develop new strategies against microbial pathogens. Novel immunotherapeutic agents can be developed based on the MEP pathway intermediates known to activate the proliferation of human V-delta-9 V-gamma-2 T-cells after infection by many pathogenic bacteria and protozoa. Moreover, the design of specific inhibitors of MEP pathway enzymes (which are highly conserved but show no homology to mammalian proteins) should result in herbicides and drugs with broad-spectrum antimicrobial activity without mechanism-based toxicity to humans. A good example is the cure of bacterial infections and malaria with fosmidomycin, a highly stable inhibitor of the MEP pathway. The use of plants as test systems has led to the identification of additional inhibitors such as ketoclomazone. Biochemical, genetic and crystallographic approaches with the MEP pathway enzymes are now starting to characterize the inhibition kinetics and identify which residues play a structural or catalytic role. Current efforts should eventually contribute to an effective drug designed to fight against microbial pathogens that show resistance to currently available agents.


Assuntos
Antibacterianos/farmacologia , Antimaláricos/farmacologia , Eritritol/análogos & derivados , Eritritol/fisiologia , Fosfomicina/análogos & derivados , Herbicidas/farmacologia , Fosfatos Açúcares/fisiologia , Antibacterianos/metabolismo , Antimaláricos/metabolismo , Desenho de Fármacos , Eritritol/antagonistas & inibidores , Fosfomicina/farmacologia , Herbicidas/metabolismo , Humanos , Plantas/metabolismo , Fosfatos Açúcares/antagonistas & inibidores , Terpenos/metabolismo
9.
Plant Cell ; 16(1): 144-56, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14660801

RESUMO

Plants synthesize an astonishing diversity of isoprenoids, some of which play essential roles in photosynthesis, respiration, and the regulation of growth and development. Two independent pathways for the biosynthesis of isoprenoid precursors coexist within the plant cell: the cytosolic mevalonic acid (MVA) pathway and the plastidial methylerythritol phosphate (MEP) pathway. In at least some plants (including Arabidopsis), common precursors are exchanged between the cytosol and the plastid. However, little is known about the signals that coordinate their biosynthesis and exchange. To identify such signals, we arrested seedling development by specifically blocking the MVA pathway with mevinolin (MEV) or the MEP pathway with fosmidomycin (FSM) and searched for MEV-resistant Arabidopsis mutants that also could survive in the presence of FSM. Here, we show that one such mutant, rim1, is a new phyB allele (phyB-m1). Although the MEV-resistant phenotype of mutant seedlings is caused by the upregulation of MVA synthesis, its resistance to FSM most likely is the result of an enhanced intake of MVA-derived isoprenoid precursors by the plastid. The analysis of other light-hyposensitive mutants showed that distinct light perception and signal transduction pathways regulate these two differential mechanisms for resistance, providing evidence for a coordinated regulation of the activity of the MVA pathway and the crosstalk between cell compartments for isoprenoid biosynthesis during the first stages of seedling development.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Eritritol/análogos & derivados , Eritritol/metabolismo , Fosfomicina/análogos & derivados , Ácido Mevalônico/metabolismo , Células Fotorreceptoras , Transdução de Sinais/fisiologia , Fosfatos Açúcares/metabolismo , Terpenos/metabolismo , Fatores de Transcrição , Alelos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis , Eritritol/antagonistas & inibidores , Fosfomicina/farmacologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Luz , Lovastatina/farmacologia , Ácido Mevalônico/antagonistas & inibidores , Mutação , Fitocromo/genética , Fitocromo/metabolismo , Fitocromo B , Transdução de Sinais/efeitos da radiação , Fosfatos Açúcares/antagonistas & inibidores , Terpenos/antagonistas & inibidores
10.
Curr Pharm Biotechnol ; 4(4): 248-59, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14529427

RESUMO

Isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) are the precursors for all isoprenoid compounds. Two pathways are found in Nature for their biosynthesis. The mevalonate (MVA) pathway is found in eukaryotes, algae, archae and some gram-positive bacteria. Gram-negative bacteria, plants and some gram-positive bacteria utilize the methyl erythritol phosphate (MEP) pathway. The distribution and the orthogonal nature of the pathways make the MEP pathway an attractive new target for antibiotics and herbicides. The MEP pathway is essential for bacterial viability. Inhibitors to the MEP pathway represent a "dual-use technology" because potential targets include potential biological warfare agents in addition to common human pathogens. The CDC has three categories designated for Biological Diseases/Agents. Three of the six entities designated as the highest priority (Category A) are organisms that utilize, or appear to utilize, the MEP pathway. Among the 12 second highest priority agents (Category B) listed, 8 are organisms that appear to utilize the MEP pathway. Common human pathogens that can be targeted include the organisms responsible for peptic ulcers, tuberculosis, malaria, food safety threats, and sexually transmitted diseases. There is so far only one inhibitor reported that specifically blocks the MEP pathway and is being investigated clinically. This compound, fosmidomycin, has been shown to be somewhat effective in treating Plasmodium falciparum, the parasite responsible for malaria. We foresee that new MEP pathway inhibitors will open up an entirely new class of antibiotics. An MEP pathway intermediate has also been shown to be the most potent gammadelta T cell activator.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Eritritol/análogos & derivados , Eritritol/metabolismo , Transdução de Sinais/fisiologia , Animais , Substâncias para a Guerra Química/farmacologia , Eritritol/antagonistas & inibidores , Eritritol/química , Humanos , Transdução de Sinais/efeitos dos fármacos , Fosfatos Açúcares/antagonistas & inibidores , Fosfatos Açúcares/química , Fosfatos Açúcares/metabolismo
11.
J Clin Invest ; 51(9): 2414-9, 1972 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-4639025

RESUMO

The permeability of the proximal and distal rabbit intestine for two to six carbon polyhydric alcohols was compared. Intestinal segments were mounted in chambers that permitted the measurement of the unidirectional flux across the brush border membrane. For both proximal and distal intestine, the permeability for a series of polyhydric alcohols decreased with increasing size. The proximal intestine was more permeable for four, five, and six carbon polyhydric alcohols than distal intestine. This regional permeability difference can be attributed to variations in the permeability characteristics of the brush border specifically. The uptake of alcohols was nonsaturable and was not inhibited by phlorizine or n-ethylmaleimide. The results are compatible with the concept that the brush border membrane has properties similar to artificial porous membranes and that the equivalent radius of the pores of the proximal intestine exceeds that of the distal gut.


Assuntos
Intestino Delgado , Animais , Metabolismo dos Carboidratos , Carboidratos/antagonistas & inibidores , Isótopos de Carbono , Eritritol/antagonistas & inibidores , Eritritol/metabolismo , Etilmaleimida/farmacologia , Galactitol/antagonistas & inibidores , Galactitol/metabolismo , Glicóis/antagonistas & inibidores , Glicóis/metabolismo , Técnicas In Vitro , Absorção Intestinal , Mucosa Intestinal/anatomia & histologia , Intestino Delgado/anatomia & histologia , Manitol/antagonistas & inibidores , Manitol/metabolismo , Florizina/farmacologia , Coelhos , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...