Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 299
Filtrar
1.
Cell Rep Med ; 4(5): 101044, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37196629

RESUMO

Erythroblastic islands (EBIs) are the specialized structures for erythropoiesis, but they have never been found functional in tumors. As the most common pediatric liver malignancy, hepatoblastoma (HB) requires more effective and safer therapies to prevent progression and the lifelong impact of complications on young children. However, developing such therapies is impeded by a lack of comprehensive understanding of the tumor microenvironment. By single-cell RNA sequencing of 13 treatment-naive HB patients, we discover an immune landscape characterized by aberrant accumulation of EBIs, formed by VCAM1+ macrophages and erythroid cells, which is inversely correlated with survival of HB. Erythroid cells inhibit the function of dendritic cells (DCs) via the LGALS9/TIM3 axis, leading to impaired anti-tumor T cell immune responses. Encouragingly, TIM3 blockades relieve the inhibitory effect of erythroid cells on DCs. Our study provides an immune evasion mechanism mediated by intratumoral EBIs and proposes TIM3 as a promising therapeutic target for HB.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Criança , Humanos , Pré-Escolar , Eritroblastos/fisiologia , Receptor Celular 2 do Vírus da Hepatite A , Eritropoese/genética , Microambiente Tumoral
2.
Nagoya J Med Sci ; 83(1): 75-86, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33727739

RESUMO

MYH9 disorders are characterized by giant platelets, thrombocytopenia, and Döhle body-like cytoplasmic inclusion bodies in granulocytes. However, whether these disorders cause any changes in erythroid cells has yet to be determined. This study analyzed the influence of Myh9 R702C, as one of the most commonly detected MYH9 disorders, on erythroid cells in a mouse model. Knock-in mice expressing Myh9 R702C mutation either systemically or specific to hematological cells (R702C and R702C vav1 mice, respectively) were used in this study. Both displayed lower hemoglobin and higher erythropoietin levels than wild-type (WT) mice, along with significant splenomegaly. Flow cytometric analysis revealed erythroblasts present at a higher rate than WT mice in the spleen. However, no obvious abnormalities were seen in erythroid differentiation from megakaryocyte/erythroid progenitor to erythrocyte. Cell culture assay by fetal liver and colony assay also showed normal progression of erythroid differentiation from erythroid burst-forming unit to red blood cell. In conclusion, R702C and R702C vav1 mice displayed erythroid abnormality with splenomegaly. However, erythroid differentiation showed no obvious abnormality. Further research is required to elucidate the underlying mechanisms.


Assuntos
Diferenciação Celular/genética , Eritroblastos/fisiologia , Cadeias Pesadas de Miosina/genética , Esplenomegalia/genética , Animais , Medula Óssea/patologia , Contagem de Eritrócitos , Eritrócitos/fisiologia , Eritropoetina/sangue , Técnicas de Introdução de Genes , Hemoglobinas/metabolismo , Masculino , Camundongos , Mutação
3.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478008

RESUMO

Bioreactors are increasingly implemented for large scale cultures of various mammalian cells, which requires optimization of culture conditions. Such upscaling is also required to produce red blood cells (RBC) for transfusion and therapy purposes. However, the physiological suitability of RBC cultures to be transferred to stirred bioreactors is not well understood. PIEZO1 is the most abundantly expressed known mechanosensor on erythroid cells. It is a cation channel that translates mechanical forces directly into a physiological response. We investigated signaling cascades downstream of PIEZO1 activated upon transitioning stationary cultures to orbital shaking associated with mechanical stress, and compared the results to direct activation of PIEZO1 by the chemical agonist Yoda1. Erythroblasts subjected to orbital shaking displayed decreased proliferation, comparable to incubation in the presence of a low dose of Yoda1. Epo (Erythropoietin)-dependent STAT5 phosphorylation, and Calcineurin-dependent NFAT dephosphorylation was enhanced. Phosphorylation of ERK was also induced by both orbital shaking and Yoda1 treatment. Activation of these pathways was inhibited by intracellular Ca2+ chelation (BAPTA-AM) in the orbital shaker. Our results suggest that PIEZO1 is functional and could be activated by the mechanical forces in a bioreactor setup, and results in the induction of Ca2+-dependent signaling cascades regulating various aspects of erythropoiesis. With this study, we showed that Yoda1 treatment and mechanical stress induced via orbital shaking results in comparable activation of some Ca2+-dependent pathways, exhibiting that there are direct physiological outcomes of mechanical stress on erythroblasts.


Assuntos
Sinalização do Cálcio/fisiologia , Eritroblastos/fisiologia , Estresse Mecânico , Cálcio/metabolismo , Cálcio/farmacologia , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Eritroblastos/efeitos dos fármacos , Eritropoese/efeitos dos fármacos , Eritropoese/fisiologia , Humanos , Canais Iônicos/agonistas , Canais Iônicos/fisiologia , Mecanotransdução Celular/efeitos dos fármacos , Mecanotransdução Celular/fisiologia , Pirazinas/farmacologia , Rotação , Tiadiazóis/farmacologia
4.
Shock ; 55(6): 766-774, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32890311

RESUMO

INTRODUCTION: In this study, using burn patient's peripheral blood mononuclear cells (PBMCs), we have shown that the Epo independent stage of terminal enucleation to reticulocyte formation is impeded in the presence of autologous plasma (BP). Furthermore, substitution with allogeneic control plasma (CP) from the healthy individual in place of BP rectified this enucleation defect. The exclusive role of burn microenvironment in late-stage erythropoiesis defect was further demarcated through control healthy human bone marrow cells cultured in the presence of CP, BP, and cytokines. METHODS: PBMCs and human bone marrow (huBM) were differentiated ex vivo to enucleated reticulocytes in the presence of required growth factors and 5% CP or BP. Effect of systemic mediators in burn microenvironment like IL-6, IL-15, and TNFα was also explored. Neutralization experiments were carried out by adding varying concentrations (25 ng-400 ng/mL) of Anti-TNFα Ab to either CP+TNFα or BP. RESULTS: Reticulocyte proportion and maturation index were significantly improved upon substituting BP with CP during differentiation of burn PBMCs. In the huBM ex vivo culture, addition of IL-6 and IL-15 to CP inhibited the proliferation stages of erythropoiesis, whereas TNFα supplementation caused maximum diminution at erythroblast enucleation stage. Supplementation with anti-TNFα in the BP showed significant but partial restoration in the enucleation process, revealing the possibility of other crucial microenvironmental factors that could impact RBC production in burn patients. CONCLUSION: Exogenous TNFα impairs late-stage erythropoiesis by blocking enucleation, but neutralization of TNFα in BP only partially restored terminal enucleation indicating additional plasma factor(s) impair(s) late-stage RBC maturation in burn patients.


Assuntos
Queimaduras/sangue , Eritroblastos/fisiologia , Eritrócitos/fisiologia , Leucócitos Mononucleares/fisiologia , Fator de Necrose Tumoral alfa/sangue , Adulto , Diferenciação Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
5.
Proc Natl Acad Sci U S A ; 117(23): 12868-12876, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32457162

RESUMO

Fine-resolution differentiation trajectories of adult human hematopoietic stem cells (HSCs) involved in the generation of red cells is critical for understanding dynamic developmental changes that accompany human erythropoiesis. Using single-cell RNA sequencing (scRNA-seq) of primary human terminal erythroid cells (CD34-CD235a+) isolated directly from adult bone marrow (BM) and umbilical cord blood (UCB), we documented the transcriptome of terminally differentiated human erythroblasts at unprecedented resolution. The insights enabled us to distinguish polychromatic erythroblasts (PolyEs) at the early and late stages of development as well as the different development stages of orthochromatic erythroblasts (OrthoEs). We further identified a set of putative regulators of terminal erythroid differentiation and functionally validated three of the identified genes, AKAP8L, TERF2IP, and RNF10, by monitoring cell differentiation and apoptosis. We documented that knockdown of AKAP8L suppressed the commitment of HSCs to erythroid lineage and cell proliferation and delayed differentiation of colony-forming unit-erythroid (CFU-E) to the proerythroblast stage (ProE). In contrast, the knockdown of TERF2IP and RNF10 delayed differentiation of PolyE to OrthoE stage. Taken together, the convergence and divergence of the transcriptional continuums at single-cell resolution underscore the transcriptional regulatory networks that underlie human fetal and adult terminal erythroid differentiation.


Assuntos
Diferenciação Celular/genética , Eritroblastos/fisiologia , Eritropoese/genética , Adulto , Apoptose/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Sangue Fetal/citologia , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Humanos , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Família Multigênica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA-Seq , Complexo Shelterina , Análise de Célula Única , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Transcrição Gênica
6.
RNA ; 26(8): 996-1005, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32312846

RESUMO

The decoy exon model has been proposed to regulate a subset of intron retention (IR) events involving predominantly larger introns (>1 kb). Splicing reporter studies have shown that decoy splice sites are essential for activity, suggesting that decoys act by engaging intron-terminal splice sites and competing with cross-intron interactions required for intron excision. The decoy model predicts that antisense oligonucleotides may be able to block decoy splice sites in endogenous pre-mRNA, thereby reducing IR and increasing productive gene expression. Indeed, we now demonstrate that targeting a decoy 5' splice site in the O-GlcNAc transferase (OGT) gene reduced IR from ∼80% to ∼20% in primary human erythroblasts, accompanied by increases in spliced OGT RNA and OGT protein expression. The remaining OGT IR was refractory to antisense treatment and might be mediated by independent mechanism(s). In contrast, other retained introns were strongly dependent on decoy function, since antisense targeting of decoy 5' splice sites greatly reduced (SNRNP70) or nearly eliminated (SF3B1) IR in two widely expressed splicing factors, and also greatly reduced IR in transcripts encoding the erythroid-specific structural protein, α-spectrin (SPTA1). These results show that modulating decoy exon function can dramatically alter IR and suggest that dynamic regulation of decoy exons could be a mechanism to fine-tune gene expression post-transcriptionally in many cell types.


Assuntos
Eritroblastos/fisiologia , Éxons/genética , Oligonucleotídeos Antissenso/genética , Processamento Alternativo/genética , Células Cultivadas , Humanos , Íntrons/genética , N-Acetilglucosaminiltransferases/genética , Precursores de RNA/genética , Sítios de Splice de RNA/genética , Fatores de Processamento de RNA/genética
7.
Blood ; 135(3): 208-219, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31945154

RESUMO

Mammalian red blood cells lack nuclei. The molecular mechanisms underlying erythroblast nuclear condensation and enucleation, however, remain poorly understood. Here we show that Wdr26, a gene upregulated during terminal erythropoiesis, plays an essential role in regulating nuclear condensation in differentiating erythroblasts. Loss of Wdr26 induces anemia in zebrafish and enucleation defects in mouse erythroblasts because of impaired erythroblast nuclear condensation. As part of the glucose-induced degradation-deficient ubiquitin ligase complex, Wdr26 regulates the ubiquitination and degradation of nuclear proteins, including lamin B. Failure of lamin B degradation blocks nuclear opening formation leading to impaired clearance of nuclear proteins and delayed nuclear condensation. Collectively, our study reveals an unprecedented role of an E3 ubiquitin ligase in regulating nuclear condensation and enucleation during terminal erythropoiesis. Our results provide mechanistic insights into nuclear protein homeostasis and vertebrate red blood cell development.


Assuntos
Diferenciação Celular , Núcleo Celular/metabolismo , Eritroblastos/fisiologia , Eritropoese , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Núcleo Celular/genética , Eritroblastos/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética
8.
J Vet Emerg Crit Care (San Antonio) ; 29(5): 521-527, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31482676

RESUMO

OBJECTIVE: To compare the prognostic value of admission hematologic parameters serum/plasma iron, red blood cell distribution width (RDW), and nucleated red blood cells (nRBCs) in dogs presenting with acute traumatic injury. DESIGN: Retrospective observational study (2009-2015). SETTING: University teaching hospital. ANIMALS: One hundred and twenty-nine clinical dogs presenting within 24 hours of acute traumatic injury. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: One hundred and twenty-nine dogs met the inclusion criteria and 109 (84.5%) survived, while 20 (15.5%) died or were euthanized in hospital. Patients with blunt force trauma comprised 79.8% of the patient population; dogs with penetrating trauma comprised 20.2% of cases. Hypoferremia occurred in all nonsurvivors, and the median serum/plasma iron concentration was significantly lower in nonsurvivors than survivors (P = 0.028). Normal or increased serum/plasma iron had 100% specificity and 100% positive predictive value for survival. Red blood cell distribution width was not significantly different between groups (P = 0.417). The presence of nRBCs was significantly associated with nonsurvival (P = 0.030), although the absolute nRBC concentrations were not significantly different (P = 0.070). A multiple logistic regression model found age, type of injury, presence of nRBCs, and serum/plasma iron to be independent predictors of survival with an area under the receiver operator characteristic curve of 0.813. CONCLUSIONS: The presence of nRBCs and low serum/plasma iron are associated with mortality in patients with acute trauma; however, red blood cell distribution width was not associated with survival. Absence of hypoferremia was highly associated with a favorable prognosis in this patient population. These parameters may warrant inclusion in trauma scoring systems.


Assuntos
Cães/lesões , Eritroblastos/fisiologia , Ferro/sangue , Ferimentos e Lesões/veterinária , Animais , Cães/sangue , Feminino , Escala de Gravidade do Ferimento , Modelos Logísticos , Masculino , Prognóstico , Curva ROC , Estudos Retrospectivos , Ferimentos e Lesões/sangue
9.
Res Vet Sci ; 126: 150-154, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31493682

RESUMO

Systemic inflammatory response syndrome (SIRS) is the manifestation of the systemic response to an infectious or non-infectious disease. We evaluated the association between erythrocyte parameters, including nucleated red blood cells (NRBCs) and leukocyte ratios (NLR, neutrophil-to-lymphocyte ratio; BLR, band neutrophil-to-lymphocyte ratio; BLNR, band neutrophil-to-neutrophil-to-lymphocyte ratio). A review of the medical records was conducted searching SIRS dogs among those admitted to our intensive care unit and a SIRS grading was obtained based on how many criteria were fulfilled. The Acute Patient Physiology and Laboratory Evaluation (APPLEfast) score was assessed in each dog. Survival rate was assessed 15 days after admission. Dogs with clinical and/or clinicopathological signs of hemolytic or hemorrhagic disorders were excluded. Dogs with ≥2 criteria of SIRS along with a documented underlying infectious cause were recorded as septic (32/90, 35%). A SIRS grading >2 (p = .001) and an APPLEfast score > 25 (p = .03) were associated with mortality. Twenty-two of SIRS dogs (24%) showed circulating NRBCs. The occurrence of circulating NRBCs was associated with the mortality in SIRS groups (p = .0025). The median NLR was 11.69 and NLR was lower in septic dogs compared to non-septic ones (p = .0272). APPLEfast, SIRS grading and circulating NRBCs may be considered as negative prognostic factors in canine SIRS. NLR could be a useful tool in dogs with SIRS, which was significantly lower in the septic group. Further prospective, large-scale studies investigating BLR and BNLR in canine SIRS are warranted.


Assuntos
Doenças do Cão/sangue , Linfócitos/fisiologia , Neutrófilos/fisiologia , Síndrome de Resposta Inflamatória Sistêmica/veterinária , Animais , Biomarcadores/sangue , Cães , Eritroblastos/fisiologia , Contagem de Eritrócitos , Eritrócitos , Feminino , Masculino , Estudos Prospectivos , Taxa de Sobrevida , Síndrome de Resposta Inflamatória Sistêmica/sangue
10.
Nat Commun ; 10(1): 3806, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444345

RESUMO

Investigating the role that host erythrocyte proteins play in malaria infection is hampered by the genetic intractability of this anucleate cell. Here we report that reticulocytes derived through in vitro differentiation of an enucleation-competent immortalized erythroblast cell line (BEL-A) support both successful invasion and intracellular development of the malaria parasite Plasmodium falciparum. Using CRISPR-mediated gene knockout and subsequent complementation, we validate an essential role for the erythrocyte receptor basigin in P. falciparum invasion and demonstrate rescue of invasive susceptibility by receptor re-expression. Successful invasion of reticulocytes complemented with a truncated mutant excludes a functional role for the basigin cytoplasmic domain during invasion. Contrastingly, knockout of cyclophilin B, reported to participate in invasion and interact with basigin, did not impact invasive susceptibility of reticulocytes. These data establish the use of reticulocytes derived from immortalized erythroblasts as a powerful model system to explore hypotheses regarding host receptor requirements for P. falciparum invasion.


Assuntos
Engenharia Genética/métodos , Interações Hospedeiro-Parasita , Malária Falciparum/parasitologia , Plasmodium falciparum/patogenicidade , Reticulócitos/parasitologia , Animais , Basigina/genética , Basigina/metabolismo , Sistemas CRISPR-Cas , Diferenciação Celular , Linhagem Celular , Ciclofilinas/genética , Ciclofilinas/metabolismo , Eritroblastos/fisiologia , Técnicas de Inativação de Genes , Vetores Genéticos/genética , Células HEK293 , Humanos , Lentivirus/genética , Plasmodium falciparum/metabolismo , Domínios Proteicos/genética , Proteínas de Protozoários/metabolismo , Reticulócitos/fisiologia , Transdução Genética
11.
Blood ; 133(11): 1222-1232, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30674470

RESUMO

The erythroblastic island (EI), formed by a central macrophage and developing erythroblasts (EBs), was first described decades ago and was recently shown to play an in vivo role in homeostatic and pathological erythropoiesis. The exact molecular mechanisms, however, mediating the interactions between macrophages and EBs remain unclear. Macrophage-EB attacher (Maea) has previously been suggested to mediate homophilic adhesion bounds bridging macrophages and EBs. Maea-deficient mice die perinatally with anemia and defective erythrocyte enucleation, suggesting a critical role in fetal erythropoiesis. Here, we generated conditional knockout mouse models of Maea to assess its cellular and postnatal contributions. Deletion of Maea in macrophages using Csf1r-Cre or CD169-Cre caused severe reductions of bone marrow (BM) macrophages, EBs, and in vivo island formation, whereas its deletion in the erythroid lineage using Epor-Cre had no such phenotype, suggesting a dominant role of Maea in the macrophage for BM erythropoiesis. Interestingly, Maea deletion in spleen macrophages did not alter their numbers or functions. Postnatal Maea deletion using Mx1-Cre or function inhibition using a novel monoclonal antibody also impaired BM erythropoiesis. These results indicate that Maea contributes to adult BM erythropoiesis by regulating the maintenance of macrophages and their interaction with EBs via an as-yet-unidentified EB receptor.


Assuntos
Medula Óssea/fisiologia , Moléculas de Adesão Celular/fisiologia , Eritroblastos/citologia , Eritroblastos/fisiologia , Eritropoese , Macrófagos/metabolismo , Molécula 1 de Adesão de Célula Vascular/fisiologia , Animais , Animais Recém-Nascidos , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout
12.
Mol Cell Biol ; 39(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30670569

RESUMO

Ring sideroblasts are a hallmark of sideroblastic anemia, although little is known about their characteristics. Here, we first generated mutant mice by disrupting the GATA-1 binding motif at the intron 1 enhancer of the ALAS2 gene, a gene responsible for X-linked sideroblastic anemia (XLSA). Although heterozygous female mice showed an anemic phenotype, ring sideroblasts were not observed in their bone marrow. We next established human induced pluripotent stem cell-derived proerythroblast clones harboring the same ALAS2 gene mutation. Through coculture with sodium ferrous citrate, mutant clones differentiated into mature erythroblasts and became ring sideroblasts with upregulation of metal transporters (MFRN1, ZIP8, and DMT1), suggesting a key role for ferrous iron in erythroid differentiation. Interestingly, holo-transferrin (holo-Tf) did not induce erythroid differentiation as well as ring sideroblast formation, and mutant cells underwent apoptosis. Despite massive iron granule content, ring sideroblasts were less apoptotic than holo-Tf-treated undifferentiated cells. Microarray analysis revealed upregulation of antiapoptotic genes in ring sideroblasts, a profile partly shared with erythroblasts from a patient with XLSA. These results suggest that ring sideroblasts exert a reaction to avoid cell death by activating antiapoptotic programs. Our model may become an important tool to clarify the pathophysiology of sideroblastic anemia.


Assuntos
Anemia Sideroblástica/metabolismo , Eritroblastos/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , Animais , Medula Óssea/metabolismo , Diferenciação Celular/fisiologia , Eritroblastos/fisiologia , Células Precursoras Eritroides/metabolismo , Feminino , Fator de Transcrição GATA1/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ferro/metabolismo , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos
13.
Sci Rep ; 8(1): 17886, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30552367

RESUMO

Plasmodium falciparum gametocytes, the sexual stages responsible for malaria parasite transmission, develop in the human bone marrow parenchyma in proximity to the erythroblastic islands. Yet, mechanisms underlying gametocytes interactions with these islands are unknown. Here, we have investigated whether gametocyte-infected erythrocytes (GIE) adhere to erythroid precursors, and whether a putative adhesion may be mediated by a mechanism similar to the adhesion of erythrocytes infected with P. falciparum asexual stages to uninfected erythrocytes. Cell-cell adhesion assays with human primary erythroblasts or erythroid cell lines revealed that immature GIE do not specifically adhere to erythroid precursors. To determine whether adhesion may be dependent on binding of STEVOR proteins to Glycophorin C on the surface of erythroid cells, we used clonal lines and transgenic parasites that overexpress specific STEVOR proteins known to bind to Glycophorin C in asexual stages. Our results indicate that GIE overexpressing STEVOR do not specifically adhere to erythroblasts, in agreement with our observation that the STEVOR adhesive domain is not exposed at the surface of GIE.


Assuntos
Adesão Celular , Eritroblastos/fisiologia , Eritrócitos/fisiologia , Eritrócitos/parasitologia , Malária Falciparum/patologia , Plasmodium falciparum/crescimento & desenvolvimento , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Células Cultivadas , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo
14.
Prenat Diagn ; 38(9): 673-684, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29876942

RESUMO

OBJECTIVE: Human primitive erythroblasts produced during early embryogenesis have been found in maternal circulation at early gestation and are considered good target cells for noninvasive prenatal diagnosis. We aimed to gain a better understanding of the biology of primitive erythroblasts and maximize their potential utility for noninvasive prenatal diagnosis. METHODS: Cells were obtained from first trimester human placental tissues. Biological properties including surface antigen composition, differentiation, proliferation, enucleation, and degeneration were studied as gestation progressed. A microdroplet culture system was developed to observe the behavior of these cells in vitro. RESULTS: Histology showed that primitive erythroblasts undergo maturation from polychromatic to orthochromatic erythroblasts and can differentiate spontaneously in vitro. Cell surface markers and nuclear gene expression suggest that the cells do not possess stemness properties, despite being primitive in nature. They have limited proliferative activity and highly deacetylated chromatin, but a microdroplet culture system can prolong their viability under normoxic conditions. No apoptosis was seen by 11 weeks' gestation, and there was no enucleation in vitro. CONCLUSION: These properties confirm that viable cells with intact nuclei can be obtained at very early gestation for genetic analysis.


Assuntos
Eritroblastos/fisiologia , Diagnóstico Pré-Natal/métodos , Antígenos CD/análise , Apoptose , Técnicas de Cultura de Células , Diferenciação Celular , Núcleo Celular/fisiologia , Proliferação de Células , Eritroblastos/química , Feminino , Sangue Fetal/citologia , Expressão Gênica , Idade Gestacional , Humanos , Gravidez
15.
J Burn Care Res ; 39(2): 286-294, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28570310

RESUMO

Mechanisms of erythropoietin (Epo)-resistant anemia in burn patients are poorly understood. We have recently found that administering a nonselective beta 1,2-adrenergic blocker propranolol (PR) was effective in reversing myelo-erythroid commitment through MafB regulation and increase megakaryocyte erythrocyte progenitors in burn patients' peripheral blood mononuclear cell (PBMC)-derived ex vivo culture system. Having known that Epo-dependent proliferation of early erythroblasts is intact after burn injury, here we inquired whether or not Epo-independent maturation stage of erythropoiesis is affected by burn injury and the relative role of PR on late-stage erythropoiesis. While majority of erythropoiesis occurs in the bone marrow, maturation into reticulocytes is crucial for their release into sinusoids to occupy the peripheral circulation for which enucleation is vital. peripheral blood mononuclear cells (PBMCs) from burn patients were extended beyond commitment and proliferation stages to late maturation stage in ex vivo culture to understand the role of PR in burn patients. Burn impedes late maturation of orthochromatic erythroblasts into reticulocytes by restricting the enucleation step. Late-stage erythropoiesis is impaired in burn patients irrespective of PR treatment. Further, substituting the microenvironment with control plasma (homologous) in place of autologous plasma rescues the conversion of orthochromatic erythroblasts to reticulocytes. Results show promise in formulating interventions to regulate late-stage erythropoiesis, which can be used in combination with PR to reduce the number of transfusions.


Assuntos
Antagonistas Adrenérgicos beta/uso terapêutico , Queimaduras/complicações , Queimaduras/terapia , Eritroblastos/fisiologia , Eritropoese/fisiologia , Propranolol/uso terapêutico , Adulto , Queimaduras/fisiopatologia , Técnicas de Cultura de Células , Feminino , Humanos , Leucócitos Mononucleares , Masculino , Pessoa de Meia-Idade
16.
Immunobiology ; 223(1): 118-124, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29017823

RESUMO

We recently found that erythroblast-like cells derived from human leukaemia K562 cells express C5a receptor (C5aR) and produce its antagonistic and agonistic ligand ribosomal protein S19 (RP S19) polymer, which is cross-linked between K122 and Q137 by tissue transglutaminases. RP S19 polymer binds to the reciprocal C5aRs on erythroblast-like cells and macrophage-like cells derived from human monocytic THP-1 cells and promotes differentiation into reticulocyte-like cells through enucleation in vitro. To examine the roles of RP S19 polymer in mouse erythropoiesis, we prepared Q137E mutant RP S19 gene knock-in C57BL/6J mice. In contrast to wild-type mice, erythroblast numbers at the preliminary stage (CD71high/TER119low) in spleen based on transferrin receptor (CD71) and glycophorin A (TER119) values and erythrocyte numbers in orbital artery bloods were not largely changed in knock-in mice. Conversely, erythroblast numbers at the early stage (CD71high/TER119high) were significantly decreased in spleen by knock-in mice. The reduction of early erythroblast numbers in spleen was enhanced by the phenylhydrazine-induced pernicious anemia model knock-in mice and was rescued by a functional analogue of RP S19 dimer S-tagged C5a/RP S19. These data indicated that RP S19 polymer plays the roles in the early erythroblast differentiation of C57BL/6J mouse spleen.


Assuntos
Anemia Perniciosa/imunologia , Eritroblastos/fisiologia , Monócitos/fisiologia , Mutação/genética , Proteínas Ribossômicas/genética , Anemia Perniciosa/induzido quimicamente , Animais , Antígenos CD/metabolismo , Diferenciação Celular , Modelos Animais de Doenças , Eritropoese/genética , Técnicas de Introdução de Genes , Humanos , Células K562 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenil-Hidrazinas/toxicidade , Receptor da Anafilatoxina C5a/metabolismo , Receptores da Transferrina/metabolismo , Proteínas Ribossômicas/metabolismo , Baço/patologia , Células THP-1 , Transglutaminases/metabolismo
17.
Crit Care ; 21(1): 154, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28633658

RESUMO

BACKGROUND: Little is known about risk factors associated with out-of-hospital outcomes in survivors of critical illness. We hypothesized that the presence of nucleated red blood cells in patients who survived critical care would be associated with adverse outcomes following hospital discharge. METHODS: We performed a two-center observational cohort study of patients treated in medical and surgical intensive care units in Boston, Massachusetts. All data were obtained from the Research Patient Data Registry at Partners HealthCare. We studied 2878 patients, age ≥ 18 years, who received critical care between 2011 and 2015 and survived hospitalization. The exposure of interest was nucleated red blood cells occurring from 2 days prior to 7 days after critical care initiation. The primary outcome was mortality in the 90 days following hospital discharge. Secondary outcome was unplanned 30-day hospital readmission. Adjusted odds ratios were estimated by multivariable logistic regression models with inclusion of covariate terms thought to plausibly interact with both nucleated red blood cells and outcome. Adjustment included age, race (white versus nonwhite), gender, Deyo-Charlson Index, patient type (medical versus surgical), sepsis and acute organ failure. RESULTS: In patients who received critical care and survived hospitalization, the absolute risk of 90-day postdischarge mortality was 5.9%, 11.7%, 15.8% and 21.9% in patients with 0/µl, 1-100/µl, 101-200/µl and more than 200/µl nucleated red blood cells respectively. Nucleated red blood cells were a robust predictor of postdischarge mortality and remained so following multivariable adjustment. The fully adjusted odds of 90-day postdischarge mortality in patients with 1-100/µl, 101-200/µl and more than 200/µl nucleated red blood cells were 1.77 (95% CI, 1.23-2.54), 2.51 (95% CI, 1.36-4.62) and 3.72 (95% CI, 2.16-6.39) respectively, relative to patients without nucleated red blood cells. Further, the presence of nucleated red blood cells is a significant predictor of the odds of unplanned 30-day hospital readmission. CONCLUSION: In critically ill patients who survive hospitalization, the presence of nucleated red blood cells is a robust predictor of postdischarge mortality and unplanned hospital readmission.


Assuntos
Estado Terminal/mortalidade , Eritroblastos/metabolismo , Avaliação de Resultados da Assistência ao Paciente , Adulto , Idoso , Boston , Estudos de Coortes , Estado Terminal/epidemiologia , Eritroblastos/fisiologia , Feminino , Humanos , Unidades de Terapia Intensiva/organização & administração , Masculino , Pessoa de Meia-Idade , Razão de Chances , Sistema de Registros/estatística & dados numéricos , Fatores de Risco , Sobreviventes/estatística & dados numéricos
18.
Circulation ; 135(25): 2505-2523, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28381471

RESUMO

BACKGROUND: The mechanisms underlying the dedifferentiation and lineage conversion of adult human fibroblasts into functional endothelial cells have not yet been fully defined. Furthermore, it is not known whether fibroblast dedifferentiation recapitulates the generation of multipotent progenitors during embryonic development, which give rise to endothelial and hematopoietic cell lineages. Here we established the role of the developmental transcription factor SOX17 in regulating the bilineage conversion of fibroblasts by the generation of intermediate progenitors. METHODS: CD34+ progenitors were generated after the dedifferentiation of human adult dermal fibroblasts by overexpression of pluripotency transcription factors. Sorted CD34+ cells were transdifferentiated into induced endothelial cells and induced erythroblasts using lineage-specific growth factors. The therapeutic potential of the generated cells was assessed in an experimental model of myocardial infarction. RESULTS: Induced endothelial cells expressed specific endothelial cell surface markers and also exhibited the capacity for cell proliferation and neovascularization. Induced erythroblasts expressed erythroid surface markers and formed erythroid colonies. Endothelial lineage conversion was dependent on the upregulation of the developmental transcription factor SOX17, whereas suppression of SOX17 instead directed the cells toward an erythroid fate. Implantation of these human bipotential CD34+ progenitors into nonobese diabetic/severe combined immunodeficiency (NOD-SCID) mice resulted in the formation of microvessels derived from human fibroblasts perfused with mouse and human erythrocytes. Endothelial cells generated from human fibroblasts also showed upregulation of telomerase. Cell implantation markedly improved vascularity and cardiac function after myocardial infarction without any evidence of teratoma formation. CONCLUSIONS: Dedifferentiation of fibroblasts to intermediate CD34+ progenitors gives rise to endothelial cells and erythroblasts in a SOX17-dependent manner. These findings identify the intermediate CD34+ progenitor state as a critical bifurcation point, which can be tuned to generate functional blood vessels or erythrocytes and salvage ischemic tissue.


Assuntos
Antígenos CD34/fisiologia , Desdiferenciação Celular/fisiologia , Células Endoteliais/fisiologia , Eritroblastos/fisiologia , Fibroblastos/fisiologia , Fatores de Transcrição SOXF/fisiologia , Células-Tronco/fisiologia , Animais , Células Cultivadas , Humanos , Recém-Nascido , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
19.
Sci Rep ; 7: 39760, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28045072

RESUMO

Despite progress in human reproductive biology, the cause of male infertility often remains unknown, due to the lack of appropriate and convenient in vitro models of meiosis. Induced pluripotent stem cells (iPSCs) derived from the cells of infertile patients could provide a gold standard model for generating primordial germ cells and studying their development and the process of spermatogenesis. We report the characterization of a complex chromosomal rearrangement (CCR) in an azoospermic patient, and the successful generation of specific-iPSCs from PBMC-derived erythroblasts. The CCR was characterized by karyotype, fluorescence in situ hybridization and oligonucleotide-based array-comparative genomic hybridization. The CCR included five breakpoints and was caused by the inverted insertion of a chromosome 12 segment into the short arm of one chromosome 7 and a pericentric inversion of the structurally rearranged chromosome 12. Gene mapping of the breakpoints led to the identification of a candidate gene, SYCP3. Erythroblasts from the patient were reprogrammed with Sendai virus vectors to generate iPSCs. We assessed iPSC pluripotency by RT-PCR, immunofluorescence staining and teratoma induction. The generation of specific-iPSCs from patients with a CCR provides a valuable in vitro genetic model for studying the mechanisms by which chromosomal abnormalities alter meiosis and germ cell development.


Assuntos
Eritroblastos/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Infertilidade Masculina/patologia , Proteínas Nucleares/genética , Vírus Sendai/genética , Espermatócitos/fisiologia , Testículo/patologia , Adulto , Atrofia , Proteínas de Ciclo Celular , Diferenciação Celular , Células Cultivadas , Técnicas de Reprogramação Celular , Inversão Cromossômica/genética , Cromossomos Humanos Par 12/genética , Hibridização Genômica Comparativa , Proteínas de Ligação a DNA , Feminino , Estudos de Associação Genética , Humanos , Hibridização in Situ Fluorescente , Infertilidade Masculina/genética , Cariotipagem , Masculino , Meiose/genética
20.
Cell Rep ; 16(5): 1470-1484, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27452463

RESUMO

Mass spectrometry-based proteomics now enables the absolute quantification of thousands of proteins in individual cell types. We used this technology to analyze the dynamic proteome changes occurring during human erythropoiesis. We quantified the absolute expression of 6,130 proteins during erythroid differentiation from late burst-forming units-erythroid (BFU-Es) to orthochromatic erythroblasts. A modest correlation between mRNA and protein expression was observed. We identified several proteins with unexpected expression patterns in erythroid cells, highlighting a breakpoint in the erythroid differentiation process at the basophilic stage. We also quantified the distribution of proteins between reticulocytes and pyrenocytes after enucleation. These analyses identified proteins that are actively sorted either with the reticulocyte or the pyrenocyte. Our study provides the absolute quantification of protein expression during a complex cellular differentiation process in humans, and it establishes a framework for future studies of disordered erythropoiesis.


Assuntos
Eritropoese/fisiologia , Proteoma/metabolismo , Diferenciação Celular , Células Cultivadas , Eritroblastos/metabolismo , Eritroblastos/fisiologia , Células Precursoras Eritroides/metabolismo , Células Precursoras Eritroides/fisiologia , Humanos , Proteômica/métodos , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...