Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Eur J Pharmacol ; 963: 176229, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38072041

RESUMO

Anti-mitotic drugs are clinically used as anti-cancer treatments. Polo-like kinase 1 (PLK1) is a promising target against cancer cell division due to its importance in the whole process of mitosis, and thus PLK1-targeting agents have been developed in the last few decades. Clinical trial studies show that several PLK1 inhibitors are generally well-tolerated. However, the response rates are limited; therefore, it is needed to improve the efficacy of those drugs. Here, we show that NVP-BHG712, an erythropoietin-producing human hepatocellular (Eph) signaling inhibitor, potentiates the growth-inhibitory effects of the PLK1 inhibitors BI2536 and BI6727 in cancer cells. This combination treatment strongly suppresses cancer spheroid formation. Moreover, the combination drastically arrests cells at mitosis by continuous activation of the spindle assembly checkpoint (SAC), thereby inducing apoptosis. SAC activation caused by the combination of NVP-BHG712 and BI2536 is due to the inhibition of centrosome maturation and separation. Although the inactivation level of the PLK1 kinase is comparable between BI2536 treatment alone and combination treatment, the combination treatment strongly inactivates MAPK signaling in mitosis. Since inhibition of MAPK signaling potentiates the efficacy of BI2536 treatment, inactivation of PLK1 kinase and MAPK signaling contributes to the strong inhibition of centrosome separation. These results suggest that Eph signal inhibition potentiates the effect of PLK1 inhibition, leading to strong mitotic arrest via SAC activation and the subsequent reduction of cancer cell survival. The combination of PLK1 inhibition and Eph signal inhibition will provide a new effective strategy for targeting cancer cell division.


Assuntos
Eritropoetina , Neoplasias , Humanos , Ciclo Celular , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Eritropoetina/antagonistas & inibidores , Mitose , Neoplasias/tratamento farmacológico , Proteínas Serina-Treonina Quinases , Quinases Polo-Like/antagonistas & inibidores
2.
Blood ; 137(18): 2509-2519, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33512384

RESUMO

Polycythemia and pulmonary hypertension are 2 human diseases for which better therapies are needed. Upregulation of hypoxia-inducible factor-2α (HIF-2α) and its target genes, erythropoietin (EPO) and endothelin-1, causes polycythemia and pulmonary hypertension in patients with Chuvash polycythemia who are homozygous for the R200W mutation in the von Hippel Lindau (VHL) gene and in a murine mouse model of Chuvash polycythemia that bears the same homozygous VhlR200W mutation. Moreover, the aged VhlR200W mice developed pulmonary fibrosis, most likely due to the increased expression of Cxcl-12, another Hif-2α target. Patients with mutations in iron regulatory protein 1 (IRP1) also develop polycythemia, and Irp1-knockout (Irp1-KO) mice exhibit polycythemia, pulmonary hypertension, and cardiac fibrosis attributable to translational derepression of Hif-2α, and the resultant high expression of the Hif-2α targets EPO, endothelin-1, and Cxcl-12. In this study, we inactivated Hif-2α with the second-generation allosteric HIF-2α inhibitor MK-6482 in VhlR200W, Irp1-KO, and double-mutant VhlR200W;Irp1-KO mice. MK-6482 treatment decreased EPO production and reversed polycythemia in all 3 mouse models. Drug treatment also decreased right ventricular pressure and mitigated pulmonary hypertension in VhlR200W, Irp1-KO, and VhlR200W;Irp1-KO mice to near normal wild-type levels and normalized the movement of the cardiac interventricular septum in VhlR200Wmice. MK-6482 treatment reduced the increased expression of Cxcl-12, which, in association with CXCR4, mediates fibrocyte influx into the lungs, potentially causing pulmonary fibrosis. Our results suggest that oral intake of MK-6482 could represent a new approach to treatment of patients with polycythemia, pulmonary hypertension, pulmonary fibrosis, and complications caused by elevated expression of HIF-2α.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertensão Pulmonar/prevenção & controle , Proteína 1 Reguladora do Ferro/fisiologia , Policitemia/prevenção & controle , Sulfonas/farmacologia , Proteína Supressora de Tumor Von Hippel-Lindau/fisiologia , Animais , Endotelina-1/antagonistas & inibidores , Endotelina-1/genética , Endotelina-1/metabolismo , Eritropoetina/antagonistas & inibidores , Eritropoetina/genética , Eritropoetina/metabolismo , Feminino , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Policitemia/etiologia , Policitemia/metabolismo , Policitemia/patologia
3.
J Enzyme Inhib Med Chem ; 35(1): 1697-1711, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32912025

RESUMO

Recombinant human erythropoietin (Epo) is an effective and convenient treatment for cancer-related anaemia. In our study for the first time, we evaluated the effect of simultaneous use of Epo and Bruton's tyrosine kinase (BTK) inhibitor LFM-A13 on the viability and tumour development of breast cancer cells. The results demonstrated that Epo significantly intensifies the anticancer activity of LFM-A13 in MCF-7 and MDA-MB-231. The featured therapeutic scheme efficiently blocked the tumour development in zebrafish experimental cancer model. Epo and LFM-A13 administered together resulted in effective cell killing, accompanied by attenuation of the BTK signalling pathways, loss of mitochondrial membrane potential (MMP), accumulation of apoptotic breast cancer cells with externalised PS, a slight increase in phase G0/G1 and a reduction in cyclin D1 expression. Simultaneous use of Epo with LFM-A13 inhibited early stages of tumour progression. This therapeutic scheme may be rationale for further possible research.


Assuntos
Amidas/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Eritropoetina/antagonistas & inibidores , Nitrilas/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Amidas/química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Eritropoetina/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Estrutura Molecular , Nitrilas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
4.
Biochem Biophys Res Commun ; 504(2): 538-544, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30205954

RESUMO

Renal anemia is common among chronic kidney disease (CKD) patients, and is mainly caused by inadequate erythropoietin (EPO) production from kidneys due to dysfunction of intracellular hypoxia-inducible factor (HIF) signaling in renal EPO-producing cells. We have previously shown that indoxyl sulfate (IS), a representative protein-bound uremic toxin accumulated in the blood of CKD patients, inhibits hypoxia-induced HIF activation and subsequent EPO production through activation of aryl hydrocarbon receptor (AHR). In this study, we further investigated the effects of other protein-bound uremic toxins on HIF-dependent EPO expression using EPO-producing HepG2 cells. We found that indoxyl glucuronide (IG) and IS, but not p-cresyl sulfate, phenyl sulfate, 3-indoleacetic acid or hippuric acid, inhibited hypoxia mimetic cobalt chloride-induced EPO mRNA expression. Furthermore, IG at concentrations similar to the blood levels in CKD patients inhibited the transcriptional activation of HIF induced by both cobalt chloride treatment and hypoxic culture. IG also induced CYP1A1 mRNA expression and nuclear translocation of AHR protein, indicating that IG activates AHR signaling. Blockade of AHR by a pharmacological antagonist CH-223191 abolished the IG-induced inhibition of HIF activation. Collectively, this study is the first to elucidate the biological effects of IG to inhibit HIF-dependent EPO production through activation of AHR. Our data suggests that not only IS but also IG contributes to the impairment of HIF signaling in renal anemia.


Assuntos
Eritropoetina/antagonistas & inibidores , Glucuronatos/farmacologia , Indóis/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Uremia/metabolismo , Sobrevivência Celular , Citocromo P-450 CYP1A1/metabolismo , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Indicã/metabolismo , Ligação Proteica , Insuficiência Renal Crônica/terapia , Transdução de Sinais , Ativação Transcricional
5.
Genes Cells ; 22(11): 939-952, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29044949

RESUMO

Erythropoietin (EPO) is a hormone that promotes proliferation, differentiation and survival of erythroid progenitors. EPO gene expression is regulated in a tissue-specific and hypoxia-inducible manner and is mainly restricted to renal EPO-producing cells after birth. Chronic kidney disease (CKD) confers high risk for renal anemia due to lower EPO production from injured kidneys. In transgenic reporter lines of mice, disruption of a GATA-binding motif within the Epo gene promoter-proximal region restores constitutive reporter expression in epithelial cells. Here, mitoxantrone and its analogues, identified as GATA factor inhibitors through high-throughput chemical library screenings, markedly induce EPO/Epo gene expression in epithelium-derived cell lines and mice regardless of oxygen levels. In contrast, mitoxantrone interferes with hypoxia-induced EPO gene expression in Hep3B cells. Cryptic promoters are created for the EPO/Epo gene expression in epithelial cells upon mitoxantrone treatment, and consequently, unique 5'-untranslated regions are generated. The mitoxantrone-induced aberrant transcripts contribute to the reporter protein production in epithelial cells that carry the reporter gene in the proper reading frame of mouse Epo gene. Thus, EPO production in uninjured adult epithelial cells may be a therapeutic approach for renal anemia in patients with CKD.


Assuntos
Células Epiteliais/metabolismo , Eritropoetina/metabolismo , Fatores de Transcrição GATA/antagonistas & inibidores , Regulação da Expressão Gênica/efeitos dos fármacos , Mitoxantrona/farmacologia , Insuficiência Renal Crônica/metabolismo , Anemia/tratamento farmacológico , Anemia/metabolismo , Animais , Sequência de Bases , Sistemas CRISPR-Cas , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Eritropoetina/antagonistas & inibidores , Eritropoetina/genética , Fatores de Transcrição GATA/metabolismo , Genes Reporter , Ensaios de Triagem em Larga Escala/métodos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitoxantrona/química , Regiões Promotoras Genéticas , Insuficiência Renal Crônica/patologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia
6.
Haematologica ; 102(12): 2015-2020, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28983059

RESUMO

Accumulating evidence implicates innate immune activation in the pathobiology of myelodysplastic syndromes. A key myeloid-related inflammatory protein, S100A9, serves as a Toll-like receptor ligand regulating tumor necrosis factor-α and interleukin-1ß production. The role of myelodysplastic syndrome-related inflammatory proteins in endogenous erythropoietin regulation and response to erythroid-stimulating agents or lenalidomide has not been investigated. The HepG2 hepatoma cell line was used to investigate in vitro erythropoietin elaboration. Serum samples collected from 311 patients with myelodysplastic syndrome were investigated (125 prior to treatment with erythroid-stimulating agents and 186 prior to lenalidomide therapy). Serum concentrations of S100A9, S100A8, tumor necrosis factor-α, interleukin-1ß and erythropoietin were analyzed by enzyme-linked immunosorbent assay. Using erythropoietin-producing HepG2 cells, we show that S100A9, tumor necrosis factor-α and interleukin-1ß suppress transcription and cellular elaboration of erythropoietin. Pre-incubation with lenalidomide significantly diminished suppression of erythropoietin production by S100A9 or tumor necrosis factor-α. Moreover, in peripheral blood mononuclear cells from patients with myelodysplastic syndromes, lenalidomide significantly reduced steady-state S100A9 generation (P=0.01) and lipopolysaccharide-induced tumor necrosis factor-α elaboration (P=0.002). Enzyme-linked immunosorbent assays of serum from 316 patients with non-del(5q) myelodysplastic syndromes demonstrated a significant inverse correlation between tumor necrosis factor-α and erythropoietin concentrations (P=0.006), and between S100A9 and erythropoietin (P=0.01). Moreover, baseline serum tumor necrosis factor-α concentration was significantly higher in responders to erythroid-stimulating agents (P=0.03), whereas lenalidomide responders had significantly lower tumor necrosis factor-α and higher S100A9 serum concentrations (P=0.03). These findings suggest that S100A9 and its nuclear factor-κB transcriptional target, tumor necrosis factor-α, directly suppress erythropoietin elaboration in myelodysplastic syndromes. These cytokines may serve as rational biomarkers of response to lenalidomide and erythroid-stimulating agent treatments. Therapeutic strategies that either neutralize or suppress S100A9 may improve erythropoiesis in patients with myelodysplastic syndromes.


Assuntos
Calgranulina B/farmacologia , Eritropoetina/antagonistas & inibidores , Síndromes Mielodisplásicas/patologia , Fator de Necrose Tumoral alfa/farmacologia , Eritropoese/efeitos dos fármacos , Células Hep G2 , Humanos , Lenalidomida , Síndromes Mielodisplásicas/metabolismo , Talidomida/análogos & derivados , Talidomida/farmacologia , Talidomida/uso terapêutico
7.
Respir Physiol Neurobiol ; 242: 73-79, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28396201

RESUMO

Cerebral erythropoietin (Epo) plays a crucial role for respiratory control in newborn rodents. We showed previously that soluble Epo receptor (sEpoR: an Epo antagonist) reduces basal ventilation and hypoxic hyperventilation at postnatal day 10 (P10) and in adult mice. However, at these ages (P10 and adulthood), Epo had no effect on central chemosensitivity. Nevertheless, it is known that the sensitivity to CO2/H+ during the mammalian respiratory network maturation process is age-dependent. Accordingly, in this study we wanted to test the hypothesis that cerebral Epo is involved in the breathing stimulation induced by the activation of central CO2/H+ chemoreceptors at earlier postnatal ages. To this end, en bloc brainstem-spinal cord preparations were obtained from P4 mice and the fictive breathing response to CO2-induced acidosis or metabolic acidosis was analyzed. This age (P4) was chosen because previous research from our laboratory showed that Epo altered (in a dose- and time-dependent manner) the fictive ventilation elicited in brainstem-spinal cord preparations. Moreover, as it was observed that peripheral chemoreceptors determined the respiratory sensitivity of central chemoreceptors to CO2, the use of this technique restricts our observations to central modulation. Our results did not show differences between preparations from control and transgenic animals (Tg21: overexpressing cerebral Epo; Epo-TAgh: cerebral Epo deficient mice). However, when Tg21 brainstem preparations were incubated for 1h with sEpoR, or with inhibitors of ERK/Akt (thus blocking the activation of the Epo molecular pathway), the fictive breathing response to CO2-induced acidosis was blunted. Our data suggest that variation of the Epo/sEpoR ratio is central to breathing modulation during CO2 challenges, and calls attention to clinical perspectives based on the use of Epo drugs at birth in hypoventilation cases.


Assuntos
Tronco Encefálico/metabolismo , Dióxido de Carbono/metabolismo , Eritropoetina/metabolismo , Prótons , Medula Espinal/metabolismo , Acidose/metabolismo , Animais , Animais Recém-Nascidos , Tronco Encefálico/efeitos dos fármacos , Eritropoetina/antagonistas & inibidores , Eritropoetina/genética , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores da Eritropoetina/antagonistas & inibidores , Receptores da Eritropoetina/metabolismo , Respiração/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Técnicas de Cultura de Tecidos
8.
Nature ; 539(7627): 112-117, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27595394

RESUMO

Clear cell renal cell carcinoma (ccRCC) is characterized by inactivation of the von Hippel-Lindau tumour suppressor gene (VHL). Because no other gene is mutated as frequently in ccRCC and VHL mutations are truncal, VHL inactivation is regarded as the governing event. VHL loss activates the HIF-2 transcription factor, and constitutive HIF-2 activity restores tumorigenesis in VHL-reconstituted ccRCC cells. HIF-2 has been implicated in angiogenesis and multiple other processes, but angiogenesis is the main target of drugs such as the tyrosine kinase inhibitor sunitinib. HIF-2 has been regarded as undruggable. Here we use a tumourgraft/patient-derived xenograft platform to evaluate PT2399, a selective HIF-2 antagonist that was identified using a structure-based design approach. PT2399 dissociated HIF-2 (an obligatory heterodimer of HIF-2α-HIF-1ß) in human ccRCC cells and suppressed tumorigenesis in 56% (10 out of 18) of such lines. PT2399 had greater activity than sunitinib, was active in sunitinib-progressing tumours, and was better tolerated. Unexpectedly, some VHL-mutant ccRCCs were resistant to PT2399. Resistance occurred despite HIF-2 dissociation in tumours and evidence of Hif-2 inhibition in the mouse, as determined by suppression of circulating erythropoietin, a HIF-2 target and possible pharmacodynamic marker. We identified a HIF-2-dependent gene signature in sensitive tumours. Gene expression was largely unaffected by PT2399 in resistant tumours, illustrating the specificity of the drug. Sensitive tumours exhibited a distinguishing gene expression signature and generally higher levels of HIF-2α. Prolonged PT2399 treatment led to resistance. We identified binding site and second site suppressor mutations in HIF-2α and HIF-1ß, respectively. Both mutations preserved HIF-2 dimers despite treatment with PT2399. Finally, an extensively pretreated patient whose tumour had given rise to a sensitive tumourgraft showed disease control for more than 11 months when treated with a close analogue of PT2399, PT2385. We validate HIF-2 as a target in ccRCC, show that some ccRCCs are HIF-2 independent, and set the stage for biomarker-driven clinical trials.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Indanos/farmacologia , Indanos/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Sulfonas/farmacologia , Sulfonas/uso terapêutico , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Eritropoetina/antagonistas & inibidores , Eritropoetina/sangue , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Indanos/administração & dosagem , Indóis/farmacologia , Indóis/uso terapêutico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Terapia de Alvo Molecular , Mutação , Pirróis/farmacologia , Pirróis/uso terapêutico , Reprodutibilidade dos Testes , Sulfonas/administração & dosagem , Sunitinibe , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Nano Lett ; 16(2): 842-8, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26727632

RESUMO

Safe and effective delivery is required for siRNA and mRNA-based therapeutics to reach their potential. Here, we report on the development of poly(glycoamidoamine) brush nanoparticles as delivery vehicles for siRNA and mRNA. These polymers were capable of significant delivery of siRNA against FVII and mRNA-encoding erythropoietin (EPO) in mice. Importantly, these nanoparticles were well-tolerated at their effective dose based on analysis of tissue histology, systemic cytokine levels, and liver enzyme chemistry. The polymer brush nanoparticles reported here are promising for therapeutic applications.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Nanopartículas/administração & dosagem , RNA Mensageiro/administração & dosagem , Animais , Eritropoetina/antagonistas & inibidores , Eritropoetina/genética , Fator VII/genética , Humanos , Camundongos , Nanopartículas/efeitos adversos , RNA Interferente Pequeno/administração & dosagem
10.
Exp Hematol ; 44(1): 60-7.e1, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26325330

RESUMO

It is known that inadequate erythropoietin (EPO) production contributes to the pathogenesis of anemia of inflammation, although the exact molecular mechanism is unknown. Aryl hydrocarbon receptor (AhR) may compete with hypoxia-inducible factor 2α (HIF-2α), the master regulator of EPO production, for binding with HIF-1ß. The effect of kynurenine, an endogenous AhR activator that increases in inflammation, on EPO and hepcidin production was evaluated. HepG2 cells were treated with the hypoxia mimetic CoCl2, kynurenine, the AhR inhibitor CH223191, and combinations of these. EPO and hepcidin production was measured with enzyme-linked immunosorbent assay. HIF-2α and CYP1A1 levels, a transcriptional target of AhR, were assessed by Western blotting. CoCl2 increased EPO production and decreased hepcidin and CYP1A1. Kynurenine exerted the opposite effects. Wherever CH223191 was added, the inhibitor overcorrected kynurenine-induced alterations in both the presence and the absence of CoCl2. Also, treatment with CH223191 alone increased EPO and decreased hepcidin, indicating that there is a degree of constitutive AhR activation, possibly by other endogenous AhR activators. In conclusion, kynurenine, by competing with HIF-2α, may contribute to anemia of inflammation by decreasing EPO and increasing hepcidin production. The fact that inactivation of AhR alone induces EPO makes this transcription factor a potential therapeutic target in situations that require increased EPO.


Assuntos
Anemia/etiologia , Eritropoetina/antagonistas & inibidores , Hepcidinas/biossíntese , Inflamação/complicações , Cinurenina/fisiologia , Receptores de Hidrocarboneto Arílico/fisiologia , Eritropoetina/biossíntese , Células Hep G2 , Humanos
11.
J Cell Biochem ; 116(12): 2735-43, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26012423

RESUMO

Patient-specific human induced-pluripotent stem cells (hiPSCs) represent important cell sources to treat patients with acquired blood disorders. To realize the therapeutic potential of hiPSCs, it is crucial to understand signals that direct hiPSC differentiation to a hematopoietic lineage fate. Our previous study demonstrated that CD34(+)CD31(+) cells derived from human pluripotent stem cells (hPSCs) contain hemato-endothelial progenitors (HEPs) that give rise to hematopoietic cells and endothelial cells. Here, we established a serum-free and feeder-free system to induce the differentiation of hPSC-derived CD34(+)CD31(+) progenitor cells to erythroid cells. We show that extracellular matrix (ECM) proteins promote the differentiation of CD34(+)CD31(+) progenitor cells into CD235a(+) erythroid cells through CD41(+)CD235a(+) megakaryocyte-erythroid progenitors (MEP). Erythropoietin (EPO) is a predominant factor for CD34(+)CD31(+) progenitor differentiation to erythroid cells, whereas transforming growth factor beta (TGF-ß) inhibits the development of CD34(+)CD31(+) progenitor cells. Apoptosis of progenitor cells is induced by TGF-ß in early erythroid differentiation. Suppression of TGF-ß signaling by SB431542 at early stage of CD34(+)CD31(+) progenitor differentiation induces the erythroid cell generation. Together, these findings suggest that TGF-ß suppression and EPO stimulation promote erythropoiesis of CD34(+)CD31(+) progenitor cells derived from hPSCs.


Assuntos
Células Eritroides/efeitos dos fármacos , Eritropoese/efeitos dos fármacos , Eritropoetina/antagonistas & inibidores , Células-Tronco Pluripotentes/metabolismo , Fator de Crescimento Transformador beta/antagonistas & inibidores , Antígenos CD34/metabolismo , Benzamidas/administração & dosagem , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem da Célula/efeitos dos fármacos , Dioxóis/administração & dosagem , Células Eritroides/citologia , Eritropoetina/genética , Células-Tronco Hematopoéticas/citologia , Humanos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/transplante , Fator de Crescimento Transformador beta/genética
12.
Eur J Pharmacol ; 732: 43-9, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24680923

RESUMO

Erythropoietin (EPO) is a glycoprotein hormone essential for the regulation of erythroid homeostasis. Although EPO production is prominent in the kidney and liver, its production in the central nervous system has also been detected. Tissue hypoxia due to systemic or local hypoxemia and acute anemia due to blood loss occurs frequently during various clinical settings, leading to a high possibility of elevated plasma EPO levels. However, it is largely unknown whether volatile anesthetic agents affect EPO production elicited by acute hypoxia in vivo. Male C57BL/6N CrSlc mice were exposed to a hypoxic insult as a result of bleeding-related anemia or hypoxemia while they were under anesthetized using various concentrations of isoflurane. EPO protein concentrations were assessed by enzyme-linked immunosorbent assay and mRNA levels were measured by quantitative real-time reverse transcriptase-polymerase chain reaction. Plasma EPO concentration was induced as early as 3h following acute anemic and hypoxemic hypoxia and suppressed by clinically relevant doses of isoflurane in a dose-dependent manner. Anemic hypoxia induced EPO mRNA and protein synthesis in the kidney. In the kidney, isoflurane inhibited EPO induction caused by anemia but not that caused by hypoxemia. On the other hand, in the brain hypoxemia-induced EPO production was suppressed by isoflurane. Finally, qRT-PCR studies demonstrate that isoflurane differentially inhibit HIF-1α and HIF-2α mRNA expression in brain and kidney, indicating the involvement of HIF-2 in the hypoxia-induced EPO expression and inhibition of the induction by isoflurane.


Assuntos
Anemia/metabolismo , Anestésicos Inalatórios/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Eritropoetina/antagonistas & inibidores , Eritropoetina/biossíntese , Hipóxia/metabolismo , Isoflurano/farmacologia , Animais , Química Encefálica/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Neurochem Res ; 39(1): 161-71, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24248862

RESUMO

Exposure to intermittent hypoxia (IH) is associated with cognitive impairments and oxidative stress in brain regions involved in learning and memory. In earlier studies, erythropoietin (EPO) showed a neuroprotective effect in large doses. The aim of the present study was to explore the effect of smaller doses of EPO, such as those used in the treatment of anemia, on IH-induced cognitive deficits and hippocampal oxidative stress in young rats. The effect of concurrent EPO treatment (500 and 1,000 IU/kg/day ip) on spatial learning and memory deficits induced by long-term exposure to IH for 6 weeks was tested using the Morris water maze (MWM) test and the elevated plus maze (EPM) test. Moreover, the effect on hippocampal glutamate and oxidative stress were assessed. Exposure to IH induced a significant impairment of spatial learning and cognition of animals in both MWM and EPM performance parameters. Moreover, hippocampal glutamate and thiobarbituric acid reactive substances (TBARS) increased while antioxidant defenses (GSH and GSH-Px) decreased. EPO in the tested doses significantly reduced the IH-induced spatial learning deficits in both MWM and EPM tests and dose-dependently antagonized the effects of IH on hippocampal glutamate, TBARS, GSH levels, and GSH-Px activity. Treatment with EPO in moderate doses that used for anemia, concurrently with IH exposure can antagonize IH-induced spatial learning deficits and protect hippocampal neurons from IH-induced lipid peroxidation and oxidative stress-induced damage in young rats, possibly through multiple mechanisms involving a potential antioxidative effect.


Assuntos
Eritropoetina/administração & dosagem , Eritropoetina/antagonistas & inibidores , Hipóxia/psicologia , Animais , Epoetina alfa , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Hipocampo/efeitos dos fármacos , Hipóxia/fisiopatologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/complicações , Estresse Oxidativo/efeitos dos fármacos , Ratos , Proteínas Recombinantes/administração & dosagem
14.
Respir Physiol Neurobiol ; 183(2): 115-21, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22684041

RESUMO

Clinical use of erythropoietin in adult and newborn patients has revealed its involvement in neuroprotection, neurogenesis, and angiogenesis. More recently, we showed in adult mouse, that brain erythropoietin interacts with the major brainstem centers associated with respiration to enhance the ventilatory response to acute and chronic conditions of physiological hypoxia (e.g., as occurring at high altitude). However, whether brain erythropoietin is involved in breathing regulation in newborns remains unknown. In this study, en bloc brainstem-spinal cord preparations were obtained from mice at postnatal day 4. After various periods (30, 60, or 90 min) of incubation with 0, 25, or 250 U of erythropoietin, preparations were superfused with artificial cerebrospinal fluid bubbled with normoxic or hypoxic gas mixtures. The electrophysiological fictive breathing produced by axons at the C4 ventral root was next recorded. Our results show that erythropoietin attenuates the hypoxia-mediated decrease of the central respiratory activity and improves post-hypoxic recovery. Additional analysis revealed that the soluble erythropoietin receptor (the endogenous erythropoietin antagonist) dramatically decreases neural hypoxic respiratory activity, confirming the specific erythropoietin effect on respiratory drive. These results imply that erythropoietin exerts main modulation and maintenance of respiratory motor output during hypoxic and post-hypoxic challenges in 4-days old mice.


Assuntos
Eritropoetina/administração & dosagem , Eritropoetina/antagonistas & inibidores , Hipóxia/tratamento farmacológico , Respiração/efeitos dos fármacos , Altitude , Animais , Animais Recém-Nascidos , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/fisiologia , Líquido Cefalorraquidiano , Humanos , Hipóxia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiologia
16.
Am J Physiol Renal Physiol ; 302(8): F1045-54, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22237800

RESUMO

The pathophysiology of sepsis involves complex cytokine and inflammatory mediator networks, a mechanism to which NF-κB activation is central. Downregulation of endothelial nitric oxide synthase (eNOS) contributes to sepsis-induced endothelial dysfunction. Erythropoietin (EPO) has emerged as a major tissue-protective cytokine in the setting of stress. We investigated the role of EPO in sepsis-related acute kidney injury using a cecal ligation and puncture (CLP) model. Wistar rats were divided into three primary groups: control (sham-operated); CLP; and CLP+EPO. EPO (4,000 IU/kg body wt ip) was administered 24 and 1 h before CLP. Another group of rats received N-nitro-l-arginine methyl ester (l-NAME) simultaneously with EPO administration (CLP+EPO+l-NAME). A fifth group (CLP+EPOtreat) received EPO at 1 and 4 h after CLP. At 48 h postprocedure, CLP+EPO rats presented significantly higher inulin clearance than did CLP and CLP+EPO+l-NAME rats; hematocrit levels, mean arterial pressure, and metabolic balance remained unchanged in the CLP+EPO rats; and inulin clearance was significantly higher in CLP+EPOtreat rats than in CLP rats. At 48 h after CLP, creatinine clearance was significantly higher in the CLP+EPO rats than in the CLP rats. In renal tissue, pre-CLP EPO administration prevented the sepsis-induced increase in macrophage infiltration, as well as preserving eNOS expression, EPO receptor (EpoR) expression, IKK-α activation, NF-κB activation, and inflammatory cytokine levels, thereby increasing survival. We conclude that this protection, which appears to be dependent on EpoR activation and on eNOS expression, is attributable, in part, to inhibition of the inflammatory response via NF-κB downregulation.


Assuntos
Injúria Renal Aguda/prevenção & controle , Eritropoetina/antagonistas & inibidores , NF-kappa B/biossíntese , Óxido Nítrico Sintase Tipo III/biossíntese , Sepse/tratamento farmacológico , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Animais , Creatinina/urina , Citocinas/análise , Regulação para Baixo , Quimioterapia Combinada , Inibidores Enzimáticos/farmacologia , Quinase I-kappa B/metabolismo , Inflamação/metabolismo , Inulina/urina , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Ratos , Ratos Wistar , Receptores da Eritropoetina/biossíntese , Sepse/metabolismo , Regulação para Cima
17.
Exp Eye Res ; 94(1): 41-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22123068

RESUMO

Retinal angiogenesis is a major cause of blindness in ischemic retinopathies including diabetic retinopathy and retinopathy of prematurity. Integrin αvß3 is a promising therapeutic target for ocular angiogenesis, modulating the pro-angiogenic actions of multiple growth factors. In this study, we sought to determine the effects of the integrin αvß3 antagonist tetra-iodothyroacetic acid (tetrac) on the angiogenic actions of VEGF and erythropoietin (EPO) in cultured human retinal endothelial cells. In addition, we investigated the effect of tetrac and a nanoparticulate formulation of tetrac on retinal angiogenesis in vivo, in the mouse oxygen-induced retinopathy (OIR) model. Tetrac inhibitory activity was evaluated in human retinal endothelial cells treated with VEGF and/or EPO. Endothelial cell proliferation, migration, and tube formation were assessed, in addition to phosphorylation of ERK1/2. For the studies of the oxygen-induced retinopathy model, C57BL/6 mice were exposed to 75% oxygen from postnatal day (P)7 to P12, and then returned to room air. Tetrac and tetrac-nanoparticle (tetrac-NP) were administered at P12 and P15 by either intraperitoneal or intravitreal injection. Retinal neovascularization was quantitated at P18. Tetrac significantly inhibited pro-angiogenic effects of VEGF and/or EPO on retinal endothelial cells, indicating that the angiogenic effects of both growth factors are dependent on integrin αvß3. Retinal neovascularization in the OIR model was significantly inhibited by both tetrac and tetrac-NP. These results indicate that the integrin αvß3 antagonist, tetrac, is an effective inhibitor of retinal angiogenesis. The ability of tetrac to inhibit the pro-angiogenic effect of both VEGF and EPO on retinal endothelial cells suggests that tetrac (and antagonism of integrin αvß3) is a viable therapeutic strategy for proliferative diabetic retinopathy.


Assuntos
Inibidores da Angiogênese/farmacologia , Integrina alfaVbeta3/antagonistas & inibidores , Neovascularização Retiniana/prevenção & controle , Tiroxina/análogos & derivados , Animais , Western Blotting , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Eritropoetina/antagonistas & inibidores , Eritropoetina/farmacologia , Humanos , Injeções Intravítreas , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oxigênio/toxicidade , Fosforilação , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Tiroxina/farmacologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/farmacologia
18.
Haematologica ; 97(6): 827-34, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22207682

RESUMO

BACKGROUND: Iron metabolism, regulated by the iron hormone hepcidin, and oxygen homeostasis, dependent on hypoxia-inducible factors, are strongly interconnected. We previously reported that in mice in which both liver hypoxia-inducible factors-1 and -2 are stabilized (the hepatocyte von Hippel-Lindau knockout mouse model), hepcidin expression was strongly repressed and we hypothesized that hypoxia-inducible factor-2 could be the major regulatory component contributing to the hepcidin down-regulation. DESIGN AND METHODS: We generated and analyzed hepatocyte-specific knockout mice harboring either hypoxia-inducible factor-2α deficiency (Hif2a knockout) or constitutive hypoxia-inducible factor-2α stabilization (Vhlh/Hif1a knockout) and ex vivo systems (primary hepatocyte cultures). Hif2a knockout mice were fed an iron-deficient diet for 2 months and Vhlh/Hif1a knockout mice were treated with neutralizing erythropoietin antibody. RESULTS: We demonstrated that hypoxia-inducible factor-2 is dispensable in hepcidin gene regulation in the context of an adaptive response to iron-deficiency anemia. However, its overexpression in the double Vhlh/Hif1a hepatocyte-specific knockout mice indirectly down-regulates hepcidin expression through increased erythropoiesis and erythropoietin production. Experiments in primary hepatocytes confirmed the non-autonomous role of hypoxia-inducible factor-2 in hepcidin regulation. CONCLUSIONS: While our results indicate that hypoxia-inducible factor-2 is not directly involved in hepcidin repression, they highlight the contribution of hepatic hypoxia-inducible factor-2 to the repression of hepcidin through erythropoietin-mediated increased erythropoiesis, a result of potential clinical interest.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Eritropoetina/genética , Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Peptídeos Catiônicos Antimicrobianos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Eritropoese/efeitos dos fármacos , Eritropoese/fisiologia , Eritropoetina/antagonistas & inibidores , Feminino , Alimentos Formulados , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepcidinas , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Deficiências de Ferro , Masculino , Camundongos , Camundongos Knockout , Cultura Primária de Células , Transdução de Sinais/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
19.
J Ren Nutr ; 22(1): 77-80, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22200419

RESUMO

Because kidneys consume a large amount of oxygen and are relatively inefficient in oxygen uptake, they are susceptible to hypoxia, especially in patients with advanced chronic kidney disease accompanied by loss of peritubular capillaries. Accumulating evidence suggests that chronic tubulointerstitial hypoxia acts as a final common pathway leading to end-stage renal disease. Some biologically active uremic retention molecules, considered as uremic toxins, accumulate as the renal function declines, and at this moment, more than 90 bioactive uremic toxins have been identified. Uremic toxins per se have been proven to accelerate the progression of renal failure. However, the causal relationship between uremic toxin and tubulointerstitial hypoxia remains unclear. Our studies provided direct evidence that uremic toxin dysregulates oxygen metabolism in the kidney. Indoxyl sulfate (IS), a representative protein-bound uremic toxin, increased oxygen consumption in proximal renal tubules, decreased renal oxygenation, and consequently aggravated hypoxia in the remnant rat kidneys. The increase in tubular oxygen consumption by IS was dependent on sodium-potassium adenosine triphosphatase and oxidative stress. Our work also indicated a possible connection between IS and the desensitization of the oxygen-sensing mechanism in erythropoietin-producing cells, which may partly explain inadequate erythropoietin production in hypoxic kidneys of end-stage renal disease patients. Studies of uremic toxins will open a new avenue in development of novel therapeutic approaches of kidney disease.


Assuntos
Rim/metabolismo , Consumo de Oxigênio/fisiologia , Uremia/metabolismo , Animais , Proliferação de Células , Eritropoetina/antagonistas & inibidores , Eritropoetina/biossíntese , Homeostase , Humanos , Hipóxia/metabolismo , Indicã/toxicidade , Falência Renal Crônica/metabolismo , Túbulos Renais/irrigação sanguínea , Túbulos Renais/citologia , Estresse Oxidativo , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Uremia/patologia
20.
Int Immunopharmacol ; 11(12): 2237-41, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22051973

RESUMO

Recombinant human erythropoietin (rhEPO) has been successfully used for correcting renal anemia. However, recent studies have raised some concerns about the safety of rhEPO treatment due to its immunogenic side effect - pure red cell aplasia (PRCA). We now report a case of development of anti-EPO neutralizing antibodies (Abs) implicated in thrombocytopenia as well as erythrocytopenia. A 35-year-old man had a history of administering rhEPO (epoetin alfa, epoetin beta and darbepoetin alfa) for 2years to treat renal anemia. The hematological parameters were collected. Anti-EPO, anti-platelet, and anti-thrombopoietin (TPO) Ab assays were performed to test the presence of autoreactive Abs. After performing antibody assays due to severe resistance to rhEPO treatment, a high titer of anti-EPO neutralizing Abs was detected. However, unexpectedly, this patient also showed thrombocytopenia rather than PRCA. We investigated the cause of the marked thrombocytopenia and found anti-TPO Abs in patient serum. To our best knowledge, this is the first report of the development of anti-TPO Abs during rhEPO treatment for anemia.


Assuntos
Anticorpos Neutralizantes/sangue , Eritropoetina/análogos & derivados , Eritropoetina/antagonistas & inibidores , Trombopoetina/antagonistas & inibidores , Adulto , Darbepoetina alfa , Epoetina alfa , Eritropoetina/efeitos adversos , Eritropoetina/imunologia , Eritropoetina/uso terapêutico , Humanos , Masculino , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/uso terapêutico , Aplasia Pura de Série Vermelha/tratamento farmacológico , Trombocitopenia/induzido quimicamente , Trombopoetina/imunologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...