Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
1.
Dev Biol ; 477: 85-97, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34023332

RESUMO

Trachea-esophageal defects (TEDs), including esophageal atresia (EA), tracheoesophageal fistula (TEF), and laryngeal-tracheoesophageal clefts (LTEC), are a spectrum of life-threatening congenital anomalies in which the trachea and esophagus do not form properly. Up until recently, the developmental basis of these conditions and how the trachea and esophagus arise from a common fetal foregut was poorly understood. However, with significant advances in human genetics, organoids, and animal models, and integrating single cell genomics with high resolution imaging, we are revealing the molecular and cellular mechanisms that orchestrate tracheoesophageal morphogenesis and how disruption in these processes leads to birth defects. Here we review the current understanding of the genetic and developmental basis of TEDs. We suggest future opportunities for integrating developmental mechanisms elucidated from animals and organoids with human genetics and clinical data to gain insight into the genotype-phenotype basis of these heterogeneous birth defects. Finally, we envision how this will enhance diagnosis, improve treatment, and perhaps one day, lead to new tissue replacement therapy.


Assuntos
Esôfago/anormalidades , Traqueia/anormalidades , Animais , Anormalidades do Sistema Digestório/diagnóstico , Anormalidades do Sistema Digestório/etiologia , Anormalidades do Sistema Digestório/genética , Modelos Animais de Doenças , Esôfago/embriologia , Humanos , Organoides/embriologia , Traqueia/embriologia
2.
Sci Rep ; 11(1): 7257, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790338

RESUMO

The current study focused on the histogenesis of the esophagus in quail embryos. Formation of the gut tube occurred on the 4th day of incubation. Development of the muscular layers occurred in a sequential manner; the inner circular layer on the 7th day, the outer longitudinal layer on the 8th day and the muscularis mucosae on the 9th day. Glandular development began on the 13th day of incubation. The epithelium was pseudostratified columnar that consisted of mucous cells, dendritic cells, and keratinocyte precursors. Epithelial stratification occurred on the 15th day of incubation. We used Mallory trichrome, Weigert-Van Gieson, and Gomori silver stains to visualize fibrous components. Scanned samples showed formation of endoderm and mesoderm on the 5th day of incubation. A layer of myoblasts developed on the 8th day of incubation. Formation of mucosal folds, which contained glandular openings, occurred on the 14th to 17th days of incubation. On the 5th to 8th days of incubation, CD34 and vascular endothelial growth factor (VEGF) positive-mesodermal cells, and telocytes (TCs) were detected. On the 15th day of incubation, CD34 and VEGF positive-telocytes, and fibroblasts, were identified. The current study described the correlations between functional morphology and evolutionary biology.


Assuntos
Embrião não Mamífero , Esôfago , Organogênese/fisiologia , Codorniz/embriologia , Animais , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Epitélio/embriologia , Esôfago/citologia , Esôfago/embriologia
3.
Taiwan J Obstet Gynecol ; 60(2): 355-358, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33678342

RESUMO

OBJECTIVE: We reported a fetus that presenting with persistent left superior vena cava (PLSVC), polyhydramnios, and a small gastric bubble during prenatal examination and identified VACTERL association after birth. CASE REPORT: A 34-year-old woman underwent amniocentesis at 18 weeks of gestation because of advanced maternal age and the result was normal. Subsequently, an ultrasound revealed single umbilical artery (SUA) at 21 weeks of gestation. She received a detailed fetal anatomy survey that presented the same findings and PLSVC. A small visible gastric bubble was noted at that time, and the other organs were unremarkable. Polyhydramnios was identified at 30 weeks of gestation and amnioreduction was subsequently performed at 32 weeks of gestation. However, polyhydramnios was persisted despite amnioreduction and intrauterine growth restriction was also detected. A cesarean section was performed because of fetal distress at 36 + 2 weeks, and a 1832-g female baby was delivered. Pre-axial polydactyly at left thumb, SUA and esophageal atresia with distal tracheoesophageal fistula (TEF) were identified after birth. The neonate died at age of 4 days because of surgical complication following esophageal anastomosis. CONCLUSION: Prenatal diagnosis of PLSVC associated with polyhydramnios and a small gastric bubble may indicate esophageal atresia with TEF, and further examination for associated syndromes such as VACTERL association is warranted.


Assuntos
Canal Anal/anormalidades , Esôfago/anormalidades , Cardiopatias Congênitas/diagnóstico , Rim/anormalidades , Deformidades Congênitas dos Membros/diagnóstico , Veia Cava Superior Esquerda Persistente/diagnóstico , Poli-Hidrâmnios/diagnóstico , Diagnóstico Pré-Natal/métodos , Coluna Vertebral/anormalidades , Gastropatias/diagnóstico , Traqueia/anormalidades , Adulto , Canal Anal/embriologia , Esôfago/embriologia , Feminino , Retardo do Crescimento Fetal/diagnóstico , Retardo do Crescimento Fetal/genética , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/genética , Humanos , Recém-Nascido , Rim/embriologia , Deformidades Congênitas dos Membros/embriologia , Deformidades Congênitas dos Membros/genética , Morte Perinatal/etiologia , Veia Cava Superior Esquerda Persistente/embriologia , Veia Cava Superior Esquerda Persistente/genética , Poli-Hidrâmnios/genética , Gravidez , Coluna Vertebral/embriologia , Gastropatias/congênito , Gastropatias/embriologia , Traqueia/embriologia
4.
Ultrasound Obstet Gynecol ; 58(1): 92-98, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32304613

RESUMO

OBJECTIVE: Esophageal atresia and/or tracheoesophageal fistula (EA/TEF) remains one of the most frequently missed congenital anomalies prenatally. The aim of our study was to elucidate the sonographic manifestation of EA/TEF throughout pregnancy. METHODS: This was a retrospective study of data obtained from a tertiary center over a 12-year period. The prenatal ultrasound scans of fetuses with EA/TEF were assessed to determine the presence and timing of detection of three principal signs: small/absent stomach and worsening polyhydramnios, both of which were considered as 'suspected' EA/TEF, and esophageal pouch, which was considered as 'detected' EA/TEF. We assessed the yield of the early (14-16 weeks' gestation), routine mid-trimester (19-26 weeks) and third-trimester (≥ 27 weeks) anomaly scans in the prenatal diagnosis of EA/TEF. RESULTS: Seventy-five cases of EA/TEF with available ultrasound images were included in the study. A small/absent stomach was detected on the early anomaly scan in 3.6% of fetuses scanned, without a definitive diagnosis. On the mid-trimester scan, 19.4% of scanned cases were suspected and 4.3% were detected. On the third-trimester anomaly scan, 43.9% of scanned cases were suspected and 33.9% were detected. An additional case with an esophageal pouch was detected on magnetic resonance imaging (MRI) in the mid-trimester and a further two were detected on MRI in the third trimester. In total, 44.0% of cases of EA/TEF in our cohort were suspected, 33.3% were detected and 10.7% were suspected but, eventually, not detected prenatally. CONCLUSIONS: Prenatal diagnosis of EA/TEF on ultrasound is not feasible before the late second trimester. A small/absent stomach may be visualized as early as 15 weeks' gestation. Polyhydramnios does not develop before the mid-trimester. An esophageal pouch can be detected as early as 22 weeks on a targeted scan in suspected cases. The detection rates of all three signs increase with advancing pregnancy, peaking in the third trimester. The early and mid-trimester anomaly scans perform poorly as a screening and diagnostic test for EA/TEF. © 2020 International Society of Ultrasound in Obstetrics and Gynecology.


Assuntos
Atresia Esofágica/diagnóstico por imagem , Atresia Esofágica/embriologia , Feto/diagnóstico por imagem , Feto/embriologia , Fístula Traqueoesofágica/diagnóstico por imagem , Fístula Traqueoesofágica/embriologia , Ultrassonografia Pré-Natal/estatística & dados numéricos , Esôfago/anormalidades , Esôfago/diagnóstico por imagem , Esôfago/embriologia , Feminino , Desenvolvimento Fetal , Humanos , Estudos Longitudinais , Poli-Hidrâmnios/diagnóstico por imagem , Valor Preditivo dos Testes , Gravidez , Segundo Trimestre da Gravidez , Terceiro Trimestre da Gravidez , Estudos Retrospectivos , Estômago/anormalidades , Estômago/diagnóstico por imagem , Estômago/embriologia , Ultrassonografia Pré-Natal/métodos
5.
Congenit Anom (Kyoto) ; 61(1): 14-24, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32776381

RESUMO

The apico-basal (AB) polarity of epithelial cells is maintained by organized arrays of the cytoskeleton and adhesion apparatus. We previously reported that mouse embryonic esophageal epithelium exhibits interkinetic nuclear migration (INM), an AB-polarity-based regulatory mechanism of stem-cell proliferation, and suggested that the pseudostratified single columnar epithelium, a hallmark of INM, is converted to stratified squamous epithelium via rearrangement of the cytoskeleton and cell-adhesion apparatus. Here, we chronologically examined morphological changes in the cytoskeleton and adhesion apparatus in the mouse esophageal epithelium at embryonic day (E) 11.5, E13.5, E14.5, and E15.5, during which epithelial conversion has been suggested to occur. We used phalloidin to examine the apical terminal web (ATW), immunofluorescent anti-zonula occludens protein (ZO-1) antibody to reveal ZO-1, and anti-gamma tubulin antibody to detect primary cilia (PC). At E11.5, a thick ATW, apically oriented ZO-1 and apical PC were observed, indicating a pseudostratified single columnar structure. At E13.5 and E14.5, the phalloidin-staining, ZO-1, and PC distribution patterns were not apically localized, and the epithelial cells appeared to have lost the AB polarity, suggesting conversion of the epithelial structure and cessation of INM. At E15.5, light and transmission electron microscope observations revealed the ATW, ZO-1, PC, and tight junction which were localized into two-1ayers: the apical and subapical layers of the epithelium. These findings suggest that dynamic remodeling of the cytoskeleton and adhesion apparatus is involved in the conversion from pseudostratified single columnar to stratified squamous morphology and is closely related with temporal perturbation of the AB-polarity and cessation of INM.


Assuntos
Adesão Celular , Citoesqueleto/metabolismo , Mucosa Esofágica/citologia , Mucosa Esofágica/metabolismo , Esôfago/embriologia , Organogênese , Animais , Biomarcadores , Citoesqueleto/ultraestrutura , Mucosa Esofágica/ultraestrutura , Imunofluorescência , Imuno-Histoquímica , Camundongos
6.
Congenit Anom (Kyoto) ; 61(3): 82-96, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33249638

RESUMO

Interkinetic nuclear migration (INM) is an apicobasal (AB) polarity-based regulatory mechanism of proliferation/differentiation in epithelial stem/progenitor cells. We previously documented INM in the endoderm-derived tracheal/esophageal epithelia at embryonic day (E) 11.5 and suggested that INM is involved in the development of both organs. We here investigated interorgan (trachea vs esophagus) and intraorgan regional (ventral vs dorsal) differences in the INM mode in the tracheal and esophageal epithelia of the mouse embryo. We also analyzed convergent extension (CE) and planar cell movement (PCM) in the epithelia based on cell distribution. The pregnant C57BL/6J mice were intraperitoneally injected with 5-ethynyl-2'-deoxyuridine at E11.5 and E12.5 and were sacrificed 1, 4, 6, 8, and 12 hours later to obtain the embryos. The distribution of labeled cell nuclei along the AB axis was chronologically analyzed in the total, ventral, and dorsal sides of the epithelia. The percentage distribution of the nuclei population was represented by histogram and the chronological change was analyzed statistically using multidimensional scaling. The interorgan comparison of the INM mode during E11.5-E12.0, but not E12.5-E13.0, showed a significant difference. During E11.5-E12.0 the trachea, but not the esophagus, showed a significant difference between ventral and dorsal sides. During E12.5-E13.0 neither organ showed regional differences. CE appeared to occur in both organs during E11.5-E12.0 while PCM was unclear in both organs. These findings suggest a difference between the trachea and esophagus, and a regional difference in the trachea, not in the esophagus, in the INM mode, which may be related with the later differential organogenesis/histogenesis of these organs.


Assuntos
Diferenciação Celular , Núcleo Celular , Polaridade Celular , Epitélio/embriologia , Esôfago/embriologia , Organogênese , Traqueia/embriologia , Animais , Biomarcadores , Feminino , Imunofenotipagem , Camundongos , Gravidez
7.
Stem Cells Dev ; 29(15): 953-966, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32515280

RESUMO

Esophagus and trachea arise from a common origin, the anterior foregut tube. The compartmentalization process of the foregut into the esophagus and trachea is still poorly understood. Esophageal atresia/tracheoesophageal fistula (EA/TEF) is one of the most common gastrointestinal congenital defects with an incidence rate of 1 in 2,500 births. EA/TEF is linked to the disruption of the compartmentalization process of the foregut tube. In EA/TEF patients, other organ anomalies and disorders have also been reported. Over the last two decades, animal models have shown the involvement of multiple signaling pathways and transcription factors in the development of the esophagus and trachea. Use of induced pluripotent stem cells (iPSCs) to understand organogenesis has been a valuable tool for mimicking gastrointestinal and respiratory organs. This review focuses on the signaling mechanisms involved in esophageal development and the use of iPSCs to model and understand it.


Assuntos
Esôfago/embriologia , Células-Tronco Pluripotentes Induzidas/citologia , Organogênese , Traqueia/embriologia , Animais , Padronização Corporal , Esôfago/irrigação sanguínea , Camundongos Transgênicos , Modelos Animais , Transdução de Sinais
8.
Elife ; 92020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32515350

RESUMO

The genome-scale transcriptional programs that specify the mammalian trachea and esophagus are unknown. Though NKX2-1 and SOX2 are hypothesized to be co-repressive master regulators of tracheoesophageal fates, this is untested at a whole transcriptomic scale and their downstream networks remain unidentified. By combining single-cell RNA-sequencing with bulk RNA-sequencing of Nkx2-1 mutants and NKX2-1 ChIP-sequencing in mouse embryos, we delineate the NKX2-1 transcriptional program in tracheoesophageal specification, and discover that the majority of the tracheal and esophageal transcriptome is NKX2-1 independent. To decouple the NKX2-1 transcriptional program from regulation by SOX2, we interrogate the expression of newly-identified tracheal and esophageal markers in Sox2/Nkx2-1 compound mutants. Finally, we discover that NKX2-1 binds directly to Shh and Wnt7b and regulates their expression to control mesenchymal specification to cartilage and smooth muscle, coupling epithelial identity with mesenchymal specification. These findings create a new framework for understanding early tracheoesophageal fate specification at the genome-wide level.


The trachea or windpipe is a tube that connects the throat to the lungs, while the esophagus connects the throat to the stomach. The trachea has cartilage rings that help to ensure clear airflow to the lungs, while the esophagus walls are lined with muscles that help to move food to the stomach. Although there are many differences between them, both the trachea and esophagus form from the same group of cells during development. Proteins called transcription factors help to control the formation of different body parts by switching different groups of genes on and off in different subsets of cells. Existing research has suggested that a transcription factor called NKX2.1 drives trachea formation, while another, called SOX2, is important in esophagus formation. An absence of either of these two proteins is thought to be associated with serious birth defects including loss of the trachea or esophagus, or failure of the two to separate fully. How these two transcription factors interact and drive the development of the trachea and esophagus, however, is currently unclear. Kuwahara et al. used mice to study the role of NKX2.1 and SOX2 in the formation of the trachea and esophagus. The findings identify many new genes that are active in the trachea and esophagus and reveal that NKX2.1 is not a master regulator that controls all of the genes involved in trachea formation. However, NKX2.1 does control several key genes, particularly those involved in forming cartilage in the trachea instead of muscle in the esophagus. The investigation also revealed many genes that are not controlled by NKX2.1 suggesting that other, currently unknown, systems play a major role in trachea formation. More work is required to understand the wider genetic regulators involved in differentiating the trachea from the esophagus. The findings in this study will help researchers to understand birth defects in the trachea and esophagus that result from genetic errors. They also reveal information about gene regulation processes that are relevant to the formation of other body parts and in the context of other diseases. In the long term, they could support regenerative medicine to regrow or replace lost or damaged body parts using lab-grown stem cells.


Assuntos
Esôfago , Traqueia , Transcriptoma/genética , Animais , Esôfago/embriologia , Esôfago/metabolismo , Feminino , Camundongos , Especificidade de Órgãos/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fator Nuclear 1 de Tireoide/genética , Fator Nuclear 1 de Tireoide/metabolismo , Traqueia/embriologia , Traqueia/metabolismo
10.
Biol Open ; 9(2)2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31988094

RESUMO

In the anterior foregut (AFG) of mouse embryos, the transcription factor SOX2 is expressed in the epithelia of the esophagus and proximal branches of respiratory organs comprising the trachea and bronchi, whereas NKX2.1 is expressed only in the epithelia of respiratory organs. Previous studies using hypomorphic Sox2 alleles have indicated that reduced SOX2 expression causes the esophageal epithelium to display some respiratory organ characteristics. In the present study, we produced mouse embryos with AFG-specific SOX2 deficiency. In the absence of SOX2 expression, a single NKX2.1-expressing epithelial tube connected the pharynx and the stomach, and a pair of bronchi developed in the middle of the tube. Expression patterns of NKX2.1 and SOX9 revealed that the anterior and posterior halves of SOX2-deficient AFG epithelial tubes assumed the characteristics of the trachea and bronchus, respectively. In addition, we found that mesenchymal tissues surrounding the SOX2-deficient NKX2.1-expressing epithelial tube changed to those surrounding the trachea and bronchi in the anterior and posterior halves, as indicated by the arrangement of smooth muscle cells and SOX9-expressing cells and by the expression of Wnt4 (esophagus specific), Tbx4 (respiratory organ specific), and Hoxb6 (distal bronchus specific). The impact of mesenchyme-derived signaling on the early stage of AFG epithelial specification has been indicated. Our study demonstrated an opposite trend where epithelial tissue specification causes concordant changes in mesenchymal tissues, indicating a reciprocity of epithelial-mesenchymal interactions.


Assuntos
Esôfago/anormalidades , Trato Gastrointestinal/anormalidades , Organogênese/genética , Fatores de Transcrição SOXB1/deficiência , Traqueia/anormalidades , Animais , Diferenciação Celular/genética , Endoderma/anormalidades , Endoderma/embriologia , Epitélio/embriologia , Esôfago/embriologia , Imunofluorescência , Trato Gastrointestinal/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/embriologia , Camundongos , Camundongos Transgênicos , Traqueia/embriologia
11.
Dev Cell ; 51(6): 665-674.e6, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31813796

RESUMO

The trachea and esophagus arise from the separation of a common foregut tube during early fetal development. Mutations in key signaling pathways such as Hedgehog (HH)/Gli can disrupt tracheoesophageal (TE) morphogenesis and cause life-threatening birth defects (TEDs); however, the underlying cellular mechanisms are unknown. Here, we use mouse and Xenopus to define the HH/Gli-dependent processes orchestrating TE morphogenesis. We show that downstream of Gli the Foxf1+ splanchnic mesenchyme promotes medial constriction of the foregut at the boundary between the presumptive Sox2+ esophageal and Nkx2-1+ tracheal epithelium. We identify a unique boundary epithelium co-expressing Sox2 and Nkx2-1 that fuses to form a transient septum. Septum formation and resolution into distinct trachea and esophagus requires endosome-mediated epithelial remodeling involving the small GTPase Rab11 and localized extracellular matrix degradation. These are disrupted in Gli-deficient embryos. This work provides a new mechanistic framework for TE morphogenesis and informs the cellular basis of human TEDs.


Assuntos
Endossomos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas Hedgehog/metabolismo , Morfogênese/fisiologia , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Sistema Digestório/metabolismo , Endoderma/metabolismo , Endossomos/genética , Esôfago/embriologia , Fatores de Transcrição Forkhead/metabolismo , Humanos , Mesoderma/metabolismo , Mutação/genética , Xenopus
12.
Development ; 146(23)2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31748205

RESUMO

Balanced progenitor activities are crucial for the development and maintenance of high turn-over organs such as the esophagus. However, the molecular mechanisms regulating these progenitor activities in the esophagus remain to be elucidated. Here, we demonstrated that Yap is required for the proliferation of esophageal progenitor cells (EPCs) in the developing murine esophagus. We found that Yap deficiency reduces EPC proliferation and stratification whereas persistent Yap activation increases cell proliferation and causes aberrant stratification of the developing esophagus. We further demonstrated that the role of YAP signaling is conserved in the developing human esophagus by utilizing 3D human pluripotent stem cell (hPSC)-derived esophageal organoid culture. Taken together, our studies combining loss/gain-of-function murine models and hPSC differentiation support a key role for YAP in the self-renewal of EPCs and stratification of the esophageal epithelium.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Esôfago/embriologia , Modelos Biológicos , Organoides/embriologia , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular/genética , Esôfago/citologia , Humanos , Camundongos , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
13.
Elife ; 82019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31535973

RESUMO

In most vertebrates, the upper digestive tract is composed of muscularized jaws linked to the esophagus that permits food ingestion and swallowing. Masticatory and esophagus striated muscles (ESM) share a common cardiopharyngeal mesoderm (CPM) origin, however ESM are unusual among striated muscles as they are established in the absence of a primary skeletal muscle scaffold. Using mouse chimeras, we show that the transcription factors Tbx1 and Isl1 are required cell-autonomously for myogenic specification of ESM progenitors. Further, genetic loss-of-function and pharmacological studies point to MET/HGF signaling for antero-posterior migration of esophagus muscle progenitors, where Hgf ligand is expressed in adjacent smooth muscle cells. These observations highlight the functional relevance of a smooth and striated muscle progenitor dialogue for ESM patterning. Our findings establish a Tbx1-Isl1-Met genetic hierarchy that uniquely regulates esophagus myogenesis and identify distinct genetic signatures that can be used as framework to interpret pathologies arising within CPM derivatives.


Assuntos
Padronização Corporal , Esôfago/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/embriologia , Músculo Estriado/embriologia , Animais , Fator de Crescimento de Hepatócito/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo
16.
Histol Histopathol ; 34(5): 457-467, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30698269

RESUMO

The esophagus is a muscular tube which transports swallowed content from the oral cavity and the pharynx to the stomach. Early in mouse development, an entire layer of the esophagus, the muscularis externa, consists of differentiated smooth muscle cells. Starting shortly after mid-gestation till about two weeks after birth, the muscularis externa almost entirely consists of striated muscle. This proximal-to-distal replacement of smooth muscle by the striated muscle depends on a number of factors. To identify the nature of the hypothetical "proximal" (mainly striated muscle originating) and "distal" (mainly smooth muscle originating) signals that govern the striated-for-smooth muscle replacement, we compared the esophagus of Myf5:MyoD null fetuses completely lacking striated muscle to the normal control using cDNA microarray analysis, followed by a comprehensive database search. Here we provide an insight into the nature of "proximal" and "distal" signals that govern the striated-for-smooth muscle replacement in the esophagus.


Assuntos
Esôfago/embriologia , Desenvolvimento Muscular , Músculo Liso/embriologia , Músculo Estriado/embriologia , Animais , Camundongos
17.
Acta Histochem ; 121(1): 64-71, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30401476

RESUMO

Telocytes (TCs) are CD34 and Vimentin positive (+) immunoreactive stromal cells with a small-sized body and several extremely long telopodes. TCs have been described to provide a mechanical support throughout the tissue by making cellular connections (homo- or hetero) to form a 3D network. Such network can transmit the intercellular signaling. Recently, TCs have been described in the esophageal wall. However, information concerning the role of these cells in esophageal organization and development is rare. Thus, we aimed to record the temporo-spatial localization pattern of TCs during esophageal morphogenesis in rabbit. Embryos and fetuses of New Zealand White rabbits (10th-30th gestational days) were collected. Using CD34 immunostaining, TCs have not been demonstrated in the wall of the developing esophagus till the end of the second third of pregnancy. On 24th gestational day, CD34+ TCs were organized in the adventitia of the esophageal wall specifically in close association with the endothelial cells lining the micro vessels. Later on 26th gestational day, CD34+TCs were additionally expressed in the sub-mucosa and in lamina propria (sub-epithelial). On 28th gestational day, additional CD34+TCs were detected among the smooth muscle bundles of the muscular layer. Reaching the last gestational day, CD34+TCs formed several sheaths in the esophageal wall namely sub epithelial sheath, sub-mucosal, muscular (circular and longitudinal) and inter-muscular sheaths and an outer adventitial one. On the other hand, vimentin immunohistochemistry revealed wider spread TCs positivity in all developmental ages. Presumptively, arrangement of CD34 and vimentin positive TCs in all layers of the developing esophageal wall hypothesizes that TC may play a potential role as a progenitor cell initially in differentiation of the epithelial and muscular precursors and finally in shaping of the various layers of the rabbit esophageal wall during its morphogenesis. TCs are also proposed to be involved in the angiogenesis of the esophageal blood capillaries.


Assuntos
Esôfago/embriologia , Esôfago/ultraestrutura , Telócitos/química , Animais , Antígenos CD34 , Esôfago/química , Imuno-Histoquímica , Coelhos/embriologia
18.
Cell Stem Cell ; 23(4): 516-529.e5, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30244870

RESUMO

Pluripotent stem cells (PSCs) could provide a powerful system to model development of the human esophagus, whose distinct tissue organization compared to rodent esophagus suggests that developmental mechanisms may not be conserved between species. We therefore established an efficient protocol for generating esophageal progenitor cells (EPCs) from human PSCs. We found that inhibition of TGF-ß and BMP signaling is required for sequential specification of EPCs, which can be further purified using cell-surface markers. These EPCs resemble their human fetal counterparts and can recapitulate normal development of esophageal stratified squamous epithelium during in vitro 3D cultures and in vivo. Importantly, combining hPSC differentiation strategies with mouse genetics elucidated a critical role for Notch signaling in the formation of this epithelium. These studies therefore not only provide an efficient approach to generate EPCs, but also offer a model system to study the regulatory mechanisms underlying development of the human esophagus.


Assuntos
Esôfago/embriologia , Esôfago/metabolismo , Imageamento Tridimensional , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Esôfago/citologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD
19.
Trends Cell Biol ; 28(9): 738-748, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29871822

RESUMO

Lung and esophageal development and organogenesis involve a complex interplay of signaling pathways and transcriptional factors. Once the lung and esophagus do separate, their epithelial proliferation and differentiation programs share certain common properties that may fuel adaptive responses to injury and subsequent regeneration. Lung and esophageal tissue organogenesis and regeneration provide perspectives on squamous cell cancers and adenocarcinomas in each tissue.


Assuntos
Esôfago/embriologia , Esôfago/fisiologia , Pulmão/embriologia , Pulmão/fisiologia , Regeneração/fisiologia , Carcinogênese , Diferenciação Celular , Redes Reguladoras de Genes , Humanos
20.
J Ultrasound Med ; 37(12): 2863-2872, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29663459

RESUMO

OBJECTIVE: To describe and evaluate a simple technique of imaging the fetal esophagus, using the echogenic transverse section of the esophagus in the area behind the heart as a reference point, in all the 3 trimesters of pregnancy. METHOD: This was a prospective cross-sectional study of ultrasound imaging of the esophagus in 2 groups of patients: the first group comprised women at 18 to 30 weeks' gestation (208 fetuses); the second group comprised women at 11 to 14 weeks' gestation (102 fetuses). Using a 3- to 5-MHz curvilinear transducer, the transverse section of the collapsed esophagus was imaged in the area behind the heart. The probe was rotated 90 degrees to identify the longitudinal section of the esophagus which was then traced along its entire length. RESULT: This study shows that the collapsed, echogenic, transverse section of the esophagus was persistently seen in the area behind the heart, in more than 99% of fetuses in both the groups. It was a useful starting point to image the longitudinal section of the esophagus in both the groups, particularly in the 18 - 30 week group. Using this technique, the entire length of the esophagus could be traced in 92.3% of 18 - 30 week fetuses and 88.23% of the 11 - 14 week fetuses. CONCLUSION: A collapsed transverse section of the esophagus was persistently and easily seen as a bright echogenic structure in the area behind the heart in more than 99% of fetuses in all 3 trimesters (in both the groups) and, therefore, was an ideal starting point to begin tracing the esophagus in its longitudinal axis.


Assuntos
Atresia Esofágica/diagnóstico por imagem , Atresia Esofágica/embriologia , Esôfago/diagnóstico por imagem , Esôfago/embriologia , Ultrassonografia Pré-Natal/métodos , Estudos Transversais , Feminino , Humanos , Gravidez , Primeiro Trimestre da Gravidez , Segundo Trimestre da Gravidez , Terceiro Trimestre da Gravidez , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...