Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(4): 103536, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364606

RESUMO

This study evaluated the impact of dietary digestible aromatic amino acid (DAAA) levels and stachyose on growth, nutrient utilization and cecal odorous compounds in broiler chickens. A 3×2 two-factor factorial design: Three dietary DAAA levels (1.40, 1.54, 1.68%) supplemented with either 5 g/kg of stachyose or without any stachyose were used to create 6 experimental diets. Each diet was fed to 6 replicates of 10 birds from d 22 to 42. Findings revealed that broilers receiving a diet with 1.54% DAAA levels supplemented with 5 g/kg stachyose exhibited a significant boost in average daily gain and improved utilization of crude protein, ether extract, tryptophan, and methionine compared to other diet treatments (P < 0.05). As the dietary DAAA levels increased, there was a significant rise in the concentrations of indole, skatole, p-methylphenol, and butyric acid in the cecum of broilers (P < 0.05). The addition of stachyose to diets reduced concentrations of indole, skatole, phenol, p-methylphenol, acetic acid and propionic acid in the cecum (P < 0.05). The lowest concentrations of indole, phenol, p-methylphenol, volatile fatty acids and pH in cecum of broilers were observed in the treatment which diet DAAA level was 1.40% with stachyose (P < 0.05). In conclusion, dietary DAAA levels and stachyose had significant interactions on the growth, main nutrient utilization and cecal odorous compounds in broilers. The dietary DAAA level was 1.54% with 5 g/kg of stachyose can improve the growth performance, nutrient utilization. However, the dietary DAAA level was 1.40% with stachyose was more beneficial to decrease the cecal odor compound composition in broilers.


Assuntos
Galinhas , Odorantes , Oligossacarídeos , Animais , Escatol/metabolismo , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais/análise , Cresóis/metabolismo , Ceco , Nutrientes , Aminoácidos Aromáticos/metabolismo , Fenômenos Fisiológicos da Nutrição Animal
2.
J Hazard Mater ; 467: 133423, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38359760

RESUMO

Skatole of gut origin has garnered significant attention as a malodorous pollutant due to its escalating emissions, recalcitrance to biodegradation and harm to animal and human health. Magnolol is a health-promoting polyphenol with potential to considerably mitigate the skatole production in the intestines. To investigate the impact of magnolol and its underlying mechanism on the skatole formation, in vivo and in vitro experiments were conducted in pigs. Our results revealed that skatole concentrations in the cecum, colon, and faeces decreased by 58.24% (P = 0.088), 44.98% (P < 0.05) and 43.52% (P < 0.05), respectively, following magnolol supplementation. Magnolol supplementation significantly decreased the abundance of Lachnospira, Faecalibacterium, Paramuribaculum, Faecalimonas, Desulfovibrio, Bariatricus, and Mogibacterium within the colon (P < 0.05). Moreover, a strong positive correlation (P < 0.05) between skatole concentration and Desulfovibrio abundance was observed. Subsequent in silico studies showed that magnolol could dock well with indolepyruvate decarboxylase (IPDC) within Desulfovibrio. Further in vitro investigation unveiled that magnolol addition led to less indole-3-pyruvate diverted towards the oxidative skatole pathway by the potential docking of magnolol towards IPDC, thereby diminishing the conversion of substrate into skatole. Our findings offer novel targets and strategies for mitigating skatole emission from the source.


Assuntos
Lignanas , Microbiota , Escatol , Suínos , Animais , Humanos , Escatol/metabolismo , Triptofano/metabolismo , Compostos de Bifenilo
3.
Biosci Biotechnol Biochem ; 87(6): 611-619, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36941128

RESUMO

Increased tumor necrosis factor α (TNFα) expression in intestinal epithelial cells (IECs) plays a major role in the development and progression of inflammatory bowel disease (IBD) and colorectal cancer (CRC). The present study aimed to clarify the relationship between TNFα and skatole, a tryptophan-derived gut microbiota metabolite. The aryl hydrocarbon receptor (AhR) antagonist CH223191 promoted, whereas the p38 inhibitor SB203580 suppressed the increase in TNFα mRNA and protein expression induced by skatole in intestinal epithelial Caco-2 cells. The c-Jun N-terminal kinase (JNK) inhibitor SP600125 repressed only the increased TNFα protein expression, whereas the extracellular signal-regulated kinase (ERK) pathway inhibitor U0126 did not affect increased TNFα expression at any level. A neutralizing antibody against TNFα partially inhibited skatole-induced cell death. Overall, these results suggested that TNFα expression is increased by the concerted actions of skatole-activated p38 and JNK, and that TNFα exerts autocrine/paracrine actions on IECs despite partial suppression by activated AhR. Therefore, skatole might play an important role in the development and progression of IBD and CRC via increased TNFα expression.


Assuntos
Doenças Inflamatórias Intestinais , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Escatol/metabolismo , Células CACO-2 , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Células Epiteliais/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Nutrients ; 15(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36986221

RESUMO

Skatole (3-methylindole, 3MI) is a natural-origin compound derived from plants, insects, and microbial metabolites in human intestines. Skatole has an anti-lipid peroxidation effect and is a biomarker for several diseases. However, its effect on hepatocyte lipid metabolism and lipotoxicity has not been elucidated. Hepatic lipotoxicity is induced by excess saturated free fatty acids in hyperlipidemia, which directly damages the hepatocytes. Lipotoxicity is involved in several metabolic diseases and hepatocytes, particularly affecting nonalcoholic fatty liver disease (NAFLD) progression. NAFLD is caused by the accumulation of fat by excessive free fatty acids (FFAs) in the blood and is accompanied by hepatic damage, such as endoplasmic reticulum (ER) stress, abnormal glucose and insulin metabolism, oxidative stress, and lipoapoptosis with lipid accumulation. Hepatic lipotoxicity causes multiple hepatic damages in NAFLD and has a directly effect on the progression from NAFLD to nonalcoholic steatohepatitis (NASH). This study confirmed that the natural compound skatole improves various damages to hepatocytes caused by lipotoxicity in hyperlipidemic conditions. To induce lipotoxicity, we exposed HepG2, SNU-449, and Huh7 cells to palmitic acid, a saturated fatty acid, and confirmed the protective effect of skatole. Skatole inhibited fat accumulation in the hepatocytes, reduced ER and oxidative stress, and recovered insulin resistance and glucose uptake. Importantly, skatole reduced lipoapoptosis by regulating caspase activity. In conclusion, skatole ameliorated multiple types of hepatocyte damage induced by lipotoxicity in the presence of excess free fatty acids.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Escatol/efeitos adversos , Escatol/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Hepatócitos , Fígado/metabolismo , Ácidos Graxos/metabolismo , Estresse do Retículo Endoplasmático
5.
Xenobiotica ; 53(1): 60-65, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36976910

RESUMO

The 2-oxidation, 3-methyl hydroxylation, and 6-hydroxylation of skatole (a contributor to boar taint) mediated by minipig liver microsomes and recombinant P450 enzymes expressed in bacterial membranes were investigated.At low substrate concentrations of 10 µM, the formation rates of indole-3-carbinol, 6-hydroxyskatole, and the sum of 3-methyloxindole, indole-3-carbinol, and 6-hydroxyskatole in male minipig liver microsomes were significantly lower than those in female minipig liver microsomes.Compensatory 3-methyloxindole and indole-3-carbinol formation in minipig liver microsomes, which lack 6-hydroxyskatole formation in males, was mediated partly by liver microsomal P450 1A2 and P450 1A2/2E1, respectively. These enzymes were suppressed by typical P450 inhibitors in female minipig liver microsomes.Among the 14 pig P450 forms evaluated, P450 2A19 was the dominant form mediating 3-methyloxindole, indole-3-carbinol, and 6-hydroxyskatole formation from skatole at substrate concentrations of 100 µM. Positive cooperativity was observed in 3-methyloxindole formation from skatole mediated by male minipig liver microsomes and by pig P450 3A22 with Hill coefficients of 1.2-1.5.These results suggest high skatole 2-oxidation, 3-methyl hydroxylation, and 6-hydroxylation activities of pig P450 2A19 and compensatory skatole oxidations mediated by pig P450 1A2, 2E1, or 3A22 in male minipig liver microsomes.


Assuntos
Carne de Porco , Carne Vermelha , Suínos , Masculino , Animais , Feminino , Escatol/metabolismo , Microssomos Hepáticos/metabolismo , Hidroxilação , Porco Miniatura/metabolismo , Odorantes , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Fígado/metabolismo
6.
J Environ Sci (China) ; 127: 688-699, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522097

RESUMO

3-Methylindole (skatole) is regarded as one of the most offensive compounds in odor emission. Biodegradation is feasible for skatole removal but the functional species and genes responsible for skatole degradation remain enigmatic. In this study, an efficient aerobic skatole-degrading consortium was obtained. Rhodococcus and Pseudomonas were identified as the two major and active populations by integrated metagenomic and metatranscriptomic analyses. Bioinformatic analyses indicated that the skatole downstream degradation was mainly via the catechol pathway, and upstream degradation was likely catalyzed by the aromatic ring-hydroxylating oxygenase and flavin monooxygenase. Genome binning and gene analyses indicated that Pseudomonas, Pseudoclavibacter, and Raineyella should cooperate with Rhodococcus for the skatole degradation process. Moreover, a pure strain Rhodococcus sp. DMU1 was successfully obtained which could utilize skatole as the sole carbon source. Complete genome sequencing showed that strain DMU1 was the predominant population in the consortium. Further crude enzyme and RT-qPCR assays indicated that strain DMU1 degraded skatole through the catechol ortho-cleavage pathway. Collectively, our results suggested that synergistic degradation of skatole in the consortium should be performed by diverse bacteria with Rhodococcus as the primary degrader, and the degradation mainly proceeded via the catechol pathway.


Assuntos
Rhodococcus , Escatol , Escatol/metabolismo , Biodegradação Ambiental , Rhodococcus/genética , Rhodococcus/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Pseudomonas/metabolismo , Catecóis/metabolismo
7.
Ecotoxicol Environ Saf ; 249: 114464, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38321683

RESUMO

Skatole is a typical malodor compound in animal wastes. Several skatole-degrading bacterial strains have been obtained, whereas the molecular response of strains to skatole stress has not been well elucidated. Herein, the skatole degradation by a Gram-positive strain Rhodococcus aetherivorans DMU1 was investigated. Strain DMU1 showed high efficiency in skatole degradation under the conditions of 25-40 °C and pH 7.0-10.0. It could utilize various aromatics, including cresols, phenol, and methylindoles, as the sole carbon source for growth, implying its potential in the bioremediation application of animal wastes. Transcriptomic sequencing revealed that 328 genes were up-regulated and 640 genes were down-regulated in strain DMU1 when grown in the skatole-containing medium. Skatole increased the gene expression levels of antioxidant defense systems and heat shock proteins. The expression of ribosome-related genes was significantly inhibited which implied the growth inhibition of skatole. A rich set of oxidoreductases were changed, and a novel gene cluster containing the flavoprotein monooxygenase and ring-hydroxylating oxygenase genes was highly up-regulated, which was probably involved in skatole upstream degradation. The upregulation pattern of this gene cluster was further verified by qRT-PCR assay. Furthermore, skatole should be mainly degraded via the catechol ortho-cleavage pathway with cat25170 as the functional gene. The gene cat25170 was cloned and expressed in E. coli BL21(DE3). Pure enzyme assays showed that Cat25170 could catalyze catechol with Km 9.96 µmol/L and kcat 12.36 s-1.


Assuntos
Rhodococcus , Escatol , Animais , Escatol/metabolismo , Escherichia coli/genética , Rhodococcus/metabolismo , Catecóis/metabolismo , Perfilação da Expressão Gênica , Biodegradação Ambiental
8.
Exp Cell Res ; 421(1): 113373, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183781

RESUMO

BACKGROUND: Progranulin (PGRN) is an important survival factor in the progression of multiple cancers. PURPOSE: To explore the effects and mechanisms of PGRN on malignant biological behavior of osteosarcoma (OS) cells and the effects of mesenchymal stem cells (MSCs) and the hypoxic microenvironment on PGRN alteration. MATERIAL AND METHODS: The expression pattern of PGRN in OS were evaluated in OS tissues and cell lines. Next, a loss-of-function assay investigated the function of PGRN on the proliferation, migration and cell death of OS cells. The activation of MAPK signaling in the process was examined by western blot and functional experiments accompanied by skatole. Additionally, we internally silenced hypoxia-inducible factor-1α (HIF-1α) in MSCs along with exogenously added HIF-1α (exo-HIF-1α) to explore how MSCs affect PGRN alteration and the malignant behavior of OS cells. RESULTS: An aberrantly high expression of PGRN was observed in OS and associated with the poor prognosis of OS patients. PGRN knockdown repressed the proliferation, migration and induced cell death of OS cells, and activating MAPK pathway reversed these effects. Further evidence showed that MSCs regulated PGRN to mediate the malignant biological behavior of OS cells. Hypoxia enhanced HIF-1α expression in MSCs. HIF-1α silencing in MSCs under hypoxia suppressed the oncogenic effects of MSCs and reduced PGRN expression in OS cells, while the treatment of exo-HIF-1α reversed the depressive effects of HIF1α silencing on OS progression. CONCLUSION: Overall, we concluded that PGRN, which was activated by the increase of hypoxic-MSCs-derived HIF-1α, promoted OS progression through the activation of MAPK signaling.


Assuntos
Neoplasias Ósseas , Células-Tronco Mesenquimais , Osteossarcoma , Humanos , Progranulinas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Escatol/metabolismo , Hipóxia Celular/fisiologia , Proliferação de Células , Osteossarcoma/patologia , Hipóxia/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Microambiente Tumoral
9.
Environ Res ; 182: 109123, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32069749

RESUMO

Skatole is the key malodorous compound in livestock and poultry waste and wastewater with a low odor threshold. It not only causes serious nuisance to residents and workers, but also poses threat to the environment and human health due to its biotoxicity and recalcitrant nature. Biological treatment is an eco-friendly and cost-effective approach for skatole removal, while the bacterial resources are scarce. Herein, the Burkholderia strain was reported to efficiently degrade skatole for the first time. Results showed that strain IDO3 maintained high skatole-degrading performance under the conditions of pH 4.0-9.0, rotate speed 0-250 rpm, and temperature 30-35 °C. RNA-seq analysis indicated that skatole activated the oxidative phosphorylation and ATP production levels in strain IDO3. The oxidoreductase activity item which contained 373 differently expressed genes was significantly impacted by Gene Ontology analysis. Furthermore, the bioaugmentation experiment demonstrated that strain IDO3 could notably increase the removal of skatole in activated sludge systems. High-throughput 16S rRNA gene sequencing data indicated that the alpha-diversity and bacterial community tended to be stable in the bioaugmented group after 8 days operation. PICRUSt analysis indicated that xenobiotics biodegradation and metabolism, and membrane transport categories significantly increased, consistent with the improved skatole removal performance in the bioaugmented group. Burkholderia was survived and colonized to be the predominant population during the whole operation process (34.19-64.00%), confirming the feasibility of Burkholderia sp. IDO3 as the bioaugmentation agent in complex systems.


Assuntos
Burkholderia , Esgotos , Escatol , Biodegradação Ambiental , Reatores Biológicos , Humanos , RNA Ribossômico 16S , Escatol/metabolismo
10.
J Nutr Sci Vitaminol (Tokyo) ; 65(Supplement): S192-S195, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31619628

RESUMO

The effects of potato starch, isolated from Snowden (SD) and Kitahime (KH) varieties, on cecal fermatation properties in rats were evaluated. In high-amylose cornstarch (HAS), SD and KH groups, cecal acetate and total short-chain fatty acid concentrations were increased and cecal pH was lowered compared to control (CON) group. Further, cecal immunoglobulin A levels were increased and cecal ammonia-nitrogen, p-cresol, skatole and indole concentrations were lowered in HAS, SD and KH groups compared to the CON group. Therefore, potato starch might possess beneficial intestinal fermentation properties.


Assuntos
Ceco/metabolismo , Fermentação/efeitos dos fármacos , Solanum tuberosum , Amido/farmacologia , Acetatos/metabolismo , Amônia/metabolismo , Animais , Cresóis/metabolismo , Ácidos Graxos Voláteis/metabolismo , Concentração de Íons de Hidrogênio , Imunoglobulina A/metabolismo , Indóis/metabolismo , Nitrogênio/metabolismo , Ratos , Alimentos Crus , Escatol/metabolismo
11.
Res Vet Sci ; 124: 293-302, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31026762

RESUMO

Immunocastration (vaccination against boar taint) is an alternative method to prevent boar taint without the need for surgical castration. This study investigates the evolution of boar taint compounds in serum and fat, serum steroid compounds as well as behavior in immunocastrated pigs from 3 sire lines: 15 stress positive Belgian Piétrain (BP), 20 stress negative French Piétrain (FP), and 20 stress negative Canadian Duroc (CD). Hormone and boar taint compounds in serum were determined at 4 time points; boar taint compounds in fat were determined at 3 time points. Behavior, skin lesions, animal and pen fouling were also recorded before the first vaccination (V2). Aggressiveness, eating and drinking and general activity behavior declined from  V2 for all sire lines. Pigs from BP were cleaner than FP and CD pigs. Even though immunocastration was effective in general (reduced testosterone, estradiol as well as androstenone in serum) for all sire lines, some individual pigs showed either androstenone or skatole levels in fat above cutoff values. While the immunocastration mechanism works as intended for androstenone, and also for skatole for the three sire lines, the risk of carcasses with boar taint compounds above cutoff levels (respectively 1.9 and 3.7%) still remains to some extent.


Assuntos
Agressão/efeitos dos fármacos , Anticoncepção Imunológica/veterinária , Hormônios Esteroides Gonadais/sangue , Odorantes/análise , Comportamento Sexual Animal/efeitos dos fármacos , Sus scrofa/fisiologia , Tecido Adiposo/química , Androstenos/metabolismo , Animais , Bélgica , Masculino , Escatol/metabolismo , Sus scrofa/sangue , Vacinação/veterinária
12.
Insect Biochem Mol Biol ; 110: 45-51, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31004793

RESUMO

The conservation of the mosquito indolergic receptors across the Culicinae and Anophelinae mosquito lineages, which spans 200 million years of evolution, is a testament to the central role of indolic compounds in the biology of these insects. Indole and skatole have been associated with the detection of oviposition sites and animal hosts. To evaluate the potential ecological role of these two compounds, we have used a pharmacological approach to characterize homologs of the indolergic receptors Or2 and Or10 in the non-hematophagous elephant mosquito Toxorhynchites amboinensis. We provide evidence that both receptors are narrowly tuned to indole and skatole like their counterparts from hematophagous mosquitoes. These findings indicate that Toxorhynchites detects indole and skatole in an ecological context to be determined and underscore the importance of understanding the role of these compounds in mosquitoes.


Assuntos
Culicidae/genética , Evolução Molecular , Proteínas de Insetos/genética , Receptores Odorantes/genética , Animais , Culicidae/metabolismo , Comportamento Alimentar , Indóis/metabolismo , Proteínas de Insetos/metabolismo , Oviposição/genética , Receptores Odorantes/metabolismo , Escatol/metabolismo
13.
Theriogenology ; 131: 32-40, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30939354

RESUMO

The accumulation of skatole in fat tissue is one of the predominant factors, causing boar taint. The present study was aimed to understand the mechanism whereby active immunization against GnRH (immunocastration) eliminates skatole in boars. Thirty-six boars were assigned within litter into three groups (n = 12): control, surgically castrated, or immunized against GnRH at 10 wk of age (with a booster 8 wk later). Faecal and blood samples (for skatole and skatole-regulatory hormone profiles) were collected at 4-wk intervals until boars were slaughtered (26 weeks). Immunocastration reduced (P < 0.05) serum levels of androstenone, 17ß-estradiol and IGF1 especially after the booster immunization, and down-regulated (P < 0.05) mRNA expressions of both IGF1 and IGF1receptor (IGF1R) in mucosa of ileum as well as colon at slaughter. Compared to intact controls, immunocastration substantially decreased (P < 0.05) faecal skatole contents subsequent to the decrease of serum IGF1 levels, which persisted in boars after surgical castration. In parallel with the decreased formation of skatole in the intestine, levels of skatole in serum and then in fat tissue were also decreased (P < 0.05). On the other hand, deprivation of testicular steroids, especially androstenone and 17ß-estradiol accelerated skatole degradation metabolism in the liver by increasing (P < 0.05) hepatic CYP2E1, CYP2A, CYP2C49 and CYB5A expressions. Collectively, our results suggested that immunocastration decreased skatole formation in the intestine and meanwhile accelerated skatole degradation metabolism in the liver, resultantly eliminating skatole accumulation in male pigs. Decreased intestinal skatole formation by immunocastration appeared to be associated with the attenuated actions of IGF1 on the turnover of both ileal and colon mucosa.


Assuntos
Escatol/metabolismo , Esterilização Reprodutiva/veterinária , Suínos , Animais , Fezes/química , Mucosa Intestinal/metabolismo , Intestinos/química , Fígado/metabolismo , Masculino , Carne , Escatol/sangue , Esterilização Reprodutiva/métodos
14.
Biochem Biophys Res Commun ; 510(4): 649-655, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30739789

RESUMO

Intestinal bacteria produce skatole (3-methylindole) from tryptophan in dietary proteins and ingesting large quantities of animal protein is associated with increased fecal skatole concentrations. Although possibly associated with disrupted intestinal homeostasis, the influence of skatole on intestinal epithelial cellular function has not been characterized in detail. The present study aimed to determine whether skatole induces intestinal epithelial cell (IEC) dysfunction. We found that skatole dose-dependently caused IEC death and time-dependently induced IEC apoptosis. Since skatole directly interacts with aryl hydrocarbon receptors (AhR), we investigated whether these receptors influence the skatole-induced death of IEC. In addition to increased AhR transcriptional activity induced by skatole, the AhR antagonist CH223191 partially suppressed of skatole-induced IEC death. Extracellular signal-related kinase (ERK), p38 and c-Jun N-terminal kinase (JNK) are mitogen-activated protein kinases (MAPK) induced by skatole. None of them were repressed by CH223191, whereas the p38 inhibitor SB203580 promoted skatole-induced IEC death. These findings together indicated that skatole induces both AhR-dependent activation pathways and the AhR-independent activation of p38, consequently regulating the amount of IEC death. Accumulating evidence indicates that consuming large amounts of animal protein is associated with the pathogenesis and progression of inflammatory bowel diseases (IBD). Thus, intestinal skatole production induced by large amounts of dietary animal protein might be associated via IEC death with intestinal pathologies such as IBD.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Mucosa Intestinal/citologia , Intestinos/microbiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Escatol/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apoptose , Células CACO-2 , Morte Celular , Ativação Enzimática , Humanos , Mucosa Intestinal/metabolismo
15.
Animal ; 13(9): 1883-1890, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30614428

RESUMO

Lambs grazing alfalfa or white clover are prone to flavour taint which can be an impediment to consumer acceptance. Here we investigated whether condensed tannin (CT)-rich sainfoin pellet supplementation of lambs grazing alfalfa influences meat sensory quality. Using three groups of 18 male Romane weaned lambs, we compared three feeding regimes: alfalfa grazing (AF), alfalfa grazing + daily supplementation with CT-rich sainfoin pellets (15 g dry matter (DM)/kg live weight, AS) and stall feeding with concentrate and grass hay indoors (SI). We also investigated the potential interest of sainfoin pellet supplementation for controlling digestive parasitism. The sainfoin pellets contained 42 g of CT/kg of DM and they represented on average 36% of the diet in AS lambs. Skatole and indole were detected in most of the AF and AS lambs, whereas in very few SI lambs. Skatole and indole concentrations in perirenal and dorsal fat were lower in the AS lambs than the AF lambs (P < 0.025 to P < 0.001), but the intensity of 'animal' odour and 'animal' flavour of the chops did not differ between both forage-grazing groups. Longissimus thoracis et lumborum muscle lightness was lower in the AF and AS lambs than the SI lambs (P < 0.001) with the other muscle colour coordinates being unaffected by the treatment and between-treatment group differences in muscle colour coordinates remaining constant throughout the 9-day display period. Subcutaneous fat colour coordinates were not influenced by the treatment. The number of individual anthelmintic drenches necessary to keep nematode faecal egg count below a threshold of 550 eggs/g of faeces was lower in the AS than the AF lambs (0.94 per lamb v. 1.63 per lamb; P < 0.001). Faecal oocyst count was lower in the AS than the AF lambs for the first measurement made 56 days after the beginning of the experiment (P < 0.001) and was not significantly different between both forage-grazing groups thereafter. The use of CT-rich sainfoin pellets to supplement lambs that are concurrently grazing alfalfa reduced fat volatile skatole and indole concentrations and delayed the onset of both helminth and coccidian infections.


Assuntos
Ração Animal/análise , Suplementos Nutricionais , Fabaceae/química , Indóis/metabolismo , Proantocianidinas/farmacologia , Ovinos/metabolismo , Animais , Cor , Dieta/veterinária , Fezes/parasitologia , Indóis/análise , Masculino , Medicago sativa , Contagem de Ovos de Parasitas/veterinária , Carne Vermelha/normas , Ovinos/parasitologia , Escatol/análise , Escatol/metabolismo , Paladar
16.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30635386

RESUMO

The effect of high levels of dietary chicory roots (25%) and intracecal exogenous butyrate infusion on skatole formation and gut microbiota was investigated in order to clarify the mechanisms underlying the known reducing effect of chicory roots on skatole production in entire male pigs. A Latin square design with 3 treatments (control, chicory, and butyrate), 3 periods, and 6 animals was carried out. Chicory roots showed the lowest numerical levels of skatole in both feces and plasma and butyrate infusion the highest. In the chicory group, an increased abundance of the skatole-producing bacterium Olsenella scatoligenes compared to the control group (P = 0.06), and a numerically higher relative abundance of Olsenella than for the control and butyrate groups, was observed. Regarding butyrate-producing bacteria, the chicory group had lower abundance of Roseburia but a numerically higher abundance of Megasphaera than the control group. Lower species richness was found in the chicory group than in the butyrate group. Moreover, beta diversity revealed that the chicory group formed a distinct cluster, whereas the control and butyrate groups clustered more closely to each other. The current data indicated that the skatole-reducing effect of chicory roots is neither via inhibition of cell apoptosis by butyrate nor via suppression of skatole-producing bacteria in the pig hindgut. Thus, the mode of action is most likely through increased microbial activity with a corresponding high incorporation of amino acids into bacterial biomass, and thereby suppressed conversion of tryptophan into skatole, as indicated in the literature.IMPORTANCE Castration is practiced to avoid the development of boar taint, which negatively affects the taste and odor of pork, and undesirable aggressive behavior. Due to animal welfare issues, alternatives to surgical castration are sought, though. Boar taint is a result of high concentrations of skatole and androstenone in back fat. Skatole is produced by microbial fermentation in the large intestine, and therefore, its production can be influenced by manipulation of the microbiota. Highly fermentable dietary fiber reduces skatole production. However, various theories have been proposed to explain the mode of action. In order to search for other alternatives, more efficient or less expensive, to reduce skatole via feeding, it is important to elucidate the mechanism behind the observed effect of highly fermentable dietary fiber on skatole. Our results indicate that highly fermentable dietary fiber does not affect skatole production by reducing the number of skatole-producing bacteria or stimulating butyrate production in the large intestine.


Assuntos
Bactérias/metabolismo , Butiratos/metabolismo , Cichorium intybus/metabolismo , Microbioma Gastrointestinal , Raízes de Plantas/metabolismo , Escatol/metabolismo , Suínos/metabolismo , Ração Animal/análise , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Cichorium intybus/química , Fezes/química , Masculino , Raízes de Plantas/química , Suínos/crescimento & desenvolvimento , Suínos/microbiologia
17.
PLoS One ; 14(1): e0211275, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30689668

RESUMO

3-Methylindole (3MI) or Skatole is a volatile lipophilic organic compound produced by anoxic metabolism of L-tryptophan and associated with animal farming and industrial processing wastes. Pure cultures of bacteria capable of utilizing 3MI were isolated from chicken manure using enrichment culture techniques. The bacteria were identified as Acinetobacter toweneri NTA1-2A and Acinetobacter guillouiae TAT1-6A, based on 16S rDNA gene amplicon sequence data. The optimal temperature and pH for degradation of 3MI were established using single factor experiments. Strain tolerance was assessed over a range of initial concentrations of 3MI, and the effects of initial concentration on subsequent microbial 3MI degradation were also measured. During the degradation experiment, concentrations of 3MI were quantified by reverse-phase high-performance liquid chromatography (HPLC). The strains were capable of degrade initial concentrations of 3MI ranging from 65-200 mg/L. The degradation efficiency was >85% in 6 days for both strains when the initial concentration is less than 200 mg/L. The strains were tested for enzymatic activity using 65 mg/L 3MI. The enzyme extracts of NTA1-2A and TAT1-6A from the 3MI medium degraded 71.46% and 60.71% of 3MI respectively, but no appreciable change in 3MI concentration in the control group was witnessed. Our experiment revealed betaine and choline were identified as 3MI degradation metabolites by both strains while nitroso-pyrrolidine and beta-alaninebetaine formed by NTA1-2A and TAT1-6A strains respectively. The NTA1-2A and TAT1-6A strains removed 84.32% and 81.39% 3MI respectively from chicken manure during fermentation in 8 days and showed a statistically significant difference (P < 0.05) compared with the control group. The optimum temperature and pH were 31°C and 6 respectively, for 3MI degradation by A. toweneri NTA1-2A and A. guillouiae TAT1-6A. We concluded that A. toweneri NTA1-2A and A. guillouiae TAT1-6A are potential strains of interest to degrade 3MI and control odorant in poultry and other livestock industries.


Assuntos
Acinetobacter/metabolismo , Escatol/metabolismo , Acinetobacter/classificação , Acinetobacter/crescimento & desenvolvimento , Acinetobacter/isolamento & purificação , Animais , Galinhas , Cromatografia Líquida de Alta Pressão , Fezes/microbiologia , Concentração de Íons de Hidrogênio , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , Escatol/análise , Temperatura
18.
Anim Sci J ; 90(3): 412-422, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30656801

RESUMO

Spatial variations in intestinal skatole production and microbial composition in broilers were evaluated. Fifteen 42-day-old broilers were slaughtered. Samples were taken from the broilers' ileum, cecum, and rectum and analyzed for skatole levels. Denaturing gradient gel electrophoresis (DGGE) technique was used to analyze the microbial community from the intestinal digesta. The skatole levels could be arranged in decreasing order: cecum > rectum > ileum. Cecal lactate and acetate levels were higher than those of ileum and rectum (p < 0.01). Cecal microbial diversity and richness were higher than those of ileum (p < 0.05). One specific DGGE band was found in cecal sample and is closely related to Bacteroides uniformis. Cecum and rectum samples consisted of three coexistence bands, the related bacteria included Lactobacillus vaginalis and two members of Candidatus Arthromitus. The total bacterial population in cecum was higher than that in ileum and rectum (p < 0.05). Skatole levels were positively correlated with microbial Shannon-Wiener index, richness, total bacteria (p < 0.01) and Lactobacilli and Bifidobacterium (p < 0.05) populations. These results suggest that the variations in fermentation patterns are more likely to explain differences in intestinal skatole level. Bacteroides uniformis may play a role in the production of skatole.


Assuntos
Galinhas/metabolismo , Galinhas/microbiologia , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Escatol/metabolismo , Acetatos/metabolismo , Animais , Bacteroides/metabolismo , Eletroforese em Gel de Gradiente Desnaturante , Fermentação , Lactatos/metabolismo , Lactobacillus
19.
Basic Clin Pharmacol Toxicol ; 124(1): 32-39, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30171805

RESUMO

Cytochrome P450 (CYP) is a major group of enzymes, which conduct Phase I metabolism. Among commonly used animal models, the pig has been suggested as the most suitable model for investigating drug metabolism in human beings. Moreover, porcine CYP2A19 and CYP2E1 are responsible for the biotransformation of both endogenous and exogenous compounds such as 3-methylindole (skatole), sex hormones and food compounds. However, little is known about the regulation of porcine CYP2A19 and CYP2E1. In this MiniReview, we summarise the current knowledge about the regulation of porcine CYP2A19 and CYP2E1 by environmental, biological and dietary factors. Finally, we reflect on the need for further research, to clarify the interaction between active feed components and the porcine CYP system.


Assuntos
Ração Animal , Citocromo P-450 CYP2A6/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Escatol/metabolismo , Suínos/metabolismo , Animais , Biotransformação , Citocromo P-450 CYP2A6/genética , Citocromo P-450 CYP2E1/genética , Hormônios Esteroides Gonadais/metabolismo , Humanos , Homologia de Sequência , Xenobióticos/metabolismo
20.
Nat Commun ; 9(1): 4224, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30310076

RESUMO

Skatole is a malodorous compound that contributes to the characteristic smell of animal faeces. Although skatole has long been known to originate from bacterial tryptophan fermentation, the enzyme catalysing its formation has so far remained elusive. Here we report the use of comparative genomics for the discovery of indoleacetate decarboxylase, an O2-sensitive glycyl radical enzyme catalysing the decarboxylation of indoleacetate to form skatole as the terminal step of tryptophan fermentation in certain anaerobic bacteria. We describe its biochemical characterization and compare it to other glycyl radical decarboxylases. Indoleacetate decarboxylase may serve as a genetic marker for the identification of skatole-producing environmental and human-associated bacteria, with impacts on human health and the livestock industry.


Assuntos
Actinobacteria/enzimologia , Biocatálise , Carboxiliases/metabolismo , Glicina/metabolismo , Odorantes , Escatol/metabolismo , Sequência de Aminoácidos , Carboxiliases/química , Sequência Conservada , Fermentação , Genômica , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Filogenia , Proteínas Recombinantes/metabolismo , Escatol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...