Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46.308
Filtrar
1.
Protein Sci ; 33(6): e4997, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723110

RESUMO

Rieske oxygenases (ROs) are a diverse metalloenzyme class with growing potential in bioconversion and synthetic applications. We postulated that ROs are nonetheless underutilized because they are unstable. Terephthalate dioxygenase (TPADO PDB ID 7Q05) is a structurally characterized heterohexameric α3ß3 RO that, with its cognate reductase (TPARED), catalyzes the first intracellular step of bacterial polyethylene terephthalate plastic bioconversion. Here, we showed that the heterologously expressed TPADO/TPARED system exhibits only ~300 total turnovers at its optimal pH and temperature. We investigated the thermal stability of the system and the unfolding pathway of TPADO through a combination of biochemical and biophysical approaches. The system's activity is thermally limited by a melting temperature (Tm) of 39.9°C for the monomeric TPARED, while the independent Tm of TPADO is 50.8°C. Differential scanning calorimetry revealed a two-step thermal decomposition pathway for TPADO with Tm values of 47.6 and 58.0°C (ΔH = 210 and 509 kcal mol-1, respectively) for each step. Temperature-dependent small-angle x-ray scattering and dynamic light scattering both detected heat-induced dissociation of TPADO subunits at 53.8°C, followed by higher-temperature loss of tertiary structure that coincided with protein aggregation. The computed enthalpies of dissociation for the monomer interfaces were most congruent with a decomposition pathway initiated by ß-ß interface dissociation, a pattern predicted to be widespread in ROs. As a strategy for enhancing TPADO stability, we propose prioritizing the re-engineering of the ß subunit interfaces, with subsequent targeted improvements of the subunits.


Assuntos
Estabilidade Enzimática , Oxirredutases/química , Oxirredutases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Modelos Moleculares , Dioxigenases/química , Dioxigenases/metabolismo , Dioxigenases/genética , Temperatura , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Concentração de Íons de Hidrogênio , Complexo III da Cadeia de Transporte de Elétrons
2.
Curr Microbiol ; 81(6): 163, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710822

RESUMO

By capturing and expressing exogenous resistance gene cassettes through site-specific recombination, integrons play important roles in the horizontal transfer of antimicrobial resistant genes among bacteria. The characteristics of integron integrase make it to be a potential gene editing tool enzyme. In this study, a random mutation library using error-prone PCR was constructed, and amino acid residues mutants that impact on attI2 × attC or attC × attC recombination efficiency were screened and analyzed. Thirteen amino acid mutations were identified to be critical impacted on site-specific recombination of IntI2, including the predicted catalyzed site Y301. Nine of 13 mutated amino acid residues that have critically impacted on IntI2 activity were relative concentrated and near the predicted catalyzed site Y301 in the predicted three-dimensional structure indicated the importance of this area in maintain the activity of IntI2. No mutant with obviously increased recombination activity (more than four-fold as high as that of wild IntI2) was found in library screening, except P95S, R100K slightly increased (within two-fold) the excision activity of IntI2, and S243T slightly increased (within two-fold) both excision and integration activity of IntI2. These findings will provide clues for further specific modification of integron integrase to be a tool enzyme as well as establishing a new gene editing system and applied practically.


Assuntos
Integrases , Integrons , Recombinação Genética , Integrases/genética , Integrases/metabolismo , Integrons/genética , Mutação , Escherichia coli/genética , Escherichia coli/enzimologia , Bactérias/genética , Bactérias/enzimologia
3.
J Mol Biol ; 436(10): 168568, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583515

RESUMO

Porphyromonas gingivalis, an anaerobic CFB (Cytophaga, Fusobacterium, and Bacteroides) group bacterium, is the keystone pathogen of periodontitis and has been implicated in various systemic diseases. Increased antibiotic resistance and lack of effective antibiotics necessitate a search for new intervention strategies. Here we report a 3.5 Å resolution cryo-EM structure of P. gingivalis RNA polymerase (RNAP). The structure displays new structural features in its ω subunit and multiple domains in ß and ß' subunits, which differ from their counterparts in other bacterial RNAPs. Superimpositions with E. coli RNAP holoenzyme and initiation complex further suggest that its ω subunit may contact the σ4 domain, thereby possibly contributing to the assembly and stabilization of initiation complexes. In addition to revealing the unique features of P. gingivalis RNAP, our work offers a framework for future studies of transcription regulation in this important pathogen, as well as for structure-based drug development.


Assuntos
Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA , Modelos Moleculares , Porphyromonas gingivalis , Porphyromonas gingivalis/enzimologia , Porphyromonas gingivalis/genética , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/ultraestrutura , RNA Polimerases Dirigidas por DNA/genética , Conformação Proteica , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/enzimologia , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
4.
mBio ; 15(5): e0341423, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38572988

RESUMO

Acetyl-CoA carboxylases (ACCs) convert acetyl-CoA to malonyl-CoA, a key step in fatty acid biosynthesis and autotrophic carbon fixation pathways. Three functionally distinct components, biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyltransferase (CT), are either separated or partially fused in different combinations, forming heteromeric ACCs. However, an ACC with fused BC-BCCP and separate CT has not been identified, leaving its catalytic mechanism unclear. Here, we identify two BC isoforms (BC1 and BC2) from Chloroflexus aurantiacus, a filamentous anoxygenic phototroph that employs 3-hydroxypropionate (3-HP) bi-cycle rather than Calvin cycle for autotrophic carbon fixation. We reveal that BC1 possesses fused BC and BCCP domains, where BCCP could be biotinylated by E. coli or C. aurantiacus BirA on Lys553 residue. Crystal structures of BC1 and BC2 at 3.2 Å and 3.0 Å resolutions, respectively, further reveal a tetramer of two BC1-BC homodimers, and a BC2 homodimer, all exhibiting similar BC architectures. The two BC1-BC homodimers are connected by an eight-stranded ß-barrel of the partially resolved BCCP domain. Disruption of ß-barrel results in dissociation of the tetramer into dimers in solution and decreased biotin carboxylase activity. Biotinylation of the BCCP domain further promotes BC1 and CTß-CTα interactions to form an enzymatically active ACC, which converts acetyl-CoA to malonyl-CoA in vitro and produces 3-HP via co-expression with a recombinant malonyl-CoA reductase in E. coli cells. This study revealed a heteromeric ACC that evolves fused BC-BCCP but separate CTα and CTß to complete ACC activity.IMPORTANCEAcetyl-CoA carboxylase (ACC) catalyzes the rate-limiting step in fatty acid biosynthesis and autotrophic carbon fixation pathways across a wide range of organisms, making them attractive targets for drug discovery against various infections and diseases. Although structural studies on homomeric ACCs, which consist of a single protein with three subunits, have revealed the "swing domain model" where the biotin carboxyl carrier protein (BCCP) domain translocates between biotin carboxylase (BC) and carboxyltransferase (CT) active sites to facilitate the reaction, our understanding of the subunit composition and catalytic mechanism in heteromeric ACCs remains limited. Here, we identify a novel ACC from an ancient anoxygenic photosynthetic bacterium Chloroflexus aurantiacus, it evolves fused BC and BCCP domain, but separate CT components to form an enzymatically active ACC, which converts acetyl-CoA to malonyl-CoA in vitro and produces 3-hydroxypropionate (3-HP) via co-expression with recombinant malonyl-CoA reductase in E. coli cells. These findings expand the diversity and molecular evolution of heteromeric ACCs and provide a structural basis for potential applications in 3-HP biosynthesis.


Assuntos
Acetil-CoA Carboxilase , Carbono-Nitrogênio Ligases , Chloroflexus , Acetil-CoA Carboxilase/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/química , Carbono-Nitrogênio Ligases/metabolismo , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/química , Chloroflexus/genética , Chloroflexus/metabolismo , Chloroflexus/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Biotina/metabolismo , Biotina/biossíntese , Malonil Coenzima A/metabolismo , Acetilcoenzima A/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Ácido Graxo Sintase Tipo II
5.
Science ; 384(6692): 227-232, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38603484

RESUMO

DNA supercoiling must be precisely regulated by topoisomerases to prevent DNA entanglement. The interaction of type IIA DNA topoisomerases with two DNA molecules, enabling the transport of one duplex through the transient double-stranded break of the other, remains elusive owing to structures derived solely from single linear duplex DNAs lacking topological constraints. Using cryo-electron microscopy, we solved the structure of Escherichia coli DNA gyrase bound to a negatively supercoiled minicircle DNA. We show how DNA gyrase captures a DNA crossover, revealing both conserved molecular grooves that accommodate the DNA helices. Together with molecular tweezer experiments, the structure shows that the DNA crossover is of positive chirality, reconciling the binding step of gyrase-mediated DNA relaxation and supercoiling in a single structure.


Assuntos
DNA Girase , DNA Super-Helicoidal , DNA , Proteínas de Escherichia coli , Escherichia coli , Microscopia Crioeletrônica , DNA/química , DNA Girase/química , DNA Girase/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Domínios Proteicos
6.
J Phys Chem B ; 128(17): 4111-4122, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38651832

RESUMO

The observation of multiple conformations of a functional loop (termed M20) in the Escherichia coli dihydrofolate reductase (ecDHFR) enzyme triggered the proposition that large-scale motions of protein structural elements contribute to enzyme catalysis. The transition of the M20 loop from a closed conformation to an occluded conformation was thought to aid the rate-limiting release of the products. However, the influence of charged species in the solution environment on the observed M20 loop conformations, independent of charged ligands bound to the enzyme, had not been considered. Molecular dynamics simulations of ecDHFR in model CaCl2 solutions of varying molar ionic strengths IM reveal a substantial free energy barrier between occluded and closed M20 loop states at IM exceeding the E. coli threshold (∼0.24 M). This barrier may facilitate crystallization of ecDHFR in the occluded state, consistent with ecDHFR structures obtained at IM exceeding 0.3 M. At lower IM (≤0.15 M), the M20 loop can explore the occluded state, but prefers an open/partially closed conformation, again consistent with ecDHFR structures. Our findings caution against using ecDHFR structures obtained at nonphysiological ionic strengths in interpreting catalytic events or in structure-based drug design.


Assuntos
Escherichia coli , Simulação de Dinâmica Molecular , Conformação Proteica , Tetra-Hidrofolato Desidrogenase , Tetra-Hidrofolato Desidrogenase/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Escherichia coli/enzimologia , Concentração Osmolar , Soluções , Cloreto de Cálcio/química , Cloreto de Cálcio/metabolismo
7.
Methods Enzymol ; 696: 199-229, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38658080

RESUMO

Fluorine (F) is an important element in the synthesis of molecules broadly used in medicine, agriculture, and materials. F addition to organic structures represents a unique strategy for tuning molecular properties, yet this atom is rarely found in Nature and approaches to produce fluorometabolites (such as fluorinated amino acids, key building blocks for synthesis) are relatively scarce. This chapter discusses the use of L-threonine aldolase enzymes (LTAs), a class of enzymes that catalyze reversible aldol addition to the α-carbon of glycine. The C-C bond formation ability of LTAs, together with their known substrate promiscuity, make them ideal for in vitro F biocatalysis. Here, we describe protocols to harness the activity of the low-specificity LTAs isolated from Escherichia coli and Pseudomonas putida on 2-fluoroacetaldehyde to efficiently synthesize 4-fluoro-L-threonine in vitro. This chapter also provides a comprehensive account of experimental protocols to implement these activities in vivo. These methods are illustrative and can be adapted to produce other fluorometabolites of interest.


Assuntos
Escherichia coli , Halogenação , Pseudomonas putida , Especificidade por Substrato , Escherichia coli/enzimologia , Escherichia coli/genética , Pseudomonas putida/enzimologia , Biocatálise , Aminoácidos/química , Glicina Hidroximetiltransferase/metabolismo , Glicina Hidroximetiltransferase/química , Glicina Hidroximetiltransferase/genética , Treonina/química , Treonina/metabolismo , Treonina/análogos & derivados , Flúor/química , Aldeídos/química , Aldeídos/metabolismo
8.
J Med Chem ; 67(8): 6384-6396, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38574272

RESUMO

Peptide deformylase (PDF) is involved in bacterial protein maturation processes. Originating from the interest in a new antibiotic, tremendous effort was put into the refinement of PDF inhibitors (PDFIs) and their selectivity. We obtained a full NMR backbone assignment the emergent additional protein backbone resonances of ecPDF 1-147 in complex with 2-(5-bromo-1H-indol-3-yl)-N-hydroxyacetamide (2), a potential new structural scaffold for more selective PDFIs. We also determined the complex crystal structures of E. coli PDF (ecPDF fl) and 2. Our structure suggests an alternative ligand conformation within the protein, a possible starting point for further selectivity optimization. The orientation of the second ligand conformation in the crystal structure points toward a small region of the S1' pocket, which differs between bacterial PDFs and human PDF. Moreover, we analyzed the binding mode of 2 via NMR TITAN line shape analysis, revealing an induced fit mechanism.


Assuntos
Amidoidrolases , Antibacterianos , Escherichia coli , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Amidoidrolases/química , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/enzimologia , Escherichia coli/efeitos dos fármacos , Cristalografia por Raios X , Sítios de Ligação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Humanos , Relação Estrutura-Atividade
9.
Molecules ; 29(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675681

RESUMO

Alpha-ketoglutaric acid (α-KG), as an intermediate product of the tricarboxylic acid cycle, plays a crucial role in peptide and amino acid synthesis. In order to reduce costs and improve efficiency in the oxidative production of α-ketoglutaric acid, this study successfully synthesized and expressed L-glutamate oxidase (LGOXStr) from Streptomyces viridosporus R111 and catalase (KatGEsc) from Escherichia coli H736. Two immobilization methods and the conditions for one-step whole-cell catalysis of α-ketoglutaric acid were investigated. α-Ketoglutaric acid has broad applications in the pharmaceutical, food, and chemical industries. The specific research results are as follows: (1) By fusing the sfGFP tag, L-glutamate oxidase (LGOXStr r) and catalase (KatGEsc) were successfully anchored to the outer membrane of Escherichia coli cells, achieving one-step whole-cell catalysis of α-ketoglutaric acid with a conversion efficiency of up to 75%. (2) Through the co-immobilization of LGOXStr and KatGEsc, optimization of the preparation parameters of immobilized cells, and exploration of the immobilization method using E.coli@ZIF-8, immobilized cells with conversion rates of over 60% were obtained even after 10 cycles of reuse. Under the optimal conditions, the production rate of α-ketoglutaric acid reached 96.7% in a 12 h reaction, which is 1.1 times that of E. coli@SA and 1.29 times that of free cells.


Assuntos
Catalase , Escherichia coli , Ácidos Cetoglutáricos , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/química , Escherichia coli/enzimologia , Catalase/metabolismo , Catalase/química , Aminoácido Oxirredutases/metabolismo , Aminoácido Oxirredutases/química , Streptomyces/enzimologia , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo
10.
ACS Infect Dis ; 10(5): 1739-1752, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38647213

RESUMO

Reverse analogs of the phosphonohydroxamic acid antibiotic fosmidomycin are potent inhibitors of the nonmevalonate isoprenoid biosynthesis enzyme 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR, IspC) of Plasmodium falciparum. Some novel analogs with large phenylalkyl substituents at the hydroxamic acid nitrogen exhibit nanomolar PfDXR inhibition and potent in vitro growth inhibition of P. falciparum parasites coupled with good parasite selectivity. X-ray crystallographic studies demonstrated that the N-phenylpropyl substituent of the newly developed lead compound 13e is accommodated in a subpocket within the DXR catalytic domain but does not reach the NADPH binding pocket of the N-terminal domain. As shown for reverse carba and thia analogs, PfDXR selectively binds the S-enantiomer of the new lead compound. In addition, some representatives of the novel inhibitor subclass are nanomolar Escherichia coli DXR inhibitors, whereas the inhibition of Mycobacterium tuberculosis DXR is considerably weaker.


Assuntos
Aldose-Cetose Isomerases , Antimaláricos , Fosfomicina , Ácidos Hidroxâmicos , Complexos Multienzimáticos , Plasmodium falciparum , Fosfomicina/farmacologia , Fosfomicina/análogos & derivados , Fosfomicina/química , Aldose-Cetose Isomerases/antagonistas & inibidores , Aldose-Cetose Isomerases/metabolismo , Aldose-Cetose Isomerases/química , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química , Antimaláricos/farmacologia , Antimaláricos/química , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/química , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Relação Estrutura-Atividade , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/enzimologia , Modelos Moleculares , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Domínio Catalítico , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo
11.
Malays J Pathol ; 46(1): 79-89, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38682847

RESUMO

INTRODUCTION: Beta-lactamase producing bacterial infection has been on surge due to selection pressure and injudicious antibiotics usage. Organisms that co-produced more than one beta lactamase enzyme posed diagnostic challenges which may result in inadequate treatment. To date, there is no standardised guideline offering phenotypic detection of AmpC ß-lactamase. The purpose of this study was to determine the prevalence of ESBLs, AmpC ß-lactamase and co-producer organisms in a teaching hospital. MATERIALS AND METHODS: Three hundred and four isolates of E. coli and Klebsiella sp. had been selected via convenient sampling. These isolates were identified using conventional laboratory methods and their antimicrobial susceptibilities were determined using disc diffusion method. Those isolates were then proceeded with ESBL confirmatory test, cloxacillin-containing Muller Hinton confirmatory test, modified double disk synergy test and AmpC disk test. RESULTS: Out of 304 isolates, 159 isolates were E. coli and 145 were Klebsiella sp. The prevalence of organisms which co-produced AmpC ß-lactamase and ESBL enzymes were 3.0%. Besides that, 39 cefoxitin resistant and three cefoxitin susceptible isolates (13.8%) were proven to produce AmpC ß-lactamase through AmpC disk test. Through the CLSI confirmatory test, 252 (82.9%) isolates were identified as ESBLs producers and the prevalence increased slightly when cloxacillin-containing Muller Hinton were used. Only three ESBLs positive organisms were positive for modified double disk synergy test. CONCLUSION: Distinguishing between AmpC ß-lactamase and ESBL-producing organisms has epidemiological significance as well as therapeutic importance. Moreover, AmpC ß-lactamase and ESBLs co-producing organisms can lead to false negative ESBL confirmatory test. Therefore, knowing the local prevalence can guide the clinician in navigating the treatment.


Assuntos
Escherichia coli , Klebsiella , beta-Lactamases , Humanos , Antibacterianos/farmacologia , Proteínas de Bactérias/análise , beta-Lactamases/biossíntese , beta-Lactamases/metabolismo , Escherichia coli/isolamento & purificação , Escherichia coli/enzimologia , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/epidemiologia , Hospitais de Ensino , Klebsiella/enzimologia , Klebsiella/efeitos dos fármacos , Klebsiella/isolamento & purificação , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Testes de Sensibilidade Microbiana , Prevalência , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia
12.
J Agric Food Chem ; 72(18): 10428-10438, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38660720

RESUMO

Tebuconazole is a chiral triazole fungicide used globally in agriculture as a racemic mixture, but its enantiomers exhibit significant enantioselective dissimilarities in bioactivity and environmental behaviors. The steric hindrance caused by the tert-butyl group makes it a great challenge to synthesize tebuconazole enantiomers. Here, we designed a simple chemoenzymatic approach for the asymmetric synthesis of (R)-tebuconazole, which includes the biocatalytic resolution of racemic epoxy-precursor (2-tert-butyl-2-[2-(4-chlorophenyl)ethyl] oxirane, rac-1a) by Escherichia coli/Rpeh whole cells expressed epoxide hydrolase from Rhodotorula paludigensis (RpEH), followed by a one-step chemocatalytic synthesis of (R)-tebuconazole. It was observed that (S)-1a was preferentially hydrolyzed by E. coli/Rpeh, whereas (R)-1a was retained with a specific activity of 103.8 U/g wet cells and a moderate enantiomeric ratio (E value) of 13.4, which was remarkably improved to 43.8 after optimizing the reaction conditions. Additionally, a gram-scale resolution of 200 mM rac-1a was performed using 150 mg/mL E. coli/Rpeh wet cells, resulting in the retention of (R)-1a in a 97.0% ees, a 42.5% yields, and a 40.5 g/L/d space-time yield. Subsequently, the synthesis of highly optical purity (R)-tebuconazole (>99% ee) was easily achieved through the chemocatalytic ring-opening of the epoxy-precursor (R)-1a with 1,2,4-triazole. To elucidate insight into the enantioselectivity, molecular docking simulations revealed that the unique L-shaped substrate-binding pocket of RpEH plays a crucial role in the enantioselective recognition of bulky 2,2-disubstituted oxirane 1a.


Assuntos
Biocatálise , Epóxido Hidrolases , Proteínas Fúngicas , Fungicidas Industriais , Rhodotorula , Triazóis , Rhodotorula/enzimologia , Rhodotorula/química , Rhodotorula/metabolismo , Triazóis/química , Triazóis/metabolismo , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Fungicidas Industriais/síntese química , Epóxido Hidrolases/metabolismo , Epóxido Hidrolases/química , Estereoisomerismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Simulação de Acoplamento Molecular , Escherichia coli/enzimologia , Escherichia coli/metabolismo
13.
J Med Chem ; 67(8): 6610-6623, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38598312

RESUMO

Inhibition of the biosynthesis of bacterial heptoses opens novel perspectives for antimicrobial therapies. The enzyme GmhA responsible for the first committed biosynthetic step catalyzes the conversion of sedoheptulose 7-phosphate into d-glycero-d-manno-heptose 7-phosphate and harbors a Zn2+ ion in the active site. A series of phosphoryl- and phosphonyl-substituted derivatives featuring a hydroxamate moiety were designed and prepared from suitably protected ribose or hexose derivatives. High-resolution crystal structures of GmhA complexed to two N-formyl hydroxamate inhibitors confirmed the binding interactions to a central Zn2+ ion coordination site. Some of these compounds were found to be nanomolar inhibitors of GmhA. While devoid of HepG2 cytotoxicity and antibacterial activity of their own, they demonstrated in vitro lipopolysaccharide heptosylation inhibition in Enterobacteriaceae as well as the potentiation of erythromycin and rifampicin in a wild-type Escherichia coli strain. These inhibitors pave the way for a novel treatment of Gram-negative infections.


Assuntos
Antibacterianos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Humanos , Bactérias Gram-Negativas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Cristalografia por Raios X , Sinergismo Farmacológico , Células Hep G2 , Modelos Moleculares , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/síntese química , Zinco/química
14.
Vet Microbiol ; 293: 110072, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640638

RESUMO

Bacterial resistance to ß-lactams is mainly attributed to CTX-M-type extended-spectrum ß-lactamases (ESBLs). However, the predominant sequence type (ST) of blaCTX-M-carrying Escherichia coli (blaCTX-M-Ec) in chickens, an important food animal, in China and its contribution to human ß-lactam resistance are not investigated. In this study, approximately 1808 chicken-derived strains collected from 10 provinces from 2012 to 2020 were screened for blaCTX-M-Ec, and 222 blaCTX-M-Ec were identified. Antimicrobial susceptibility tests, whole genome sequencing and conjugation experiment were performed. All quality-controlled 136 chicken-derived blaCTX-M-Ec and 1193 human-derived blaCTX-M-Ec genomes were downloaded from NCBI and EnteroBase to comprehensively analyze the prevalence of blaCTX-M-Ec in China. blaCTX-M-55 (153/358, 42.7% in chicken isolates; 312/1193, 26.2% in human isolates) and blaCTX-M-14 (92/358, 25.7% in chicken isolates; 450/1193, 37.7% in human isolates) were dominant in blaCTX-M-Ec. The STs of blaCTX-M-Ec were diverse and scattered, with ST155 (n = 21) and ST152 (n = 120) being the most abundant in chicken- and human-derived isolates, respectively. Few examples indicated that chicken- and human-derived blaCTX-M-Ec have 10 or less core genome single nucleotide polymorphisms (cgSNPs). Genetic environment analysis indicated that ISEcp1, IS26 and IS903B were closely associated with blaCTX-M transfer. The almost identical pc61-55 and pM-64-1161 indicated the possibility of plasmid-mediated transmission of blaCTX-M between humans and chickens. Although the genomes of most blaCTX-M-Ec isolated from chickens and humans were quite different, the prevalence and genetic environment of blaCTX-M variants in both hosts were convergent. CTX-M-mediated resistance is more likely to spread through horizontal gene transmission than bacterial clones.


Assuntos
Galinhas , Infecções por Escherichia coli , Escherichia coli , Doenças das Aves Domésticas , Sequenciamento Completo do Genoma , beta-Lactamases , Galinhas/microbiologia , Animais , beta-Lactamases/genética , Escherichia coli/genética , Escherichia coli/enzimologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , China/epidemiologia , Humanos , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/epidemiologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Proteínas de Escherichia coli/genética
15.
J Pathol ; 263(2): 217-225, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38551073

RESUMO

Environmental factors like the pathogenicity island polyketide synthase positive (pks+) Escherichia coli (E. coli) could have potential for risk stratification in colorectal cancer (CRC) screening. The association between pks+ E. coli measured in fecal immunochemical test (FIT) samples and the detection of advanced neoplasia (AN) at colonoscopy was investigated. Biobanked FIT samples were analyzed for both presence of E. coli and pks+ E. coli and correlated with colonoscopy findings; 5020 CRC screening participants were included. Controls were participants in which no relevant lesion was detected because of FIT-negative results (cut-off ≥15 µg Hb/g feces), a negative colonoscopy, or a colonoscopy during which only a nonadvanced polyp was detected. Cases were participants with AN [CRC, advanced adenoma (AA), or advanced serrated polyp (ASP)]. Existing DNA isolation and quantitative polymerase chain reaction (qPCR) procedures were used for the detection of E. coli and pks+ E. coli in stool. A total of 4542 (90.2%) individuals were E. coli positive, and 1322 (26.2%) were pks+ E. coli positive. The prevalence of E. coli in FIT samples from individuals with AN was 92.9% compared to 89.7% in FIT samples of controls (p = 0.010). The prevalence of pks+ E. coli in FIT samples from individuals with AN (28.6%) and controls (25.9%) was not significantly different (p = 0.13). The prevalences of pks+ E. coli in FIT samples from individuals with CRC, AA, or ASP were 29.6%, 28.3%, and 32.1%, respectively. In conclusion, the prevalence of pks+ E. coli in a screening population was 26.2% and did not differ significantly between individuals with AN and controls. These findings disqualify the straightforward option of using a snapshot measurement of pks+ E. coli in FIT samples as a stratification biomarker for CRC risk. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Colorretais , Detecção Precoce de Câncer , Escherichia coli , Fezes , Policetídeo Sintases , Humanos , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/diagnóstico , Fezes/microbiologia , Fezes/enzimologia , Escherichia coli/isolamento & purificação , Escherichia coli/enzimologia , Escherichia coli/genética , Masculino , Detecção Precoce de Câncer/métodos , Feminino , Pessoa de Meia-Idade , Idoso , Policetídeo Sintases/genética , Colonoscopia , Fatores de Risco , Adenoma/microbiologia , Adenoma/diagnóstico , Medição de Risco , Biomarcadores Tumorais , Estudos de Casos e Controles
16.
J Biol Chem ; 300(4): 107143, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458396

RESUMO

A promising yet clinically unexploited antibiotic target in difficult-to-treat Gram-negative bacteria is LpxC, the key enzyme in the biosynthesis of lipopolysaccharides, which are the major constituents of the outer membrane. Despite the development of dozens of chemically diverse LpxC inhibitor molecules, it is essentially unknown how bacteria counteract LpxC inhibition. Our study provides comprehensive insights into the response against five different LpxC inhibitors. All compounds bound to purified LpxC from Escherichia coli. Treatment of E. coli with these compounds changed the cell shape and stabilized LpxC suggesting that FtsH-mediated proteolysis of the inactivated enzyme is impaired. LpxC inhibition sensitized E. coli to vancomycin and rifampin, which poorly cross the outer membrane of intact cells. Four of the five compounds led to an accumulation of lyso-phosphatidylethanolamine, a cleavage product of phosphatidylethanolamine, generated by the phospholipase PldA. The combined results suggested an imbalance in lipopolysaccharides and phospholipid biosynthesis, which was corroborated by the global proteome response to treatment with the LpxC inhibitors. Apart from LpxC itself, FabA and FabB responsible for the biosynthesis of unsaturated fatty acids were consistently induced. Upregulated compound-specific proteins are involved in various functional categories, such as stress reactions, nucleotide, or amino acid metabolism and quorum sensing. Our work shows that antibiotics targeting the same enzyme do not necessarily elicit identical cellular responses. Moreover, we find that the response of E. coli to LpxC inhibition is distinct from the previously reported response in Pseudomonas aeruginosa.


Assuntos
Amidoidrolases , Inibidores Enzimáticos , Escherichia coli , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Lipopolissacarídeos/biossíntese , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos
17.
Nucleic Acids Res ; 52(7): 3911-3923, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38364872

RESUMO

Double-strand DNA breaks are the severest type of genomic damage, requiring rapid response to ensure survival. RecBCD helicase in prokaryotes initiates processive and rapid DNA unzipping, essential for break repair. The energetics of RecBCD during translocation along the DNA track are quantitatively not defined. Specifically, it's essential to understand the mechanism by which RecBCD switches between its binding states to enable its translocation. Here, we determine, by systematic affinity measurements, the degree of coupling between DNA and nucleotide binding to RecBCD. In the presence of ADP, RecBCD binds weakly to DNA that harbors a double overhang mimicking an unwinding intermediate. Consistently, RecBCD binds weakly to ADP in the presence of the same DNA. We did not observe coupling between DNA and nucleotide binding for DNA molecules having only a single overhang, suggesting that RecBCD subunits must both bind DNA to 'sense' the nucleotide state. On the contrary, AMPpNp shows weak coupling as RecBCD remains strongly bound to DNA in its presence. Detailed thermodynamic analysis of the RecBCD reaction mechanism suggests an 'energetic compensation' between RecB and RecD, which may be essential for rapid unwinding. Our findings provide the basis for a plausible stepping mechanism' during the processive translocation of RecBCD.


Assuntos
DNA , Exodesoxirribonuclease V , Exodesoxirribonuclease V/metabolismo , Sítios de Ligação , DNA/metabolismo , DNA/química , Ligação Proteica , Difosfato de Adenosina/metabolismo , Nucleotídeos/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/enzimologia , Reparo do DNA
18.
Nature ; 626(8000): 859-863, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326609

RESUMO

Bacteria in the gastrointestinal tract produce amino acid bile acid amidates that can affect host-mediated metabolic processes1-6; however, the bacterial gene(s) responsible for their production remain unknown. Herein, we report that bile salt hydrolase (BSH) possesses dual functions in bile acid metabolism. Specifically, we identified a previously unknown role for BSH as an amine N-acyltransferase that conjugates amines to bile acids, thus forming bacterial bile acid amidates (BBAAs). To characterize this amine N-acyltransferase BSH activity, we used pharmacological inhibition of BSH, heterologous expression of bsh and mutants in Escherichia coli and bsh knockout and complementation in Bacteroides fragilis to demonstrate that BSH generates BBAAs. We further show in a human infant cohort that BBAA production is positively correlated with the colonization of bsh-expressing bacteria. Lastly, we report that in cell culture models, BBAAs activate host ligand-activated transcription factors including the pregnane X receptor and the aryl hydrocarbon receptor. These findings enhance our understanding of how gut bacteria, through the promiscuous actions of BSH, have a significant role in regulating the bile acid metabolic network.


Assuntos
Aciltransferases , Amidoidrolases , Aminas , Ácidos e Sais Biliares , Biocatálise , Microbioma Gastrointestinal , Humanos , Aciltransferases/metabolismo , Amidoidrolases/metabolismo , Aminas/química , Aminas/metabolismo , Bacteroides fragilis/enzimologia , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Ácidos e Sais Biliares/química , Ácidos e Sais Biliares/metabolismo , Estudos de Coortes , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Microbioma Gastrointestinal/fisiologia , Ligantes , Receptor de Pregnano X/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Fatores de Transcrição/metabolismo , Lactente , Técnicas de Cultura de Células
19.
J Mol Biol ; 436(6): 168482, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331210

RESUMO

Repair of broken DNA is essential for life; the reactions involved can also promote genetic recombination to aid evolution. In Escherichia coli, RecBCD enzyme is required for the major pathway of these events. RecBCD is a complex ATP-dependent DNA helicase with nuclease activity controlled by Chi recombination hotspots (5'-GCTGGTGG-3'). During rapid DNA unwinding, when Chi is in a RecC tunnel, RecB nuclease nicks DNA at Chi. Here, we test our signal transduction model - upon binding Chi (step 1), RecC signals RecD helicase to stop unwinding (step 2); RecD then signals RecB (step 3) to nick at Chi (step 4) and to begin loading RecA DNA strand-exchange protein (step 5). We discovered that ATP-γ-S, like the small molecule RecBCD inhibitor NSAC1003, causes RecBCD to nick DNA, independent of Chi, at novel positions determined by the DNA substrate length. Two RecB ATPase-site mutants nick at novel positions determined by their RecB:RecD helicase rate ratios. In each case, we find that nicking at the novel position requires steps 3 and 4 but not step 1 or 2, as shown by mutants altered at the intersubunit contacts specific for each step; nicking also requires RecD helicase and RecB nuclease activities. Thus, altering the RecB ATPase site, by small molecules or mutation, sensitizes RecD to signal RecB to nick DNA (steps 4 and 3, respecitvely) without the signal from RecC or Chi (steps 1 and 2). These new, enzymatic results strongly support the signal transduction model and provide a paradigm for studying other complex enzymes.


Assuntos
DNA Helicases , Proteínas de Escherichia coli , Exodesoxirribonuclease V , Adenosina Trifosfatases/metabolismo , DNA/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonuclease V/química , Transdução de Sinais
20.
J Mol Biol ; 436(6): 168487, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38341172

RESUMO

Synonymous mutations in messenger RNAs (mRNAs) can reduce protein-protein binding substantially without changing the protein's amino acid sequence. Here, we use coarse-grain simulations of protein synthesis, post-translational dynamics, and dimerization to understand how synonymous mutations can influence the dimerization of two E. coli homodimers, oligoribonuclease and ribonuclease T. We synthesize each protein from its wildtype, fastest- and slowest-translating synonymous mRNAs in silico and calculate the ensemble-averaged interaction energy between the resulting dimers. We find synonymous mutations alter oligoribonuclease's dimer properties. Relative to wildtype, the dimer interaction energy becomes 4% and 10% stronger, respectively, when translated from its fastest- and slowest-translating mRNAs. Ribonuclease T dimerization, however, is insensitive to synonymous mutations. The structural and kinetic origin of these changes are misfolded states containing non-covalent lasso-entanglements, many of which structurally perturb the dimer interface, and whose probability of occurrence depends on translation speed. These entangled states are kinetic traps that persist for long time scales. Entanglements cause altered dimerization energies for oligoribonuclease, as there is a large association (odds ratio: 52) between the co-occurrence of non-native self-entanglements and weak-binding dimer conformations. Simulated at all-atom resolution, these entangled structures persist for long timescales, indicating the conclusions are independent of model resolution. Finally, we show that regions of the protein we predict to have changes in entanglement are also structurally perturbed during refolding, as detected by limited-proteolysis mass spectrometry. Thus, non-native changes in entanglement at dimer interfaces is a mechanism through which oligomer structure and stability can be altered.


Assuntos
Membrana Celular , Escherichia coli , Exorribonucleases , Multimerização Proteica , Mutação Silenciosa , Escherichia coli/enzimologia , Exorribonucleases/química , Exorribonucleases/genética , Cinética , Dobramento de Proteína , Multimerização Proteica/genética , Membrana Celular/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...