Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 319
Filtrar
1.
Nat Rev Neurol ; 18(1): 40-55, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34732831

RESUMO

In contrast to the multiple disease-modifying therapies that are available for relapsing-remitting multiple sclerosis (MS), the therapeutic options for progressive MS (PMS) are limited. Recent advances in our understanding of the neuroimmunology of PMS, including the mechanisms that drive slowly expanding lesions, have fuelled optimism for improved treatment of this condition. In this Review, we highlight the commonly observed neuropathology of PMS and discuss the associated mechanisms of CNS injury. We then apply this knowledge to formulate criteria for therapeutic efficacy in PMS, beginning with the need for early treatment owing to the substantial neuropathology that is already present at the initial clinical presentation. Other requirements include: antagonism of neuroaxonal injury mediators such as pro-inflammatory microglia and lymphocytes; remediation of oxidative stress resulting from iron deposition and mitochondrial dysfunction; and promotion of neuroprotection through remyelination. We consider whether current disease-modifying therapies for relapsing-remitting MS meet the criteria for successful therapeutics in PMS and suggest that the evidence favours the early introduction of sphingosine 1-phosphate receptor modulators. Finally, we weigh up emerging medications, including repurposed generic medications and Bruton's tyrosine kinase inhibitors, against these fundamental criteria. In this new therapeutic era in PMS, success depends collectively on understanding disease mechanisms, drug characteristics (including brain penetration) and rational use.


Assuntos
Imunoterapia/métodos , Esclerose Múltipla Crônica Progressiva/terapia , Esclerose Múltipla Recidivante-Remitente/terapia , Animais , Humanos , Imunossupressores/uso terapêutico , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/imunologia , Resultado do Tratamento
2.
Artigo em Inglês | MEDLINE | ID: mdl-34759021

RESUMO

BACKGROUND AND OBJECTIVES: To define the clinical and pathologic correlations of compartmentalized perivascular B cells in postmortem progressive multiple sclerosis (MS) brains. METHODS: Brain slices were acquired from 11 people with secondary progressive (SP) MS, 5 people with primary progressive (PP) MS, and 4 controls. Brain slices were immunostained for B lymphocytes (CD20), T lymphocytes (CD3), cytotoxic T lymphocytes (CD8), neuronal neurofilaments (NF200), myelin (SMI94), macrophages/microglia (CD68 and IBA1), astrocytes (glial fibrillary acidic protein [GFAP]), and mitochondria (voltage-dependent anion channel and cytochrome c oxidase subunit 4). Differences in CD20 immunostaining intensity between disease groups and associations between CD20 immunostaining intensity and both clinical variables and other immunostaining intensities were explored with linear mixed regression models and Cox regression models, as appropriate. RESULTS: CD20 immunostaining intensity was higher in PPMS (Coeff = 0.410; 95% confidence interval [CI] = 0.046, 0.774; p = 0.027) and SPMS (Coeff = 0.302; 95% CI = 0.020, 0.585; p = 0.036) compared with controls. CD20 immunostaining intensity was higher in cerebellar, spinal cord, and pyramidal onset (Coeff = 0.274; 95% CI = 0.039, 0.510; p = 0.022) compared with optic neuritis and sensory onset. Higher CD20 immunostaining intensity was associated with younger age at onset (hazard ratio [HR] = 1.033; 95% CI = 1.013, 1.053; p = 0.001), SP conversion (HR = 1.056; 95% CI = 1.022, 1.091; p = 0.001), wheelchair dependence (HR = 1.472; 95% CI = 1.108, 1.954; p = 0.008), and death (HR = 1.684; 95% CI = 1.238, 2.291; p = 0.001). Higher immunostaining intensity for CD20 was associated with higher immunostaining intensity for CD3 (Coeff = 0.114; 95% CI = 0.005, 0.224; p = 0.040), CD8 (Coeff = 0.275; 95% CI = 0.200, 0.350; p < 0.001), CD68 (Coeff = 0.084; 95% CI = 0.023, 0.144; p = 0.006), GFAP (Coeff = 0.002; 95% CI = 0.001, 0.004; p = 0.030), and damaged mitochondria (Coeff = 3.902; 95% CI = 0.891, 6.914; p = 0.011). DISCUSSION: Perivascular B cells were associated with worse clinical outcomes and CNS-compartmentalized inflammation. Our findings further support the concept of targeting compartmentalized B-cell inflammation in progressive MS.


Assuntos
Linfócitos B , Sistema Glinfático/imunologia , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Crônica Progressiva/fisiopatologia , Idoso , Autopsia , Feminino , Sistema Glinfático/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/patologia
3.
Front Immunol ; 12: 739186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899697

RESUMO

Introduction: Limited data from clinical trials in multiple sclerosis (MS) reported that minocycline, a widely used antibiotic belonging to the family of tetracyclines (TCs), exerts a beneficial short-lived clinical effect A similar anti-inflammatory effect of minocycline attributed to a deviation from Th1 to Th2 immune response has been reported in experimental models of MS. Whether such an immunomodulatory mechanism is operated in the human disease remains largely unknown. Aim: To assess the in vitro immunomodulatory effect of tetracyclines, and in particular minocycline and doxycycline, in naïve and treated patients with MS. Material and Methods: Peripheral blood mononuclear cells from 45 individuals (35 MS patients, amongst which 15 naïve patients and 10 healthy controls, HCs) were cultured with minocycline or doxycycline and conventional stimulants (PMA/Ionomycin or IL-12/IL-18). IFN-γ and IL-17 producing T-, NK- and NKT cells were assessed by flow cytometry. The effect of TCs on cell viability and apoptosis was further assessed by flow cytometry with Annexin V staining. Results: Both tetracyclines significantly decreased, in a dose dependent manner, IFN-γ production in NKT and CD4+ T lymphocytes from MS patients (naïve or treated) stimulated with IL-12/IL-18 but did not decrease IFN-γ producing CD8+ T cells from naive MS or treated RRMS patients. They also decreased IL-17+ T and NKT cells following PMA and Ionomycin-stimulation. Tetracyclines did not affect the viability of cell subsets. Conclusion: Tetracyclines can in vitro suppress IFN-γ and IL-17- producing cells from MS patients, and this may explain their potential therapeutic effect in vivo.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Esclerose Múltipla Crônica Progressiva/imunologia , Tetraciclinas/farmacologia , Imunidade Adaptativa/imunologia , Adulto , Feminino , Humanos , Imunidade Inata/imunologia , Interferon gama/biossíntese , Interleucina-17/biossíntese , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade
4.
Front Immunol ; 12: 771359, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795677

RESUMO

Recent studies showed that immunological tolerance may restrict the development of Env-specific autoreactive broadly neutralizing antibodies. This evidence is consistent with the finding that Env immunization of a systemic lupus erythematosus (SLE) murine model produced antibodies that neutralize tier 2 HIV-1 strains. In this study, we address the possibility of eliciting neutralizing anti-Env antibodies in other autoimmune diseases such as multiple sclerosis (MS). While, as reported for SLE, we showed for the first time that a small number of HIV-1 negative, relapsing remitting MS patients exhibited antibodies with neutralizing properties, our attempts at inducing those antibodies in a EAE mouse model of MS failed. The success in eliciting Env-specific neutralizing antibodies might be related to the specific characteristics of the autoimmune disease, or it might rely in improving the vaccination design. Studies using mouse models are useful to gain insight in how HIV-specific neutralizing antibody responses are regulated in order to develop a protective HIV-1 vaccine.


Assuntos
Anticorpos Neutralizantes/imunologia , Encefalomielite Autoimune Experimental/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Imunoglobulina G/imunologia , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Adulto Jovem
5.
J Neuroimmunol ; 361: 577756, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34739914

RESUMO

Dimethyl fumarate is an efficient therapy used widely in patients with relapsing-remitting multiple sclerosis (RRMS). However, lacking effect of treatment has recently been reported in patients with primary progressive MS (PPMS) (Højsgaard Chow et al., 2021). In order to further analyze the immunological treatment response we investigated the systemic and intrathecal immunological effects of dimethyl fumarate (DMF) treatment in 50 patients with PPMS who participated in a 48-week randomized controlled trial with dimethyl fumarate vs placebo. We found substantial systemic immunomodulatory effects of DMF treatment comparable with those observed in patients with RRMS. However, intrathecal effects were limited and restricted to CD4+ T cells presumably resulting in higher concentrations of intrathecal IL-7.


Assuntos
Fumarato de Dimetilo/uso terapêutico , Imunossupressores/uso terapêutico , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Adulto , Contagem de Linfócito CD4 , Líquido Cefalorraquidiano/citologia , Citocinas/sangue , Fumarato de Dimetilo/administração & dosagem , Fumarato de Dimetilo/farmacologia , Feminino , Humanos , Imunossupressores/administração & dosagem , Imunossupressores/farmacologia , Injeções Espinhais , Interleucina-7/líquido cefalorraquidiano , Subpopulações de Linfócitos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/sangue , Esclerose Múltipla Crônica Progressiva/líquido cefalorraquidiano , Esclerose Múltipla Crônica Progressiva/imunologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-34667129

RESUMO

BACKGROUND AND OBJECTIVES: In MS, an age-related decline in disease activity and a decreased efficacy of disease-modifying treatment have been linked to immunosenescence, a state of cellular dysfunction associated with chronic inflammation. METHODS: To evaluate age-related immunologic alterations in MS, we compared immune signatures in peripheral blood (PB) and CSF by flow cytometry in patients with relapsing-remitting (RR) (PB n = 38; CSF n = 51) and primary progressive (PP) MS (PB n = 40; CSF n = 36) and respective controls (PB n = 40; CSF n = 85). RESULTS: Analysis revealed significant age-related changes in blood immune cell composition, especially in the CD8 T-cell compartment of healthy donors (HDs) and patients with MS. However, HDs displayed a strong age-dependent decline in the expression of the immunoregulatory molecules KLRG1, LAG3, and CTLA-4 on memory CD8 T cells, whereas this age-dependent reduction was completely abrogated in patients with MS. An age-dependent increase in the expression of the costimulatory molecule CD226 on memory CD8 T cells was absent in patients with MS. CD226 expression correlated with disability in younger (≤50 years) patients with MS. CSF analysis revealed a significant age-dependent decline in various immune cell populations in PPMS but not RRMS, suggesting a differential effect of aging on the intrathecal compartment in PPMS. DISCUSSION: Our data illustrate that aging in MS is associated with a dysbalance between costimulatory and immunoregulatory signals provided by CD8 T cells favoring a proinflammatory phenotype and, more importantly, a pattern of premature immune aging in the CD8 T-cell compartment of young patients with MS with potential implications for disease severity.


Assuntos
Envelhecimento/imunologia , Linfócitos T CD8-Positivos/imunologia , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Adulto , Fatores Etários , Envelhecimento/sangue , Envelhecimento/líquido cefalorraquidiano , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/sangue , Esclerose Múltipla Crônica Progressiva/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/sangue , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano
7.
Presse Med ; 50(2): 104072, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34547375

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory and immune-driven demyelinating disease of the central nervous system (CNS). During the past decade, major advances have been made to understand the development of MS as well as its progressive stage. Here, we discuss some emerging concepts on immunology of MS, including the growing interest in the involvement of gut microbiota and the recent pathological concepts on the progression phase. Finally, we present some immuno-tools recently available that contribute to better understand diversity and function of the immune system.


Assuntos
Microbioma Gastrointestinal/imunologia , Esclerose Múltipla/imunologia , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Progressão da Doença , Humanos , Citometria por Imagem/métodos , Sistema Imunitário/fisiologia , Microglia/citologia , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Análise de Sequência de RNA , Análise de Célula Única
8.
Immunology ; 164(3): 450-466, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34293193

RESUMO

Ectopic lymphoid follicles (ELFs), resembling germinal centre-like structures, emerge in a variety of infectious and autoimmune and neoplastic diseases. ELFs can be found in the meninges of around 40% of the investigated progressive multiple sclerosis (MS) post-mortem brain tissues and are associated with the severity of cortical degeneration and clinical disease progression. Of predominant importance for progressive neuronal damage during the progressive MS phase appears to be meningeal inflammation, comprising diffuse meningeal infiltrates, B-cell aggregates and compartmentalized ELFs. However, the absence of a uniform definition of ELFs impedes reproducible and comparable neuropathological research in this field. In this review article, we will first highlight historical aspects and milestones around the discovery of ELFs in the meninges of progressive MS patients. In the next step, we discuss how animal models may contribute to an understanding of the mechanisms underlying ELF formation. Finally, we summarize challenges in investigating ELFs and propose potential directions for future research.


Assuntos
Meninges/patologia , Esclerose Múltipla Crônica Progressiva/imunologia , Estruturas Linfoides Terciárias/imunologia , Animais , Linfócitos B/imunologia , Modelos Animais de Doenças , Humanos , Meninges/imunologia , Esclerose Múltipla Crônica Progressiva/patologia , Estruturas Linfoides Terciárias/patologia
9.
J Neuroinflammation ; 18(1): 138, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34130726

RESUMO

BACKGROUND: Cortical demyelination represents a prominent feature of the multiple sclerosis (MS) brain, especially in (late) progressive stages. We recently developed a new rat model that reassembles critical features of cortical pathology characteristic to progressive types of MS. In persons affected by MS, B-cell depleting anti-CD20 therapy proved successful in the relapsing remitting as well as the early progressive course of MS, with respect to reducing the relapse rate and number of newly formed lesions. However, if the development of cortical pathology can be prevented or at least slowed down is still not clear. The main goal of this study was thus to increase our understanding for the mode of action of B-cells and B-cell directed therapy on cortical lesions in our rat model. METHODS: For this purpose, we set up two separate experiments, with two different induction modes of B-cell depletion. Brain tissues were analyzed thoroughly using histology. RESULTS: We observed a marked reduction of cortical demyelination, microglial activation, astrocytic reaction, and apoptotic cell loss in anti-CD20 antibody treated groups. At the same time, we noted increased neuronal preservation compared to control groups, indicating a favorable impact of anti-CD20 therapy. CONCLUSION: These findings might pave the way for further research on the mode of action of B-cells and therefore help to improve therapeutic options for progressive MS.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Antígenos CD20/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/terapia , Animais , Contagem de Células , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Masculino , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Crônica Progressiva/terapia , Glicoproteína Mielina-Oligodendrócito/efeitos dos fármacos , Ratos
10.
J Immunol ; 207(1): 44-54, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34162727

RESUMO

Multiple sclerosis (MS) is an idiopathic demyelinating disease in which meningeal inflammation correlates with accelerated disease progression. The study of meningeal inflammation in MS has been limited because of constrained access to MS brain/spinal cord specimens and the lack of experimental models recapitulating progressive MS. Unlike induced models, a spontaneously occurring model would offer a unique opportunity to understand MS immunopathogenesis and provide a compelling framework for translational research. We propose granulomatous meningoencephalomyelitis (GME) as a natural model to study neuropathological aspects of MS. GME is an idiopathic, progressive neuroinflammatory disease of young dogs with a female bias. In the GME cases examined in this study, the meninges displayed focal and disseminated leptomeningeal enhancement on magnetic resonance imaging, which correlated with heavy leptomeningeal lymphocytic infiltration. These leptomeningeal infiltrates resembled tertiary lymphoid organs containing large B cell clusters that included few proliferating Ki67+ cells, plasma cells, follicular dendritic/reticular cells, and germinal center B cell-like cells. These B cell collections were confined in a specialized network of collagen fibers associated with the expression of the lympho-organogenic chemokines CXCL13 and CCL21. Although neuroparenchymal perivascular infiltrates contained B cells, they lacked the immune signature of aggregates in the meningeal compartment. Finally, meningeal B cell accumulation correlated significantly with cortical demyelination reflecting neuropathological similarities to MS. Hence, during chronic neuroinflammation, the meningeal microenvironment sustains B cell accumulation that is accompanied by underlying neuroparenchymal injury, indicating GME as a novel, naturally occurring model to study compartmentalized neuroinflammation and the associated pathology thought to contribute to progressive MS.


Assuntos
Linfócitos B/imunologia , Modelos Animais de Doenças , Meninges/imunologia , Esclerose Múltipla Crônica Progressiva/imunologia , Animais , Linfócitos B/patologia , Cães , Meninges/patologia , Esclerose Múltipla Crônica Progressiva/patologia
11.
Neurology ; 97(8): 378-388, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34088878

RESUMO

In most cases, multiple sclerosis (MS) begins with a relapsing-remitting course followed by insidious disability worsening that is independent from clinically apparent relapses and is termed secondary progressive MS (SMPS). Major differences exist between relapsing-remitting MS (RRMS) and SPMS, especially regarding therapeutic response to treatment. This review provides an overview of the pathology, differentiation, and challenges in the diagnosis and treatment of SPMS. We emphasize the criticality of conversion from a relapsing-remitting to a secondary progressive disease course not only because such conversion is evidence of disability progression, but also because, until recently, treatments that effectively reduced disability progression in relapsing MS were not proven to be effective in SPMS. Clear clinical, imaging, immunologic, or pathologic criteria marking the transition from RRMS to SPMS have not yet been established. Early identification of SPMS will require tools that, together with the use of appropriate treatments, may result in better long-term outcomes for the population of patients with SPMS.


Assuntos
Biomarcadores , Progressão da Doença , Fatores Imunológicos/farmacologia , Esclerose Múltipla Crônica Progressiva/diagnóstico , Humanos , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Crônica Progressiva/patologia , Esclerose Múltipla Crônica Progressiva/fisiopatologia
12.
Neurotherapeutics ; 18(3): 1602-1622, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33880738

RESUMO

Multiple sclerosis (MS), which is a chronic inflammatory disease of the central nervous system, still represents one of the most common causes of persisting disability with an early disease onset. Growing evidence suggests B cells to play a crucial role in its pathogenesis and progression. Over the last decades, monoclonal antibodies (mabs) against the surface protein CD20 have been intensively studied as a B cell targeting therapy in relapsing MS (RMS) as well as primary progressive MS (PPMS). Pivotal studies on anti-CD20 therapy in RMS showed remarkable clinical and radiological effects, especially on acute inflammation and relapse biology. These results paved the way for further research on the implication of B cells in the pathogenesis of MS. Besides controlling relapse development in RMS, ocrelizumab (OCR) also showed clinical benefits in patients with PPMS and became the first approved drug for this disease course. In this review, we provide an overview of the current anti-CD20 mabs used or tested for the treatment of MS-namely rituximab (RTX), OCR, ofatumumab (OFA), and ublituximab (UB). Besides their effectiveness, we also discuss possible limitations and safety concerns especially in regard to long-term treatment, both for this class of drugs overall as well as for each anti-CD20 mab individually. Additionally, we elucidate to what extent anti-CD20 therapy may alter the function of other immune cells, both directly or indirectly. Finally, we cover the current knowledge on repopulation of CD20+ cells after cessation of anti-CD20 treatment and discuss future aspirations towards alternative, further developed B cell silencing therapies.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antígenos CD20/imunologia , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Linfócitos B Reguladores/efeitos dos fármacos , Linfócitos B Reguladores/imunologia , Ensaios Clínicos como Assunto/métodos , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Esclerose Múltipla Crônica Progressiva/imunologia , Rituximab/farmacologia , Rituximab/uso terapêutico
13.
J Neuroimmunol ; 356: 577582, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33910137

RESUMO

We explored whether experimental autoimmune encephalomyelitis (EAE) in Biozzi mice recapitulates temporal dynamics of tissue injury, immune-pathogenesis and CNS compartmentalization occurring in progressive multiple sclerosis (MS). Chronic EAE exhibited relapsing and progressing disease, partial closure of BBB, reduced tissue inflammatory activity, and development of meningeal ectopic lymphoid tissue, directly opposing (potentially driving) spinal subpial demyelinated plaques. A T cell predominant disease during relapses transformed into a B cell predominant disease in late chronic EAE, with high serum anti-MOG reactivity. Thus, late chronic Biozzi EAE recapitulates essential features of progressive MS, and is suitable for developing disease modifying and regenerative therapies.


Assuntos
Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla Crônica Progressiva/imunologia , Medula Espinal/imunologia , Animais , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/patologia , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/patologia , Adjuvante de Freund/toxicidade , Camundongos , Camundongos Biozzi , Esclerose Múltipla Crônica Progressiva/induzido quimicamente , Esclerose Múltipla Crônica Progressiva/patologia , Medula Espinal/patologia
14.
Front Immunol ; 12: 633167, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777018

RESUMO

Primary-progressive (PP) and secondary-progressive (SP) multiple sclerosis (MS) are characterized by neurological deficits caused by a permanent neuronal damage, clinically quantified by the expanded disability status scale (EDSS). Neuronal tissue damage is also mediated by immune infiltrates producing soluble factors, such as cytokines and chemokines, which are released in the cerebrospinal fluid (CSF). The mechanisms regulating the production of a soluble factor are not completely defined. Using multiplex bead-based assays, we simultaneously measured 27 immune soluble factors in the CSF collected from 38 patients, 26 with PP-MS and 12 with SP-MS. Then, we performed a correlation matrix of all soluble factors expressed in the CSF. The CSF from patients with PP-MS and SP-MS had similar levels of cytokines and chemokines; however, the stratification of patients according to active or inactive magnetic resonance imaging (MRI) unveils some differences. Correlative studies between soluble factors in the CSF of patients with PP-MS and SP-MS revealed two clusters of immune mediators with pro-inflammatory functions, namely IFN-γ, MCP-1, MIP-1α, MIP-1ß, IL-8, IP-10, and TNF-α (group 1), and anti-inflammatory functions, namely IL-9, IL-15, VEGF, and IL-1ra (group 2). However, most of the significant correlations between cytokines of group 1 and of group 2 were lost in patients with more severe disability (EDSS ≥ 4) compared to patients with mild to moderate disability (EDSS < 4). These results suggest a common regulation of cytokines and chemokines belonging to the same group and indicate that, in patients with more severe disability, the production of those factors is less coordinated, possibly due to advanced neurodegenerative mechanisms that interfere with the immune response.


Assuntos
Esclerose Múltipla Crônica Progressiva/líquido cefalorraquidiano , Esclerose Múltipla Crônica Progressiva/imunologia , Adulto , Quimiocinas/líquido cefalorraquidiano , Citocinas/líquido cefalorraquidiano , Feminino , Humanos , Inflamação , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/fisiopatologia
15.
Front Immunol ; 12: 813957, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35178046

RESUMO

Multiple sclerosis (MS) is a central nervous system (CNS) disorder, which is mediated by an abnormal immune response coordinated by T and B cells resulting in areas of inflammation, demyelination, and axonal loss. Disease-modifying treatments (DMTs) are available to dampen the inflammatory aggression but are ineffective in many patients. Autologous hematopoietic stem cell transplantation (HSCT) has been used as treatment in patients with a highly active disease, achieving a long-term clinical remission in most. The rationale of the intervention is to eradicate inflammatory autoreactive cells with lympho-ablative regimens and restore immune tolerance. Immunological studies have demonstrated that autologous HSCT induces a renewal of TCR repertoires, resurgence of immune regulatory cells, and depletion of proinflammatory T cell subsets, suggesting a "resetting" of immunological memory. Although our understanding of the clinical and immunological effects of autologous HSCT has progressed, further work is required to characterize the mechanisms that underlie treatment efficacy. Considering that memory B cells are disease-promoting and stem-like T cells are multipotent progenitors involved in self-regeneration of central and effector memory cells, investigating the reconstitution of B cell compartment and stem and effector subsets of immunological memory following autologous HSCT could elucidate those mechanisms. Since all subjects need to be optimally protected from vaccine-preventable diseases (including COVID-19), there is a need to ensure that vaccination in subjects undergoing HSCT is effective and safe. Additionally, the study of vaccination in HSCT-treated subjects as a means of evaluating immune responses could further distinguish broad immunosuppression from immune resetting.


Assuntos
Autoimunidade , Transplante de Células-Tronco Hematopoéticas , Tolerância Imunológica , Memória Imunológica , Subpopulações de Linfócitos/imunologia , Esclerose Múltipla Crônica Progressiva/cirurgia , Esclerose Múltipla Recidivante-Remitente/cirurgia , Imunidade Adaptativa , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Imunidade Inata , Subpopulações de Linfócitos/metabolismo , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Crônica Progressiva/metabolismo , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/metabolismo , Fenótipo , Transplante Autólogo , Resultado do Tratamento
16.
Front Immunol ; 12: 792711, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975894

RESUMO

Multiple sclerosis (MS) is an autoimmune disease that leads to the demyelination of nerve axons. An increasing number of studies suggest that patients with MS exhibit altered metabolic profiles, which might contribute to the course of MS. However, the alteration of metabolic profiles in Chinese patients with MS and their potential roles in regulating the immune system remain elusive. In this study, we performed a global untargeted metabolomics approach in plasma samples from 22 MS-affected Chinese patients and 21 healthy subjects. A total of 42 differentially abundant metabolites (DAMs) belonging to amino acids, lipids, and carbohydrates were identified in the plasma of MS patients and compared with those in healthy controls. We observed an evident reduction in the levels of amino acids, such as L-tyrosine, L-isoleucine, and L-tryptophan, whereas there was a great increase in the levels of L-glutamic acid and L-valine in MS-affected patients. The levels of lipid and carbohydrate metabolites, such as sphingosine 1-phosphate and myo-inositol, were also reduced in patients with MS. In addition, the concentrations of proinflammatory cytokines, such as IL-17 and TNF-α, were significantly increased, whereas those of several anti-inflammatory cytokines and chemokines, such as IL-1ra, IL-7, and MIP-1α, were distinctly reduced in the plasma of MS patients compared with those in healthy subjects. Interestingly, some DAMs, such as L-tryptophan and sphingosine 1-phosphate, showed an evident negative correlation with changes in the level of TNF-α and IL-17, while tightly positively correlating with altered concentrations of anti-inflammatory cytokines and chemokines, such as MIP-1α and RANTES. Our results revealed that altered metabolomic profiles might contribute to the pathogenesis and course of MS disease by modulating immuno-inflammatory responses in the peripheral system, which is essential for eliciting autoimmune responses in the central nervous system, thus resulting in the progression of MS. This study provides potential clues for developing therapeutic strategies for MS in the near future.


Assuntos
Metabolismo Energético , Metaboloma , Metabolômica , Esclerose Múltipla Crônica Progressiva/sangue , Esclerose Múltipla Recidivante-Remitente/sangue , Adulto , Povo Asiático , Biomarcadores/sangue , Estudos de Casos e Controles , China , Biologia Computacional , Feminino , Humanos , Mediadores da Inflamação/sangue , Masculino , Esclerose Múltipla Crônica Progressiva/diagnóstico , Esclerose Múltipla Crônica Progressiva/etnologia , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Esclerose Múltipla Recidivante-Remitente/etnologia , Esclerose Múltipla Recidivante-Remitente/imunologia
17.
Front Immunol ; 12: 794077, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975899

RESUMO

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, in which autoreactive T and B cells play important roles. Other lymphocytes such as NK cells and innate-like T cells appear to be involved as well. To name a few examples, CD56bright NK cells were described as an immunoregulatory NK cell subset in MS while innate-like T cells in MS were described in brain lesions and with proinflammatory signatures. Autologous hematopoietic stem cell transplantation (aHSCT) is a procedure used to treat MS. This procedure includes hematopoietic stem/progenitor cell (HSPC) mobilization, then high-dose chemotherapy combined with anti-thymocyte globulin (ATG) and subsequent infusion of the patients own HSPCs to reconstitute a functional immune system. aHSCT inhibits MS disease activity very effectively and for long time, presumably due to elimination of autoreactive T cells. Here, we performed multidimensional flow cytometry experiments in peripheral blood lymphocytes of 27 MS patients before and after aHSCT to address its potential influence on NK and innate-like T cells. After aHSCT, the relative frequency and absolute numbers of CD56bright NK cells rise above pre-aHSCT levels while all studied innate-like T cell populations decrease. Hence, our data support an enhanced immune regulation by CD56bright NK cells and the efficient reduction of proinflammatory innate-like T cells by aHSCT in MS. These observations contribute to our current understanding of the immunological effects of aHSCT in MS.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Imunidade Inata , Células Matadoras Naturais/imunologia , Esclerose Múltipla Crônica Progressiva/cirurgia , Esclerose Múltipla Recidivante-Remitente/cirurgia , Linfócitos T/imunologia , Adulto , Antígeno CD56/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Células Matadoras Naturais/metabolismo , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/diagnóstico , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Crônica Progressiva/metabolismo , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/metabolismo , Fenótipo , Linfócitos T/metabolismo , Transplante Autólogo , Resultado do Tratamento
18.
Brain Pathol ; 31(2): 283-296, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33051914

RESUMO

Multiple Sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) in which inflammation plays a key pathological role. Recent evidences showed that systemic inflammation induces increasing cell infiltration within meninges and perivascular spaces in the brain parenchyma, triggering resident microglial and astrocytic activation. The anti-inflammatory enzyme A20, also named TNF associated protein 3 (TNFAIP3), is considered a central gatekeeper in inflammation and peripheral immune system regulation through the inhibition of NF-kB. The TNFAIP3 locus is genetically associated to MS and its transcripts is downregulated in blood cells in treatment-naïve MS patients. Recently, several evidences in mouse models have led to hypothesize a function of A20 also in the CNS. Thus, here we aimed to unveil a possible contribution of A20 to the CNS human MS pathology. By immunohistochemistry/immunofluorescence and biomolecular techniques on post-mortem brain tissue blocks obtained from control cases (CC) and progressive MS cases, we demonstrated that A20 is present in CC brain tissues in both white matter (WM) regions, mainly in few parenchymal astrocytes, and in grey matter (GM) areas, in some neuronal populations. Conversely, in MS brain tissues, we observed increased expression of A20 by perivascular infiltrating macrophages, resident-activated astrocytes, and microglia in all the active and chronic active WM lesions. A20 was highly expressed also in the majority of active cortical lesions compared to the neighboring areas of normal-appearing grey matter (NAGM) and control GM, particularly by activated astrocytes. We demonstrated increased A20 expression in the active MS plaques, particularly in macrophages and resident astrocytes, suggesting a key role of this molecule in chronic inflammation.


Assuntos
Encéfalo/imunologia , Encéfalo/patologia , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Crônica Progressiva/patologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Inflamação/imunologia , Inflamação/patologia , Masculino , Pessoa de Meia-Idade
19.
Mult Scler Relat Disord ; 48: 102704, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33370649

RESUMO

OBJECTIVE: To evaluate clinical and laboratory effects of delaying ocrelizumab infusions during the COVID-19 pandemics in people with multiple sclerosis (pwMS). METHODS: We have retrospectively searched our electronic database and identified 33 pwMS who had a delay in treatment due to COVID-19 pandemics. The following data were extracted: age, sex, multiple sclerosis (MS) phenotype: relapsing-remitting (RRMS) or primary progressive multiple sclerosis (PPMS), disease duration, Expanded Disability Status scale (EDSS), previous disease modifying therapy (DMT), number of ocrelizumab cycles prior to the lockdown, dates of first ocrelizumab infusion, last ocrelizumab infusion prior to the lockdown and delayed ocrelizumab infusion after the lockdown. Flow cytometry results, relapses and EDSS progression prior to the delayed ocrelizumab infusion after the lockdown were extracted. RESULTS: The mean time between two ocrelizumab infusion during the lockdown was 7.72±0.64 (range 6.07 to 8.92) months. The mean time between last ocrelizumab infusion and the lymphocyte sampling prior to post COVID infusion was 6.59±0.95 (range 5.18 to 8.49) months. In this period, none of the studied patients had a relapse. In a multivariable linear regression analysis, time from last ocrelizumab infusion to lymphocyte sampling prior to the next infusion was the only significant predictor for CD19+ B cells count, when corrected for the number of previous ocrelizumab cycles and MS phenotype (RRMS or PPMS) (B=7.981, 95% C.I. 3.277-12.686, p=0.002). CONCLUSIONS: We have not shown clinical consequences of delaying ocrelizumab due to COVID-19 pandemics. However, the delay in dosing of ocrelizumab was an independent predictor of repopulation of B cells.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , COVID-19 , Fatores Imunológicos/administração & dosagem , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/sangue , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Recidivante-Remitente/sangue , Esclerose Múltipla Recidivante-Remitente/imunologia , Estudos Retrospectivos , Fatores de Tempo , Tempo para o Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...