Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.879
Filtrar
1.
Food Chem ; 444: 138623, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38309081

RESUMO

The introduction of exogenous lipids in the production of infant formula induces significant alterations in milk lipid composition, content, and membrane structure, thus affecting the lipid digestion, absorption, and utilization. This study meticulously tracks these changes throughout the manufacturing process. Pasteurization has a significant effect on phosphatidylcholine and sphingomyelin in the outer membrane, decreasing their relative contents to total polar lipids from 12.52% and 17.34% to 7.72% and 12.59%, respectively. Subsequent processes, including bactericidal-concentration and spray-drying, demonstrate the thermal stability of sphingomyelin and ceramides, while glycerolipids with arachidonic acid/docosahexaenoic acid and glycerophospholipids, particularly phosphatidylethanolamine, diminish significantly. Polar lipids addition and freeze-drying technology significantly enhance the polar lipid content and improve microscopic morphology of infant formula. These findings reveal the diverse effects of technological processes on glycerolipid and polar lipid compositions, concentration, and ultrastructure in infant formulas, thus offering crucial insights for optimizing lipid content and structure within infant formula.


Assuntos
Fórmulas Infantis , Esfingomielinas , Humanos , Lactente , Animais , Fórmulas Infantis/química , Esfingomielinas/análise , Leite/química , Ácidos Docosa-Hexaenoicos/análise , Ácido Araquidônico , Leite Humano/química
2.
Nat Commun ; 14(1): 4263, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460558

RESUMO

A lipidome comprises thousands of lipid species, many of which are isomers and isobars. Liquid chromatography-tandem mass spectrometry (LC-MS/MS), although widely used for lipidomic profiling, faces challenges in differentiating lipid isomers. Herein, we address this issue by leveraging the orthogonal separation capabilities of hydrophilic interaction liquid chromatography (HILIC) and trapped ion mobility spectrometry (TIMS). We further integrate isomer-resolved MS/MS methods onto HILIC-TIMS, which enable pinpointing double bond locations in phospholipids and sn-positions in phosphatidylcholine. This system profiles phospholipids at multiple structural levels with short analysis time (<10 min per LC run), high sensitivity (nM detection limit), and wide coverage, while data analysis is streamlined using a home-developed software, LipidNovelist. Notably, compared to our previous report, the system doubles the coverage of phospholipids in bovine liver and reveals uncanonical desaturation pathways in RAW 264.7 macrophages. Relative quantitation of the double bond location isomers of phospholipids and the sn-position isomers of phosphatidylcholine enables the phenotyping of human bladder cancer tissue relative to normal control, which would be otherwise indistinguishable by traditional profiling methods. Our research offers a comprehensive solution for lipidomic profiling and highlights the critical role of isomer analysis in studying lipid metabolism in both healthy and diseased states.


Assuntos
Glicerofosfolipídeos , Lipídeos , Lipídeos/análise , Animais , Bovinos , Fígado , Espectrometria de Massas em Tandem , Fosfolipídeos/análise , Camundongos , Células RAW 264.7 , Humanos , Cromatografia Líquida , Fosfatidilcolinas , Software , Glicerofosfolipídeos/análise , Esfingomielinas/análise , Neoplasias da Bexiga Urinária
3.
Anal Chem ; 95(20): 7813-7821, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37172325

RESUMO

In mass spectrometry-based lipidomics, complex lipid mixtures undergo chromatographic separation, are ionized, and are detected using tandem MS (MSn) to simultaneously quantify and structurally characterize eluting species. The reported structural granularity of these identified lipids is strongly reliant on the analytical techniques leveraged in a study. For example, lipid identifications from traditional collisionally activated data-dependent acquisition experiments are often reported at either species level or molecular species level. Structural resolution of reported lipid identifications is routinely enhanced by integrating both positive and negative mode analyses, requiring two separate runs or polarity switching during a single analysis. MS3+ can further elucidate lipid structure, but the lengthened MS duty cycle can negatively impact analysis depth. Recently, functionality has been introduced on several Orbitrap Tribrid mass spectrometry platforms to identify eluting molecular species on-the-fly. These real-time identifications can be leveraged to trigger downstream MSn to improve structural characterization with lessened impacts on analysis depth. Here, we describe a novel lipidomics real-time library search (RTLS) approach, which utilizes the lipid class of real-time identifications to trigger class-targeted MSn and to improve the structural characterization of phosphotidylcholines, phosphotidylethanolamines, phosphotidylinositols, phosphotidylglycerols, phosphotidylserine, and sphingomyelins in the positive ion mode. Our class-based RTLS method demonstrates improved selectivity compared to the current methodology of triggering MSn in the presence of characteristic ions or neutral losses.


Assuntos
Glicerofosfolipídeos , Esfingomielinas , Glicerofosfolipídeos/análise , Esfingomielinas/análise , Espectrometria de Massas em Tandem/métodos , Íons , Biblioteca Gênica
4.
Bioconjug Chem ; 34(6): 1037-1044, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37204067

RESUMO

Sphingomyelinase (SMase), a hydrolase of sphingomyelin (SM) enriched in the outer leaflet of the plasma membrane of mammalian cells, is closely associated with the onset and development of many diseases, but the specific mechanisms of SMase on the cell structure, function, and behavior are not yet fully understood due to the complexity of the cell structure. Artificial cells are minimal biological systems constructed from various molecular components designed to mimic cellular processes, behaviors, and structures, which are excellent models for studying biochemical reactions and dynamic changes in cell membranes. In this work, we presented an artificial cell model that mimics the lipid composition and content of the outer leaflet of mammalian plasma membranes for studying the effect of SMase on cell behavior. The results confirmed that the artificial cells can respond to SM degradation by producing ceramides that enrich and alter the membrane charge and permeability, thus inducing the budding and fission of the artificial cells. Thus, the artificial cells developed here provide a powerful tool to study the mechanism of action of cell membrane lipids on cell biological behavior, paving the way for further molecular mechanism studies.


Assuntos
Células Artificiais , Esfingomielinas , Animais , Esfingomielinas/análise , Esfingomielinas/metabolismo , Esfingomielinas/farmacologia , Ceramidas/química , Ceramidas/metabolismo , Ceramidas/farmacologia , Membrana Celular/metabolismo , Esfingomielina Fosfodiesterase/química , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielina Fosfodiesterase/farmacologia , Mamíferos/metabolismo
5.
Anim Reprod Sci ; 248: 107184, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36587591

RESUMO

The definition of new reliable markers for neonatal maturity evaluation is crucial in canine clinical practice. Concerns about the safety of amniotic sampling in pregnant dogs have prevented its collection for diagnostic purposes. Moreover, amniotic fluid had been considered waste material until the latest studies reported amniocentesis as a reliable and safe procedure, even in the canine species. In our study, amniotic fluid (n = 63) collected at birth from ten dogs undergoing elective Caesarean sections at term was analysed to discover new potential indices of canine neonatal maturity. Based on gestational age, mothers and puppies were divided into two groups: the early group (≤65 days from luteinizing hormone (LH) surge, n = 5) and the late group (>65 days from LH surge, n = 5). Amniotic parameters of the lightest and heaviest puppy in individual/each litter, with a birth weight difference of at least 20% among littermates, were also compared. In particular, the content of lecithin, sphingomyelin, surfactant protein A (SP-A), cortisol, and pentraxin 3 (PTX3) in amniotic fluid, which is considered predictive of foetal development in humans, were investigated. Maternal serum SP-A and cortisol were also measured simultaneously. All amniotic parameters were detectable in canine amniotic fluid. Interestingly, the concentrations of different amniotic parameters correlated with each other. Lecithin was positively correlated with sphingomyelin (p < 0.0001), maternal SP-A (p < 0.0005), and the ratio of amniotic and maternal cortisol (p < 0.004). Amniotic SP-A was inversely correlated to maternal SP-A (p < 0.05), lecithin (p < 0.005), and lecithin-sphingomyelin ratio (p < 0.05). A positive correlation was also recorded between amniotic and maternal cortisol (p < 0.008). Considering that all puppies were born alive and mature, these data could provide a potential range of expected amniotic values in full-term new-born dogs. Furthermore, since gestational age was positively correlated with both maternal and amniotic cortisol (p < 0.0001) and amniotic PTX3 (p < 0.05), amniotic fluid seems to be an attractive, innovative, and minimally invasive matrix with potential diagnostic and prognostic utility for the investigation of canine maturity.


Assuntos
Líquido Amniótico , Lecitinas , Animais , Cães , Feminino , Gravidez , Líquido Amniótico/metabolismo , Idade Gestacional , Hidrocortisona/metabolismo , Parto , Esfingomielinas/análise , Esfingomielinas/metabolismo
6.
Front Biosci (Landmark Ed) ; 27(8): 247, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-36042186

RESUMO

BACKGROUND: It has been established that sphingomyelin present human breast milk is useful for the brain maturation and cognitive development. At 10 days of breastfeeding the sphingomyelin content is double that present in cow's milk and its content is independent of the maternal diet. The aim of the study was to analyze the content of sphingomyelin in breast milk at 3 months of breastfeeding and to consider the effect of this molecule on synaptic function and nerve conduction through the probable expansion of myelinated axons. METHODS: Therefore, to begin to define and assess this, we performed sphingolipidomic analysis in human breast milk. Then, we cultured embryonic hippocampal cells (HN9.10) in the presence of sphingomyelin at a concentration from 0.6% to 31% of human milk, estimated by considering its bioavailability and its passage into the interstitial fluid. To highlight the effect of sphingomyelin in the cells, cell viability and morphology were evaluated. Analyses of neutral sphingomyelinase gene and protein expression was performed. The entry of sphingomyelin into the cell was studied in immunofluorescence; the expression of heavy neurofilament (NF200) was tested with immunocytochemical technique. RESULTS: We demonstrated that sphingomyelin is able to enter cell nucleus and overexpress the sphingomyelin phosphodiesterase 4 (SMPD4) gene encoding for neutral sphingomyelinase (nSMase), an enzyme useful for its own metabolism. Later, cells displayed changes of the soma and the appearance of neurites supported by NF200 overexpression. CONCLUSIONS: We speculated that the sphingomyelin present in human breast milk is useful in part to regulate nuclear activity and in part to form myelin sheet to facilitate nerve cell maturation. As brain development occurs at 0-3 years, these data open a new avenue of potential intervention to integrate the infant formulas with SM to obtain a product similar to the maternal milk.


Assuntos
Leite Humano , Esfingomielinas , Animais , Bovinos , Núcleo Celular/metabolismo , Feminino , Hipocampo/metabolismo , Humanos , Lactente , Leite Humano/química , Leite Humano/metabolismo , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/análise , Esfingomielinas/metabolismo
7.
Food Chem ; 388: 132939, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35447582

RESUMO

We compared phospholipids (PLs) content, their molecular species, and milk fat globules size and microstructure in the milk of five mammalian species, including human, cow, goat, yak, and donkey. The absolute quantification of major PLs was determined using 31P NMR and their fatty acid composition with GC. The molecular species of PLs were analysed using LC-MS where a total of 9 PL species, including one sphingomyelin (SM), six glycerophospholipid (GPL), and two lysoglycerophospholipids (lyso-GPLs), were identified. PLs profile shows an obvious difference among the species, with human milk showing higher SM content and more unsaturated fatty acyls than other mammalian milk. The mammalian milk show a similar core-membrane lipid structure but obvious different size distribution. These data provide a basis for better construction of infant formulas to provide PLs requirements and a similar milk fat globule structure for infants.


Assuntos
Glicolipídeos , Fosfolipídeos , Animais , Bovinos , Feminino , Glicolipídeos/química , Cabras , Humanos , Fórmulas Infantis , Gotículas Lipídicas , Leite Humano/química , Fosfolipídeos/química , Esfingomielinas/análise
8.
Nutrients ; 14(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35458100

RESUMO

Phospholipids are pivotal polar lipids in human milk and essential for infants' growth and development, especially in the brain and cognitive development. Its content and composition are affected by multiple factors and there exist discrepancies in different studies. In this study, we determined five major phospholipids classes (phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidylcholine, and sphingomyelin) in 2270 human milk samples collected from 0 to 400 days postpartum in six regions of China. The high-performance liquid chromatography coupled with an evaporative light scattering detector (HPLC-ELSD) was performed to quantify the phospholipids. Total phospholipid median (IQR) content was in a range between 170.38 ± 96.52 mg/L to 195.69 ± 81.80 mg/L during lactation and was higher concentrated in colostrum milk and later stage of lactation (after 200 days postpartum) compared with that in the samples collected between 10 to 45 days postpartum. Variations in five major sub-class phospholipids content were also observed across lactation stages (phosphatidylethanolamine: 52.61 ± 29.05 to 59.95 ± 41.74 mg/L; phosphatidylinositol: 17.65 ± 10.68 to 20.38 ± 8.55 mg/L; phosphatidylserine: 15.98 ± 9.02 to 22.77 ± 11.17 mg/L; phosphatidylcholine: 34.13 ± 25.33 to 48.64 ± 19.73 mg/L; sphingomyelin: 41.35 ± 20.31 to 54.79 ± 35.26 mg/L). Phosphatidylethanolamine (29.18-32.52%), phosphatidylcholine (19.90-25.04%) and sphingomyelin (22.39-29.17%) were the dominant sub-class phospholipids in Chinese breast milk during the whole lactation period. These results updated phospholipids data in Chinese human milk and could provide evidence for better development of secure and effective human milk surrogates for infants without access to breast milk.


Assuntos
Leite Humano , Fosfolipídeos , Animais , Feminino , Humanos , Lactente , Lactação , Leite/química , Leite Humano/química , Fosfatidilcolinas , Fosfatidilinositóis , Fosfatidilserinas/análise , Fosfolipídeos/química , Esfingomielinas/análise
9.
Food Chem ; 381: 132288, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35124494

RESUMO

Milk processing technology disrupts milk fat globule membrane (MFGM) structures and decreases the phospholipid content in MFGM. The present study aimed to evaluate the effects of homogenization, thermal treatment, and cold storage on milk phospholipids. A total of 175 phospholipid molecular species were identified and quantified. Phosphatidylcholine was the most abundant phospholipid, and sphingomyelin accounted for only a small amount of phospholipid in bovine milk. In addition, a total of 37 plasmalogens (167.5 µg/mL) were identified in bovine milk with lysophosphatidylcholine plasmalogen being the most abundant. Processing technologies decreased the phospholipid content with both boiled and frozen milk demonstrating the highest reduction. Compared to raw milk, only 70% of phospholipid remained in frozen milk. Both S-plot and volcano-plot showed that heat treatment and subsequent cold storage decreased the phosphatidylserine and lysophospholipid contents.


Assuntos
Glicolipídeos , Leite , Animais , Glicolipídeos/química , Gotículas Lipídicas , Leite/química , Fosfolipídeos/química , Esfingomielinas/análise
10.
J Matern Fetal Neonatal Med ; 35(25): 7649-7661, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34362283

RESUMO

Sphingomyelins, the most abundant sphingolipids in most mammalian cells, appear to be among the most represented polar lipids in breast milk. Despite the variability of the data reported in the literature, human milk sphingomyelins are qualitatively unique and their quantities are five times higher than in most formula milk. The structural and functional role within the milk fat globule membranes, the involvement in neonatal neurological maturation both in neuro-typical development and in some pathological circumstances, together with the possible contribution in the intestinal development of newborns, are certainly among the main characteristics that have fueled the curiosity of the scientific world. Metabolomics studies, providing a unique metabolic fingerprint, allow an in-depth analysis of the role of these molecules in the extreme variability and uniqueness of breast milk. In the perspective of preventive medicine, at the base of which there is certainly personalized nutrition, it is possible, in the presence of particular conditions, such as neonatal growth retardation or in preterm infants, to consider supplementation of some target nutrients, such as certain sphingomyelins. Nevertheless, further studies are needed to more accurately assess whether and how the type and quantity of sphingomyelins present in breast milk could affect the metabolic health of newborns.HIGHLIGHTSBreast milk is the golden standard for infants' nutritionSphingomyelins are the most represented polar lipids in breast milkThese molecules are involved in both intestinal and neural developments of newbornsMetabolomics is a very useful tool to investigate their precise roleFurther studies are needed to provide eventual nutritional treatment.


Assuntos
Leite Humano , Esfingomielinas , Lactente , Feminino , Animais , Recém-Nascido , Humanos , Leite Humano/química , Esfingomielinas/análise , Recém-Nascido Prematuro , Intestinos , Metabolômica , Mamíferos
11.
BMC Cancer ; 21(1): 1232, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789180

RESUMO

BACKGROUND: To reduce disease recurrence after radical surgery for lung squamous cell carcinomas (SQCCs), accurate prediction of recurrent high-risk patients is required for efficient patient selection for adjuvant chemotherapy. Because treatment modalities for recurrent lung SQCCs are scarce compared to lung adenocarcinomas (ADCs), accurately selecting lung SQCC patients for adjuvant chemotherapy after radical surgery is highly important. Predicting lung cancer recurrence with high objectivity is difficult with conventional histopathological prognostic factors; therefore, identification of a novel predictor is expected to be highly beneficial. Lipid metabolism alterations in cancers are known to contribute to cancer progression. Previously, we found that increased sphingomyelin (SM)(d35:1) in lung ADCs is a candidate for an objective recurrence predictor. However, no lipid predictors for lung SQCC recurrence have been identified to date. This study aims to identify candidate lipid predictors for lung SQCC recurrence after radical surgery. METHODS: Recurrent (n = 5) and non-recurrent (n = 6) cases of lung SQCC patients who underwent radical surgery were assigned to recurrent and non-recurrent groups, respectively. Extracted lipids from frozen tissue samples of primary lung SQCC were analyzed by liquid chromatography-tandem mass spectrometry. Candidate lipid predictors were screened by comparing the relative expression levels between the recurrent and non-recurrent groups. To compare lipidomic characteristics associated with recurrent SQCCs and ADCs, a meta-analysis combining SQCC (n = 11) and ADC (n = 20) cohorts was conducted. RESULTS: Among 1745 screened lipid species, five species were decreased (≤ 0.5 fold change; P < 0.05) and one was increased (≥ 2 fold change; P < 0.05) in the recurrent group. Among the six candidates, the top three final candidates (selected by AUC assessment) were all decreased SM(t34:1) species, showing strong performance in recurrence prediction that is equivalent to that of histopathological prognostic factors. Meta-analysis indicated that decreases in a limited number of SM species were observed in the SQCC cohort as a lipidomic characteristic associated with recurrence, in contrast, significant increases in a broad range of lipids (including SM species) were observed in the ADC cohort. CONCLUSION: We identified decreased SM(t34:1) as a novel candidate predictor for lung SQCC recurrence. Lung SQCCs and ADCs have opposite lipidomic characteristics concerning for recurrence risk. TRIAL REGISTRATION: This retrospective study was registered at the UMIN Clinical Trial Registry ( UMIN000039202 ) on January 21, 2020.


Assuntos
Adenocarcinoma de Pulmão/química , Carcinoma Pulmonar de Células não Pequenas/química , Carcinoma de Células Escamosas/química , Neoplasias Pulmonares/química , Recidiva Local de Neoplasia , Esfingomielinas/análise , Adenocarcinoma de Pulmão/patologia , Idoso , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/isolamento & purificação , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/cirurgia , Estudos de Casos e Controles , Quimioterapia Adjuvante , Feminino , Humanos , Metabolismo dos Lipídeos , Lipídeos/análise , Lipídeos/isolamento & purificação , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Masculino , Pessoa de Meia-Idade , Seleção de Pacientes , Estudos Retrospectivos , Esfingomielinas/isolamento & purificação
12.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638539

RESUMO

The reason behind the high inter-individual variability in response to SARS-CoV-2 infection and patient's outcome is poorly understood. The present study targets the sphingolipid profile of twenty-four healthy controls and fifty-nine COVID-19 patients with different disease severity. Sera were analyzed by untargeted and targeted mass spectrometry and ELISA. Results indicated a progressive increase in dihydrosphingosine, dihydroceramides, ceramides, sphingosine, and a decrease in sphingosine-1-phosphate. These changes are associated with a serine palmitoyltransferase long chain base subunit 1 (SPTLC1) increase in relation to COVID-19 severity. Severe patients showed a decrease in sphingomyelins and a high level of acid sphingomyelinase (aSMase) that influences monosialodihexosyl ganglioside (GM3) C16:0 levels. Critical patients are characterized by high levels of dihydrosphingosine and dihydroceramide but not of glycosphingolipids. In severe and critical patients, unbalanced lipid metabolism induces lipid raft remodeling, leads to cell apoptosis and immunoescape, suggesting active sphingolipid participation in viral infection. Furthermore, results indicated that the sphingolipid and glycosphingolipid metabolic rewiring promoted by aSMase and GM3 is age-dependent but also characteristic of severe and critical patients influencing prognosis and increasing viral load. AUCs calculated from ROC curves indicated ceramides C16:0, C18:0, C24:1, sphingosine and SPTLC1 as putative biomarkers of disease evolution.


Assuntos
COVID-19/sangue , Esfingolipídeos/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/diagnóstico , Feminino , Humanos , Lipidômica , Masculino , Pessoa de Meia-Idade , Prognóstico , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Esfingolipídeos/análise , Esfingomielinas/análise , Esfingomielinas/sangue , Adulto Jovem
13.
PLoS One ; 16(10): e0258363, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34637456

RESUMO

Drug resistance is responsible for the failure of many available anticancer drugs. Several studies have demonstrated the association between the alteration in sphingolipids (SPLs) and the development of drug resistance. To investigate the association between SPLs metabolism and doxorubicin (dox)-resistance in MCF-7 cells, a comparative sphingolipidomics analysis between dox-sensitive (parental) and -resistant MCF-7 cell lines along with validation by gene expression analysis were conducted. A total of 31 SPLs representing 5 subcategories were identified. The data obtained revealed that SPLs were clustered into two groups differentiating parental from dox-resistant cells. Eight SPLs were significantly altered in response to dox-resistance including SM (d18:1/16), SM (d18:1/24:2), SM (d18:1/24:0), SM (d18:1/20:0), SM (d18:1/23:1), HexCer (d18:1/24:0), SM (d18:1/15:0), DHSM (d18:0/20:0). The current study is the first to conclusively ascertain the potential involvement of dysregulated SPLs in dox-resistance in MCF-7 cells. SPLs metabolism in dox-resistant MCF-7 cells is oriented toward the downregulation of ceramides (Cer) and the concomitant increase in sphingomyelin (SM). Gene expression analysis has revealed that dox-resistant cells tend to escape from the Cer-related apoptosis by the activation of SM-Cer and GluCer-LacCer-ganglioside pathways. The enzymes that were correlated to the alteration in SPLs metabolism of dox-resistant MCF-7 cells and significantly altered in gene expression can represent potential targets that can represent a winning strategy for the future development of promising anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Lipidômica/métodos , Esfingolipídeos/análise , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ceramidas/análise , Ceramidas/metabolismo , Análise Discriminante , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Análise dos Mínimos Quadrados , Células MCF-7 , Esfingolipídeos/metabolismo , Esfingomielinas/análise , Esfingomielinas/metabolismo , Regulação para Cima/efeitos dos fármacos
14.
J Oleo Sci ; 70(7): 937-946, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34193670

RESUMO

Muscle atrophy refers to skeletal muscle loss and dysfunction that affects glucose and lipid metabolism. Moreover, muscle atrophy is manifested in cancer, diabetes, and obesity. In this study, we focused on lipid metabolism during muscle atrophy. We observed that the gastrocnemius muscle was associated with significant atrophy with 8 days of immobilization of hind limb joints and that muscle atrophy occurred regardless of the muscle fiber type. Further, we performed lipid analyses using thin layer chromatography, liquid chromatography-mass spectrometry, and mass spectrometry imaging. Total amounts of triacylglycerol, phosphatidylserine, and sphingomyelin were found to be increased in the immobilized muscle. Additionally, we found that specific molecular species of phosphatidylserine, phosphatidylcholine, and sphingomyelin were increased by immobilization. Furthermore, the expression of adipose triglyceride lipase and the activity of cyclooxygenase-2 were significantly reduced by atrophy. From these results, it was revealed that lipid accumulation and metabolic changes in specific fatty acids occur during disuse muscle atrophy. The present study holds implications in validating preventive treatment strategies for muscle atrophy.


Assuntos
Atrofia Muscular/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/metabolismo , Restrição Física/fisiologia , Esfingomielinas/metabolismo , Triglicerídeos/metabolismo , Animais , Cromatografia Líquida , Cromatografia em Camada Fina , Ciclo-Oxigenase 2/metabolismo , Lipase/metabolismo , Masculino , Espectrometria de Massas , Músculo Esquelético/química , Fosfatidilcolinas/análise , Fosfatidilserinas/análise , Ratos Sprague-Dawley , Restrição Física/efeitos adversos , Esfingomielinas/análise , Triglicerídeos/análise
15.
Chem Phys Lipids ; 238: 105102, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34102186

RESUMO

Phosphatidylcholine (PC), phosphatidylethanolamine (PE) and sphingomyelin (SM) are important surface components of plasma lipoproteins, including very-low-density lipoproteins (VLDL), low-density lipoproteins (LDL) and high-density lipoproteins (HDL). However, the pathophysiological roles of PC, PE and SM in lipoproteins have not been well characterized owing to the difficulties in quantifying phospholipid classes in lipoproteins. In this study, we assessed the precision and accuracy of the enzymatic fluorometric assays for measuring PC, PE and SM in VLDL, LDL and HDL, which were isolated from human plasma by ultracentrifugation. The within-run coefficients of variation (CV) for the measurements of PC, PE and SM in lipoproteins were 1.5-2.8 %, 1.1-2.4 % and 0.9-2.3 %, respectively, whereas the between-run CVs for the PC, PE and SM assays were 2.7-4.7 %, 2.1-4.5 % and 1.6-3.3 %, respectively. Excellent linearity and almost complete recovery were achieved for all assays measuring PC, PE and SM in VLDL, LDL and HDL. Our preliminary results using these enzymatic fluorometric assays suggested that the phospholipid compositions were different among VLDL, LDL and HDL. In conclusion, we established high-throughput enzymatic fluorometric assays to quantify PC, PE and SM in human plasma VLDL, LDL and HDL, which will be useful for further investigation of pathophysiological roles of phospholipids in lipoproteins.


Assuntos
Lipoproteínas/sangue , Fosfatidilcolinas/análise , Fosfatidiletanolaminas/análise , Esfingomielinas/análise , Adulto , Coleta de Amostras Sanguíneas , Ensaios Enzimáticos , Fluorometria , Ensaios de Triagem em Larga Escala , Humanos , Lipoproteínas/metabolismo , Masculino , Pessoa de Meia-Idade , Voluntários
16.
Food Chem ; 360: 130153, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34034056

RESUMO

Thermal processing affects the lipid compositions of meat products. The study determined the effects of boiled, steamed and roasted processing methods on the lipidomics profiles of Tan sheep meat with a validated UPLC-Q-Orbitrap HRMS combined lipid screening strategy method. Combined with sphingolipid metabolism, the boiled approach was the suitable choice for atherosclerosis patients for more losses of sphingomyelin than ceramide in meat. The similarly less losses of phosphatidylcholine and lysophosphatidylcholine showed in glycerophospholipid metabolism implied that steamed Tan sheep meat was more suitable for the populations of elderly and infants. Furthermore, a total of 90 lipids with significant difference (VIP > 1) in 6 lipid subclasses (sphingomyelin, ceramide, lysophosphatidylcholine, phosphatidylcholine, phosphatidylethanolamines, triacylglycerol,) were quantified among raw and three types of thermal processed Tan sheep meat, further providing useful information for identification of meat products with different thermal processing methods (LOD with 0.14-0.31 µg kg-1, LOQ with 0.39-0.90 µg kg-1).


Assuntos
Lipidômica/métodos , Produtos da Carne/análise , Fosfolipídeos/metabolismo , Animais , Ceramidas/análise , Ceramidas/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Análise Discriminante , Análise dos Mínimos Quadrados , Limite de Detecção , Lisofosfatidilcolinas/análise , Lisofosfatidilcolinas/isolamento & purificação , Espectrometria de Massas , Fosfolipídeos/análise , Fosfolipídeos/isolamento & purificação , Análise de Componente Principal , Ovinos , Esfingomielinas/análise , Esfingomielinas/isolamento & purificação , Temperatura
17.
PLoS One ; 16(4): e0250146, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33861772

RESUMO

The current limitations in evaluating synovial fluid (SF) components in health and disease and between species are due in part to the lack of data on normal SF, because of low availability of SF from healthy articular joints. Our study aimed to quantify species-dependent differences in phospholipid (PL) profiles of normal knee SF obtained from equine and human donors. Knee SF was obtained during autopsy by arthrocentesis from 15 and 13 joint-healthy human and equine donors, respectively. PL species extracted from SF were quantitated by mass spectrometry whereas ELISA determined apolipoprotein (Apo) B-100. Wilcoxon's rank sum test with adjustment of scores for tied values was applied followed by Holm´s method to account for multiple testing. Six lipid classes with 89 PL species were quantified, namely phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, phosphatidylethanolamine, plasmalogen, and ceramide. Importantly, equine SF contains about half of the PL content determined in human SF with some characteristic changes in PL composition. Nutritional habits, decreased apolipoprotein levels and altered enzymatic activities may have caused the observed different PL profiles. Our study provides comprehensive quantitative data on PL species levels in normal human and equine knee SF so that research in joint diseases and articular lubrication can be facilitated.


Assuntos
Apolipoproteínas B/análise , Lipídeos/análise , Líquido Sinovial/química , Adulto , Animais , Ceramidas/análise , Feminino , Cavalos , Humanos , Ácido Hialurônico/análise , Joelho , Articulação do Joelho , Lipidômica/métodos , Masculino , Fosfolipídeos/análise , Especificidade da Espécie , Esfingomielinas/análise , Líquido Sinovial/citologia , Líquido Sinovial/metabolismo , Adulto Jovem
18.
JCI Insight ; 6(10)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33857018

RESUMO

BACKGROUNDHigh circulating levels of ceramides (Cer) and sphingomyelins (SM) are associated with cardiometabolic diseases. The consumption of whole fat dairy products, naturally containing such polar lipids (PL), is associated with health benefits, but the impact on sphingolipidome remains unknown.METHODSIn a 4-week randomized controlled trial, 58 postmenopausal women daily consumed milk PL-enriched cream cheese (0, 3, or 5 g of milk PL). Postprandial metabolic explorations were performed before and after supplementation. Analyses included SM and Cer species in serum, chylomicrons, and feces. The ileal contents of 4 ileostomy patients were also explored after acute milk PL intake.RESULTSMilk PL decreased serum atherogenic C24:1 Cer, C16:1 SM, and C18:1 SM species (Pgroup < 0.05). Changes in serum C16+18 SM species were positively correlated with the reduction of cholesterol (r = 0.706), LDL-C (r = 0.666), and ApoB (r = 0.705) (P < 0.001). Milk PL decreased chylomicron content in total SM and C24:1 Cer (Pgroup < 0.001), parallel to a marked increase in total Cer in feces (Pgroup < 0.001). Milk PL modulated some specific SM and Cer species in both ileal efflux and feces, suggesting differential absorption and metabolization processes in the gut.CONCLUSIONMilk PL supplementation decreased atherogenic SM and Cer species associated with the improvement of cardiovascular risk markers. Our findings bring insights on sphingolipid metabolism in the gut, especially Cer, as signaling molecules potentially participating in the beneficial effects of milk PL.TRIAL REGISTRATIONClinicalTrials.gov, NCT02099032, NCT02146339.FUNDINGANR-11-ALID-007-01; PHRCI-2014: VALOBAB, no. 14-007; CNIEL; GLN 2018-11-07; HCL (sponsor).


Assuntos
Ceramidas , Metabolismo dos Lipídeos/fisiologia , Leite , Pós-Menopausa/metabolismo , Esfingomielinas , Animais , Ceramidas/análise , Ceramidas/sangue , Ceramidas/metabolismo , Queijo , Dieta , Fezes/química , Feminino , Glicolipídeos/metabolismo , Glicoproteínas/metabolismo , Humanos , Gotículas Lipídicas/metabolismo , Sobrepeso , Esfingomielinas/análise , Esfingomielinas/sangue , Esfingomielinas/metabolismo
19.
Nutrients ; 14(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35011034

RESUMO

Human milk lipids are essential for infant health. However, little is known about the relationship between total milk fatty acid (FA) composition and polar lipid species composition. Therefore, we aimed to characterize the relationship between the FA and polar lipid species composition in human milk, with a focus on differences between milk with higher or lower milk fat content. From the Norwegian Human Milk Study (HUMIS, 2002-2009), a subset of 664 milk samples were analyzed for FA and polar lipid composition. Milk samples did not differ in major FA, phosphatidylcholine, or sphingomyelin species percentages between the highest and lowest quartiles of total FA concentration. However, milk in the highest FA quartile had a lower phospholipid-to-total-FA ratio and a lower sphingomyelin-to-phosphatidylcholine ratio than the lowest quartile. The only FAs associated with total phosphatidylcholine or sphingomyelin were behenic and tridecanoic acids, respectively. Milk FA and phosphatidylcholine and sphingomyelin species containing these FAs showed modest correlations. Associations of arachidonic and docosahexaenoic acids with percentages of phosphatidylcholine species carrying these FAs support the conclusion that the availability of these FAs limits the synthesis of phospholipid species containing them.


Assuntos
Ácidos Graxos/análise , Lipídeos/análise , Leite Humano/química , Ácido Araquidônico/análise , Ácidos Docosa-Hexaenoicos/análise , Feminino , Humanos , Fosfatidilcolinas/análise , Fosfolipídeos/análise , Esfingomielinas/análise
20.
Lipids ; 56(2): 181-188, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32996178

RESUMO

Sphingomyelin (SM) with N-α-hydroxy fatty acyl residues (hSM) has been shown to occur in mammalian skin and digestive epithelia. However, the metabolism and physiological relevance of this characteristic SM species have not been fully elucidated yet. Here, we show methods for mass spectrometric characterization and quantification of hSM. The hSM in mouse skin was isolated by TLC. The hydroxy hexadecanoyl residue was confirmed by electron impact ionization-induced fragmentation in gas chromatography-mass spectrometry. Mass shift analysis of acetylated hSM by time of flight mass spectrometry revealed the number of hydroxyl groups in the molecule. After correcting the difference in detection efficacy, hSM in mouse skin and intestinal mucosa were quantified by liquid chromatography-tandem mass spectrometry, and found to be 16.5 ± 2.0 and 0.8 ± 0.4 nmol/µmol phospholipid, respectively. The methods described here are applicable to biological experiments on hSM in epithelia of the body surface and digestive tract.


Assuntos
Ácidos Graxos/análise , Pele/química , Esfingomielinas/análise , Animais , Cromatografia Gasosa , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos ICR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...