Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Microb Biotechnol ; 16(7): 1524-1535, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37212362

RESUMO

Exosomes, membrane vesicles released extracellularly from cells, contain nucleic acids, proteins, lipids and other components, allowing the transfer of material information between cells. Recent studies reported the role of exosomes in pathogenic microbial infection and host immune mechanisms. Brucella-invasive bodies can survive in host cells for a long time and cause chronic infection, which causes tissue damage. Whether exosomes are involved in host anti-Brucella congenital immune responses has not been reported. Here, we extracted and identified exosomes secreted by Brucella melitensis M5 (Exo-M5)-infected macrophages, and performed in vivo and in vitro studies to examine the effects of exosomes carrying antigen on the polarization of macrophages and immune activation. Exo-M5 promoted the polarization of M1 macrophages, which induced the significant secretion of M1 cytokines (tumour necrosis factor-α and interferon-γ) through NF-κB signalling pathways and inhibited the secretion of M2 cytokines (IL-10), thereby inhibiting the intracellular survival of Brucella. Exo-M5 activated innate immunity and promoted the release of IgG2a antibodies that protected mice from Brucella infection and reduced the parasitaemia of Brucella in the spleen. Furthermore, Exo-M5 contained Brucella antigen components, including Omp31 and OmpA. These results demonstrated that exosomes have an important role in immune responses against Brucella, which might help elucidate the mechanisms of host immunity against Brucella infection and aid the search for Brucella biomarkers and the development of new vaccine candidates.


Assuntos
Brucelose , Exossomos , Macrófagos , Brucella melitensis , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/microbiologia , Exossomos/imunologia , Exossomos/microbiologia , Animais , Camundongos , Polaridade Celular , Antígenos de Bactérias/imunologia , Brucelose/imunologia , Brucelose/metabolismo , Transdução de Sinais , Espaço Intracelular/microbiologia , Viabilidade Microbiana
2.
Autophagy ; 19(10): 2811-2813, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36779581

RESUMO

Previously considered as an exclusive extracellular bacterium, Staphylococcus aureus has been shown to be able to invade many cells in vitro and in humans. Once inside the host cell, both cytosolic and endosome-associated S. aureus strongly induce macroautophagy/autophagy. Whether autophagy fosters S. aureus intracellular survival or clearance remains unclear. The YAP1-TEAD axis regulates the expression of target genes controlling the cell fate (e.g., proliferation, migration, cell cycle …). Growing evidence indicates that YAP1-TEAD also regulates autophagy and lysosomal pathways. Recently we showed that the YAP1-TEAD axis promotes autophagy and lysosome biogenesis to restrict S. aureus intracellular replication. We also discovered that the C3 exoenzyme-like EDIN-B toxin produced by the pathogenic S. aureus ST80 strain inhibits YAP1 nuclear translocation resulting in a strong increase of intracellular S. aureus burden.


Assuntos
Autofagia , Espaço Intracelular , Staphylococcus aureus , Fatores de Transcrição de Domínio TEA , Humanos , Autofagia/imunologia , Células HEK293 , Espaço Intracelular/microbiologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/classificação , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/imunologia , Fatores de Transcrição de Domínio TEA/metabolismo , Técnicas In Vitro
3.
Nature ; 606(7915): 769-775, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35676476

RESUMO

Adaptive immune components are thought to exert non-overlapping roles in antimicrobial host defence, with antibodies targeting pathogens in the extracellular environment and T cells eliminating infection inside cells1,2. Reliance on antibodies for vertically transferred immunity from mothers to babies may explain neonatal susceptibility to intracellular infections3,4. Here we show that pregnancy-induced post-translational antibody modification enables protection against the prototypical intracellular pathogen Listeria monocytogenes. Infection susceptibility was reversed in neonatal mice born to preconceptually primed mothers possessing L. monocytogenes-specific IgG or after passive transfer of antibodies from primed pregnant, but not virgin, mice. Although maternal B cells were essential for producing IgGs that mediate vertically transferred protection, they were dispensable for antibody acquisition of protective function, which instead required sialic acid acetyl esterase5 to deacetylate terminal sialic acid residues on IgG variable-region N-linked glycans. Deacetylated L. monocytogenes-specific IgG protected neonates through the sialic acid receptor CD226,7, which suppressed IL-10 production by B cells leading to antibody-mediated protection. Consideration of the maternal-fetal dyad as a joined immunological unit reveals protective roles for antibodies against intracellular infection and fine-tuned adaptations to enhance host defence during pregnancy and early life.


Assuntos
Imunidade Materno-Adquirida , Imunoglobulina G , Espaço Intracelular , Listeria monocytogenes , Mães , Gravidez , Acetilesterase , Animais , Animais Recém-Nascidos , Linfócitos B , Feminino , Imunidade Materno-Adquirida/imunologia , Imunoglobulina G/imunologia , Interleucina-10/biossíntese , Espaço Intracelular/imunologia , Espaço Intracelular/microbiologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Listeriose/prevenção & controle , Camundongos , Ácido N-Acetilneuramínico/metabolismo , Gravidez/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico , Linfócitos T
4.
Elife ; 112022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35670565

RESUMO

We report the real-time response of Escherichia coli to lactoferricin-derived antimicrobial peptides (AMPs) on length scales bridging microscopic cell sizes to nanoscopic lipid packing using millisecond time-resolved synchrotron small-angle X-ray scattering. Coupling a multiscale scattering data analysis to biophysical assays for peptide partitioning revealed that the AMPs rapidly permeabilize the cytosolic membrane within less than 3 s-much faster than previously considered. Final intracellular AMP concentrations of ∼80-100 mM suggest an efficient obstruction of physiologically important processes as the primary cause of bacterial killing. On the other hand, damage of the cell envelope and leakage occurred also at sublethal peptide concentrations, thus emerging as a collateral effect of AMP activity that does not kill the bacteria. This implies that the impairment of the membrane barrier is a necessary but not sufficient condition for microbial killing by lactoferricins. The most efficient AMP studied exceeds others in both speed of permeabilizing membranes and lowest intracellular peptide concentration needed to inhibit bacterial growth.


Assuntos
Antibacterianos , Peptídeos Catiônicos Antimicrobianos , Membrana Celular , Escherichia coli , Lactoferrina , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Espaço Intracelular/química , Espaço Intracelular/microbiologia , Lactoferrina/metabolismo , Lactoferrina/farmacologia , Fatores de Tempo
5.
Nat Commun ; 13(1): 693, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121734

RESUMO

Intracellular pathogens are challenged with limited space and resources while replicating in a single host cell. Mechanisms for direct invasion of neighboring host cells have been discovered in cell culture, but we lack an understanding of how bacteria directly spread between host cells in vivo. Here, we describe the discovery of intracellular bacteria that use filamentation for spreading between the intestinal epithelial cells of a natural host, the rhabditid nematode Oscheius tipulae. The bacteria, which belong to the new species Bordetella atropi, can infect the nematodes following a fecal-oral route, and reduce host life span and fecundity. Filamentation requires UDP-glucose biosynthesis and sensing, a highly conserved pathway that is used by other bacteria to detect rich conditions and inhibit cell division. Our results indicate that B. atropi uses a pathway that normally regulates bacterial cell size to trigger filamentation inside host cells, thus facilitating cell-to-cell dissemination.


Assuntos
Bordetella/crescimento & desenvolvimento , Mucosa Intestinal/citologia , Rhabditoidea/citologia , Animais , Bordetella/classificação , Bordetella/patogenicidade , Divisão Celular/genética , Células Epiteliais/microbiologia , Células Epiteliais/ultraestrutura , Genoma Bacteriano/genética , Interações Hospedeiro-Patógeno , Hibridização in Situ Fluorescente , Mucosa Intestinal/microbiologia , Espaço Intracelular/microbiologia , Redes e Vias Metabólicas/genética , Microscopia Eletrônica de Transmissão , Filogenia , RNA Ribossômico 16S/genética , Rhabditoidea/genética , Rhabditoidea/microbiologia , Análise de Sequência de DNA , Virulência
7.
Pathog Dis ; 79(9)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755855

RESUMO

Mammals have evolved sophisticated host cell death signaling pathways as an important immune mechanism to recognize and eliminate cell intruders before they establish their replicative niche. However, intracellular bacterial pathogens that have co-evolved with their host have developed a multitude of tactics to counteract this defense strategy to facilitate their survival and replication. This requires manipulation of pro-death and pro-survival host signaling pathways during infection. Obligate intracellular bacterial pathogens are organisms that absolutely require an eukaryotic host to survive and replicate, and therefore they have developed virulence factors to prevent diverse forms of host cell death and conserve their replicative niche. This review encapsulates our current understanding of these host-pathogen interactions by exploring the most relevant findings of Anaplasma spp., Chlamydia spp., Rickettsia spp. and Coxiella burnetii modulating host cell death pathways. A detailed comprehension of the molecular mechanisms through which these obligate intracellular pathogens manipulate regulated host cell death will not only increase the current understanding of these difficult-to-study pathogens but also provide insights into new tools to study regulated cell death and the development of new therapeutic approaches to control infection.


Assuntos
Fenômenos Fisiológicos Bacterianos , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Animais , Biomarcadores , Morte Celular/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Espaço Intracelular/imunologia , Espaço Intracelular/metabolismo , Espaço Intracelular/microbiologia , Lisossomos/imunologia , Lisossomos/metabolismo , Lisossomos/microbiologia , Viabilidade Microbiana/imunologia , Estresse Oxidativo , Fagocitose , Especificidade da Espécie , Fatores de Virulência
8.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204285

RESUMO

Pathogenic intracellular bacteria, parasites and viruses have evolved sophisticated mechanisms to manipulate mammalian host cells to serve as niches for persistence and proliferation. The intracellular lifestyles of pathogens involve the manipulation of membrane-bound organellar compartments of host cells. In this review, we described how normal structural organization and cellular functions of endosomes, endoplasmic reticulum, Golgi apparatus, mitochondria, or lipid droplets are targeted by microbial virulence mechanisms. We focus on the specific interactions of Salmonella, Legionella pneumophila, Rickettsia rickettsii, Chlamydia spp. and Mycobacterium tuberculosis representing intracellular bacterial pathogens, and of Plasmodium spp. and Toxoplasma gondii representing intracellular parasites. The replication strategies of various viruses, i.e., Influenza A virus, Poliovirus, Brome mosaic virus, Epstein-Barr Virus, Hepatitis C virus, severe acute respiratory syndrome virus (SARS), Dengue virus, Zika virus, and others are presented with focus on the specific manipulation of the organelle compartments. We compare the specific features of intracellular lifestyle and replication cycles, and highlight the communalities in mechanisms of manipulation deployed.


Assuntos
Interações Hospedeiro-Patógeno , Organelas/metabolismo , Animais , Transporte Biológico , Biomarcadores , Metabolismo Energético , Interações Hospedeiro-Parasita , Humanos , Espaço Intracelular/metabolismo , Espaço Intracelular/microbiologia , Espaço Intracelular/parasitologia , Espaço Intracelular/virologia , Organelas/microbiologia , Organelas/parasitologia , Organelas/ultraestrutura , Fagocitose
9.
Int J Mol Sci ; 22(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198513

RESUMO

BACKGROUND: Pulmonary disease caused by Mycobacterium abscessus (M. abscessus) spreads around the world, and this disease is extremely difficult to treat due to intrinsic and acquired resistance of the pathogen to many approved antibiotics. M. abscessus is regarded as one of the most drug-resistant mycobacteria, with very limited therapeutic options. METHODS: Whole-cell growth inhibition assays was performed to screen and identify novel inhibitors. The IC50 of the target compounds were tested against THP-1 cells was determined to calculate the selectivity index, and then time-kill kinetics assay was performed against M. abscessus. Subsequently, the synergy of oritavancin with other antibiotics was evaluated by using checkerboard method. Finally, in vivo efficacy was determined in an immunosuppressive murine model simulating M. abscessus infection. RESULTS: We have identified oritavancin as a potential agent against M. abscessus. Oritavancin exhibited time-concentration dependent bactericidal activity against M. abscessus and it also displayed synergy with clarithromycin, tigecycline, cefoxitin, moxifloxacin, and meropenem in vitro. Additionally, oritavancin had bactericidal effect on intracellular M. abscessus. Oritavancin significantly reduced bacterial load in lung when it was used alone or in combination with cefoxitin and meropenem. CONCLUSIONS: Our in vitro and in vivo assay results indicated that oritavancin may be a viable treatment option against M. abscessus infection.


Assuntos
Antibacterianos/uso terapêutico , Lipoglicopeptídeos/uso terapêutico , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/fisiologia , Animais , Antibacterianos/farmacologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Humanos , Terapia de Imunossupressão , Espaço Intracelular/microbiologia , Lipoglicopeptídeos/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Células THP-1
10.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161265

RESUMO

Mitogen-activated protein kinase kinase kinase 7 (MAP3K7), known as TAK1, is an intracellular signaling intermediate of inflammatory responses. However, a series of mouse Tak1 gene deletion analyses have revealed that ablation of TAK1 does not prevent but rather elicits inflammation, which is accompanied by elevation of reactive oxygen species (ROS). This has been considered a consequence of impaired TAK1-dependent maintenance of tissue integrity. Contrary to this view, here we propose that TAK1 inhibition-induced ROS are an active cellular process that targets intracellular bacteria. Intracellular bacterial effector proteins such as Yersinia's outer membrane protein YopJ are known to inhibit TAK1 to circumvent the inflammatory host responses. We found that such TAK1 inhibition induces mitochondrial-derived ROS, which effectively destroys intracellular bacteria. Two cell death-signaling molecules, caspase 8 and RIPK3, cooperatively participate in TAK1 inhibition-induced ROS and blockade of intracellular bacterial growth. Our results reveal a previously unrecognized host defense mechanism, which is initiated by host recognition of pathogen-induced impairment in a host protein, TAK1, but not directly of pathogens.


Assuntos
Bactérias/crescimento & desenvolvimento , Espaço Intracelular/microbiologia , MAP Quinase Quinase Quinases/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Caspase 3/metabolismo , Contagem de Colônia Microbiana , Sulfeto de Hidrogênio/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , Camundongos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Salmonella/efeitos dos fármacos , Salmonella/crescimento & desenvolvimento , Yersinia/efeitos dos fármacos
11.
Front Immunol ; 12: 662944, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959131

RESUMO

Extracellular vesicles (EVs) have garnered significant interest in recent years due to their contributions to cell-to-cell communication and disease processes. EVs are composed of a complex profile of bioactive molecules, which include lipids, nucleic acids, metabolites, and proteins. Although the biogenesis of EVs released by cells under various normal and abnormal conditions has been well-studied, there is incomplete knowledge about how infection influences EV biogenesis. EVs from infected cells contain specific molecules of both host and pathogen origin that may contribute to pathogenesis and the elicitation of the host immune response. Intracellular pathogens exhibit diverse lifestyles that undoubtedly dictate the mechanisms by which their molecules enter the cell's exosome biogenesis schemes. We will discuss the current understanding of the mechanisms used during infection to traffic molecules from their vacuolar niche to host EVs by selected intravacuolar pathogens. We initially review general exosome biogenesis schemes and then discuss what is known about EV biogenesis in Mycobacterium, Plasmodium, Toxoplasma, and Leishmania infections, which are pathogens that reside within membrane delimited compartments in phagocytes at some time in their life cycle within mammalian hosts. The review includes discussion of the need for further studies into the biogenesis of EVs to better understand the contributions of these vesicles to host-pathogen interactions, and to uncover potential therapeutic targets to control these pathogens.


Assuntos
Vesículas Extracelulares/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Fatores de Virulência/metabolismo , Animais , Transporte Biológico , Comunicação Celular , Exossomos , Vesículas Extracelulares/microbiologia , Vesículas Extracelulares/parasitologia , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita , Interações Hospedeiro-Patógeno/genética , Humanos , Espaço Intracelular/imunologia , Espaço Intracelular/metabolismo , Espaço Intracelular/microbiologia , Espaço Intracelular/parasitologia , Processamento de Proteína Pós-Traducional , Transdução de Sinais
12.
Pathog Dis ; 79(5)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33974702

RESUMO

Intracellular bacteria have evolved various strategies to evade host defense mechanisms. Remarkably, the obligately intracellular bacterium, Ehrlichia chaffeensis, hijacks host cell processes of the mononuclear phagocyte to evade host defenses through mechanisms executed in part by tandem repeat protein (TRP) effectors secreted by the type 1 secretion system. In the past decade, TRP120 has emerged as a model moonlighting effector, acting as a ligand mimetic, nucleomodulin and ubiquitin ligase. These defined functions illuminate the diverse roles TRP120 plays in exploiting and manipulating host cell processes, including cytoskeletal organization, vesicle trafficking, cell signaling, transcriptional regulation, post-translational modifications, autophagy and apoptosis. This review will focus on TRP effectors and their expanding roles in infection and provide perspective on Ehrlichia chaffeensis as an invaluable model organism for understanding infection strategies of obligately intracellular bacteria.


Assuntos
Proteínas de Bactérias , Ehrlichia chaffeensis , Interações Hospedeiro-Patógeno , Sequências de Repetição em Tandem/genética , Apoptose , Ehrlichia chaffeensis/genética , Ehrlichia chaffeensis/patogenicidade , Ehrlichiose , Humanos , Espaço Intracelular/microbiologia , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Sistemas de Secreção Tipo I
13.
PLoS Pathog ; 17(4): e1009534, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33901267

RESUMO

Long-term survival of bacterial pathogens during persistent bacterial infections can be associated with antibiotic treatment failure and poses a serious public health problem. Infections caused by the Gram-negative pathogen Pseudomonas aeruginosa, which can cause both acute and chronic infections, are particularly challenging due to its high intrinsic resistance to antibiotics. The ineffectiveness of antibiotics is exacerbated when bacteria reside intracellularly within host cells where they can adopt a drug tolerant state. While the early steps of adherence and entry of P. aeruginosa into mammalian cells have been described, the subsequent fate of internalized bacteria, as well as host and bacterial molecular pathways facilitating bacterial long-term survival, are not well defined. In particular, long-term survival within bladder epithelial cells has not been demonstrated and this may have important implications for the understanding and treatment of UTIs caused by P. aeruginosa. Here, we demonstrate and characterize the intracellular survival of wild type (WT) P. aeruginosa inside bladder epithelial cells and a mutant with a disruption in the bacterial two-component regulator AlgR that is unable to survive intracellularly. Using simultaneous dual RNA-seq transcriptional profiling, we define the transcriptional response of intracellular bacteria and their corresponding invaded host cells. The bacterial transcriptional response demonstrates that WT bacteria rapidly adapt to the stress encountered in the intracellular environment in contrast to ΔalgR bacteria. Analysis of the host transcriptional response to invasion suggests that the NF-κB signaling pathway, previously shown to be required for extracellular bacterial clearance, is paradoxically also required for intracellular bacterial survival. Lastly, we demonstrate that intracellular survival is important for pathogenesis of P. aeruginosa in vivo using a model of murine urinary tract infection. We propose that the unappreciated ability of P. aeruginosa to survive intracellularly may play an important role in contributing to the chronicity and recurrence of P. aeruginosa in urinary tract infections.


Assuntos
Adaptação Fisiológica/genética , Interações Hospedeiro-Patógeno/genética , Pseudomonas aeruginosa/fisiologia , Animais , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Aptidão Genética/fisiologia , Espaço Intracelular/genética , Espaço Intracelular/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Viabilidade Microbiana/genética , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/microbiologia , Infecções Urinárias/genética , Infecções Urinárias/microbiologia
14.
Biomolecules ; 11(1)2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430251

RESUMO

Staphylococcus aureus is a Gram-positive bacterium responsible for a variety of mild to life-threatening infections including bone infections such as osteomyelitis. This bacterium is able to invade and persist within non-professional phagocytic cells such as osteoblasts. In the present study, four different S. aureus strains, namely, 2SA-ST239-III (ST239), 5SA-ST5-II (ST5), 10SA-ST228-I (ST228), and 14SA-ST22-IVh (ST22), were tested for their ability to modulate cell viability in MG-63 osteoblast-like cells following successful invasion and persistence. Methicillin-sensitive S. aureus (MSSA) ATCC-12598-ST30 (ST30) was used as control strain. Despite being proven that ST30, ST239, and ST22 have a similar ability to internalize and persist in MG-63 osteoblast-like cells under our experimental conditions, we demonstrated that the observed decrease in cell viability was due to the different behavior of the considered strains, rather than the number of intracellular bacteria. We focused our attention on different biochemical cell functions related to inflammation, cell metabolism, and oxidative stress during osteoblast infections. We were able to show the following: (1) ST30 and ST239 were the only two clones able to persist and maintain their number in the hostile environment of the cell during the entire period of infection; (2) ST239 was the only clone able to significantly increase gene expression (3 and 24 h post-infection (p.i.)) and protein secretion (24 h p.i.) of both interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in MG-63 osteoblast-like cells; (3) the same clone determined a significant up-regulation of the transforming growth factorbeta 1 (TGF-ß1) and of the metabolic marker glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNAs at 24 h p.i.; and (4) neither the MSSA nor the four methicillin-resistant S. aureus (MRSA) strains induced oxidative stress phenomena in MG-63 cells, although a high degree of variability was observed for the different clones with regard to the expression pattern of nuclear factor E2-related factor 2 (Nrf2) and its downstream gene heme oxygenase 1 (HO-1) activation. Our results may pave the way for an approach to S. aureus-induced damage, moving towards individualized therapeutic strategies that take into account the differences between MSSA and MRSA as well as the distinctive features of the different clones. This approach is based on a change of paradigm in antibiotic therapy involving a case-based use of molecules able to counteract pro-inflammatory cytokines activity such as selective cytokine signaling inhibitors (IL-6, TNF-α).


Assuntos
Staphylococcus aureus Resistente à Meticilina/fisiologia , Osteoblastos/microbiologia , Linhagem Celular , Sobrevivência Celular , Células Clonais , Contagem de Colônia Microbiana , Citocinas/genética , Citocinas/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Espaço Intracelular/microbiologia , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fenótipo , Regulação para Cima
15.
Cells ; 11(1)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-35011636

RESUMO

The early detection of bacterial pathogens through immune sensors is an essential step in innate immunity. STING (Stimulator of Interferon Genes) has emerged as a key mediator of inflammation in the setting of infection by connecting pathogen cytosolic recognition with immune responses. STING detects bacteria by directly recognizing cyclic dinucleotides or indirectly by bacterial genomic DNA sensing through the cyclic GMP-AMP synthase (cGAS). Upon activation, STING triggers a plethora of powerful signaling pathways, including the production of type I interferons and proinflammatory cytokines. STING activation has also been associated with the induction of endoplasmic reticulum (ER) stress and the associated inflammatory responses. Recent reports indicate that STING-dependent pathways participate in the metabolic reprogramming of macrophages and contribute to the establishment and maintenance of a robust inflammatory profile. The induction of this inflammatory state is typically antimicrobial and related to pathogen clearance. However, depending on the infection, STING-mediated immune responses can be detrimental to the host, facilitating bacterial survival, indicating an intricate balance between immune signaling and inflammation during bacterial infections. In this paper, we review recent insights regarding the role of STING in inducing an inflammatory profile upon intracellular bacterial entry in host cells and discuss the impact of STING signaling on the outcome of infection. Unraveling the STING-mediated inflammatory responses can enable a better understanding of the pathogenesis of certain bacterial diseases and reveal the potential of new antimicrobial therapy.


Assuntos
Infecções Bacterianas/metabolismo , Inflamação/metabolismo , Espaço Intracelular/microbiologia , Proteínas de Membrana/metabolismo , Transdução de Sinais , Animais , Estresse do Retículo Endoplasmático , Humanos
16.
Autophagy ; 17(4): 888-902, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32174246

RESUMO

Staphylococcus aureus is a major human pathogen causing multiple pathologies, from cutaneous lesions to life-threatening sepsis. Although neutrophils contribute to immunity against S. aureus, multiple lines of evidence suggest that these phagocytes can provide an intracellular niche for staphylococcal dissemination. However, the mechanism of neutrophil subversion by intracellular S. aureus remains unknown. Targeting of intracellular pathogens by macroautophagy/autophagy is recognized as an important component of host innate immunity, but whether autophagy is beneficial or detrimental to S. aureus-infected hosts remains controversial. Here, using larval zebrafish, we showed that the autophagy marker Lc3 rapidly decorates S. aureus following engulfment by macrophages and neutrophils. Upon phagocytosis by neutrophils, Lc3-positive, non-acidified spacious phagosomes are formed. This response is dependent on phagocyte NADPH oxidase as both cyba/p22phox knockdown and diphenyleneiodonium (DPI) treatment inhibited Lc3 decoration of phagosomes. Importantly, NADPH oxidase inhibition diverted neutrophil S. aureus processing into tight acidified vesicles, which resulted in increased host resistance to the infection. Some intracellular bacteria within neutrophils were also tagged by Sqstm1/p62-GFP fusion protein and loss of Sqstm1 impaired host defense. Together, we have shown that intracellular handling of S. aureus by neutrophils is best explained by Lc3-associated phagocytosis (LAP), which appears to provide an intracellular niche for bacterial pathogenesis, while the selective autophagy receptor Sqstm1 is host-protective. The antagonistic roles of LAP and Sqstm1-mediated pathways in S. aureus-infected neutrophils may explain the conflicting reports relating to anti-staphylococcal autophagy and provide new insights for therapeutic strategies against antimicrobial-resistant Staphylococci.Abbreviations: ATG: autophagy related; CFU: colony-forming units; CMV: cytomegalovirus; Cyba/P22phox: cytochrome b-245, alpha polypeptide; DMSO: dimethyl sulfoxide; DPI: diphenyleneiodonium; EGFP: enhanced green fluorescent protein; GFP: green fluorescent protein; hpf: hours post-fertilization; hpi: hours post-infection; Irf8: interferon regulatory factor 8; LAP: LC3-associated phagocytosis; lyz: lysozyme; LWT: london wild type; Map1lc3/Lc3: microtubule-associated protein 1 light chain 3; NADPH oxidase: nicotinamide adenine dinucleotide phosphate oxidase; RFP: red fluorescent protein; ROS: reactive oxygen species; RT-PCR: reverse transcriptase polymerase chain reaction; Sqstm1/p62: sequestosome 1; Tg: transgenic; TSA: tyramide signal amplification.


Assuntos
Autofagia , Espaço Intracelular/microbiologia , Neutrófilos/microbiologia , Staphylococcus aureus/fisiologia , Animais , Animais Geneticamente Modificados , Cinética , Macrófagos/metabolismo , Macrófagos/microbiologia , Proteínas Associadas aos Microtúbulos/metabolismo , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Fagocitose , Fagossomos/metabolismo , Agregados Proteicos , Proteína Sequestossoma-1/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/microbiologia , Proteínas de Peixe-Zebra/metabolismo
17.
Methods Mol Biol ; 2236: 115-127, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33237545

RESUMO

Myeloid-derived suppressor cells (MDSC) encompass a subset of myeloid cells, which suppress both innate and adaptive immune functions. Since Mycobacterium tuberculosis (M. tuberculosis) can infect these cells, interest has emerged to study the antimicrobial response of MDSC to mycobacteria causing tuberculosis. Reactive oxygen species (ROS) are critical mediators to control intracellular replication of M. tuberculosis and MDSC express high levels of these effector molecules. Here we describe the flow cytometric assessment of total cellular ROS produced by MDSC in response to infection with M. tuberculosis and compare it with the ROS activity of non-MDSC myeloid cells. To further understand the dynamics of host-pathogen interactions, we provide details on methods for measurement of the intracellular replication of M. tuberculosis within MDSC. Of note, these procedures were adopted for primary MDSC and non-MDSC subsets isolated from human immunodeficiency virus (HIV)-uninfected or HIV-infected individuals, in vitro infected with M. tuberculosis to mimic M. tuberculosis mono- or HIV-M. tuberculosis coinfection, respectively.


Assuntos
Anti-Infecciosos/metabolismo , Infecções por HIV/complicações , HIV/fisiologia , Monócitos/patologia , Mycobacterium tuberculosis/fisiologia , Células Supressoras Mieloides/metabolismo , Tuberculose/complicações , Células Cultivadas , Citometria de Fluxo , Fluorescência , Humanos , Espaço Intracelular/microbiologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo
18.
Mol Plant Microbe Interact ; 34(1): 88-99, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33226302

RESUMO

Bradyrhizobium ORS285 forms a nitrogen-fixating symbiosis with both Nod factor (NF)-dependent and NF-independent Aeschynomene spp. The Bradyrhizobium ORS285 ribBA gene encodes for a putative bifunctional enzyme with 3,4-dihydroxybutanone phosphate (3,4-DHBP) synthase and guanosine triphosphate (GTP) cyclohydrolase II activities, catalyzing the initial steps in the riboflavin biosynthesis pathway. In this study, we show that inactivating the ribBA gene does not cause riboflavin auxotrophy under free-living conditions and that, as shown for RibBAs from other bacteria, the GTP cyclohydrolase II domain has no enzymatic activity. For this reason, we have renamed the annotated ribBA as ribBX. Because we were unable to identify other ribBA or ribA and ribB homologs in the genome of Bradyrhizobium ORS285, we hypothesize that the ORS285 strain can use unconventional enzymes or an alternative pathway for the initial steps of riboflavin biosynthesis. Inactivating ribBX has a drastic impact on the interaction of Bradyrhizobium ORS285 with many of the tested Aeschynomene spp. In these Aeschynomene spp., the ORS285 ribBX mutant is able to infect the plant host cells but the intracellular infection is not maintained and the nodules senesce early. This phenotype can be complemented by reintroduction of the 3,4-DHBP synthase domain alone. Our results indicate that, in Bradyrhizobium ORS285, the RibBX protein is not essential for riboflavin biosynthesis under free-living conditions and we hypothesize that its activity is needed to sustain riboflavin biosynthesis under certain symbiotic conditions.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas de Bactérias , Bradyrhizobium , Fabaceae , Espaço Intracelular , Proteínas de Bactérias/genética , Bradyrhizobium/enzimologia , Bradyrhizobium/genética , Fabaceae/microbiologia , Espaço Intracelular/microbiologia , Simbiose/genética
19.
Int J Nanomedicine ; 15: 8829-8843, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304099

RESUMO

BACKGROUND AND AIM: An antimicrobial delivery in the form of surface-modified lectin of lipid nanoparticles was proposed to improve cellular accumulation. ArtinM, an active toll-like receptor 2 (TLR2) agonist lectin isolated from cempedak (Arthocarpus integrifolia) seeds, was selected to induce cellular engulfment of nanoparticles within infected host cells. MATERIALS AND METHODS: Lipid nanoparticles were prepared using the emulsification technique before electrostatic adsorption of artinM. The formula comprising of rifampicin, soy phospholipid, and polysorbate 80 was optimized by Box-Behnken design to produce the desired particle size, entrapment efficiency, and drug loading. The optimum formula was characterized for morphology, in vitro release, and cellular transport. RESULTS AND DISCUSSION: Soy phospholipid showed a profound effect on controlling drug loading and entrapment efficiency. Owing to its surface activity, polysorbate 80 contributed significantly to reduce particle size; however, a higher ratio to lipid concentration resulted in a decrease of rifampicin encapsulation. The adsorption of artinM on the surface of nanoparticles was accomplished by electrostatic binding at pH 4, where this process maintained the stability of encapsulated rifampicin. A high proportion of artinM adsorbed on the surface of the nanoparticles shown by haemagglutination assay, zeta potential measurement, and transmission electron microscopy imaging. Cellular uptake revealed by confocal microscopy showed the success in transporting Nile-red labelled nanoparticles across fibroblast cells. CONCLUSION: The delivery system of nanoparticles bearing artinM becomes a potential platform technology for antibiotic targeting in the treatment of life-threatening chronic diseases caused by intracellular infections.


Assuntos
Antibacterianos/química , Antibacterianos/metabolismo , Portadores de Fármacos/química , Espaço Intracelular/efeitos dos fármacos , Lectinas/química , Nanopartículas/química , Fosfolipídeos/química , Antibacterianos/farmacologia , Transporte Biológico , Espaço Intracelular/microbiologia , Tamanho da Partícula , Polissorbatos/química
20.
Cell Commun Signal ; 18(1): 187, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256738

RESUMO

BACKGROUND: Pyroptosis is a recently identified pathway of caspase-mediated cell death in response to microbes, lipopolysaccharide, or chemotherapy in certain types of cells. However, the mechanism of how pyroptosis is regulated is not well-established. METHODS: Herein, the intracellular bacteria were detected by staining and laser confocal microscopy and TEM. Live/dead cell imaging assay was used to examine macrophage death. Western blot and immunohistochemical staining were used to examine the protein changes. IFA was used to identify typical budding vesicles of pyroptosis and the STAT3 nuclear localization. SEM was used to observe the morphological characteristics of pyroptosis. ELISA was used to detect the level of inflammatory cytokines. Pyroptosis was filmed in macrophages by LSCM. RESULTS: S. aureus was internalized by human macrophages. Intracellular S. aureus induced macrophage death. S. aureus invasion increased the expression of NLRP3, Caspase1 (Casp-1 p20) and the accumulation of GSDMD-NT, GSDMD-NT pore structures, and the release of IL-1ß and IL-18 in macrophages. Macrophages pyroptosis induced by S. aureus can be abrogated by blockage of S. aureus phagocytosis. The pyroptosic effect by S. aureus infection was promoted by either rapamycin or Stattic, a specific inhibitor for mTORC1 or STAT3. Inhibition of mTORC1 or STAT3 induced pyroptosis. mTORC1 regulated the pyroptosic gene expression through governing the nuclear localization of STAT3. mTORC1/STAT3 axis may play a regulatory role in pyroptosis within macrophages. CONCLUSIONS: S. aureus infection induces human macrophage pyroptosis, inhibition of mTORC1/STAT3 axis facilitates S. aureus-induced pyroptosis. mTORC1 and STAT3 are associated with pyroptosis. Our findings demonstrate a regulatory function of the mTORC1/STAT3 axis in macrophage pyroptosis, constituting a novel mechanism by which pyroptosis is regulated in macrophages. Video Abstract Macrophages were infected with S. aureus for 3 h (MOI 25:1), and pyroptosis was filmed in macrophages by laser confocal microscopy. A representative field was recorded. Arrow indicates lysing dead cell.


Assuntos
Macrófagos/metabolismo , Macrófagos/microbiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Piroptose , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Staphylococcus aureus/patogenicidade , Caspase 1/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Espaço Intracelular/microbiologia , Macrófagos/patologia , Macrófagos/ultraestrutura , Fagocitose , Proteínas de Ligação a Fosfato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Células THP-1 , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...