Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Chem Biodivers ; 21(5): e202400257, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38414116

RESUMO

Bulbs of Lilium brownii, commonly known as "Bai-he" in China, serve both edible and medicinal purposes in clinical practice. In this study, two new isospirostanol-type saponins were isolated from L. brownii, and their structures were identified by spectroscopic method, and absolute configurations were elucidated by comprehensive analysis of spectral data obtained from combined acid hydrolysis. Two compounds were finally identified as 3-O-[α-L-rhamnopyranosyl-(1→2)-ß-D-glucopyranoside]-(22R,25R)-5α-spirosolane-3ß-ol (1) and 3-O-{α-L-rhamnopyranosyl-(1→2)-[ß-D-glucopyranosyl-(1→4)]-ß-D-glucopyranoside}-(22R,25R)-5α-spirosolane-3ß-ol (2), respectively. Further, we found that compound 2 significantly suppressed the proliferation of SMMC-7721 and HepG2 cells with IC50 values of 26.3±1.08 µM and 30.9±1.59 µM, whereas compound 1 didn't inhibit both of the two hepatocellular carcinoma. Subsequently, compound 2 effectively decreased the levels of interleukin-1ß and tumor necrosis factor-α and the expression of Bcl-2, and increased the expression of Bax and Caspase-3 proteins. Which indicated that the anti-hepatocellular carcinoma effect of compound 2 involves reducing the level of inflammation and inducing apoptosis.


Assuntos
Apoptose , Proliferação de Células , Lilium , Neoplasias Hepáticas , Raízes de Plantas , Saponinas , Humanos , Saponinas/farmacologia , Saponinas/química , Saponinas/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Lilium/química , Raízes de Plantas/química , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Apoptose/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Espirostanos/farmacologia , Espirostanos/química , Espirostanos/isolamento & purificação , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Interleucina-1beta/metabolismo , Interleucina-1beta/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Células Hep G2 , Estrutura Molecular , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Conformação Molecular
2.
J Chem Inf Model ; 63(9): 2881-2894, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37104820

RESUMO

Alzheimer's disease (AD), a neurodegenerative disease with no cure, affects millions of people worldwide and has become one of the biggest healthcare challenges. Some investigated compounds play anti-AD roles at the cellular or the animal level, but their molecular mechanisms remain unclear. In this study, we designed a strategy combining network-based and structure-based methods together to identify targets for anti-AD sarsasapogenin derivatives (AAs). First, we collected drug-target interactions (DTIs) data from public databases, constructed a global DTI network, and generated drug-substructure associations. After network construction, network-based models were built for DTI prediction. The best bSDTNBI-FCFP_4 model was further used to predict DTIs for AAs. Second, a structure-based molecular docking method was employed for rescreening the prediction results to obtain more credible target proteins. Finally, in vitro experiments were conducted for validation of the predicted targets, and Nrf2 showed significant evidence as the target of anti-AD compound AA13. Moreover, we analyzed the potential mechanisms of AA13 for the treatment of AD. Generally, our combined strategy could be applied to other novel drugs or compounds and become a useful tool in identification of new targets and elucidation of disease mechanisms. Our model was deployed on our NetInfer web server (http://lmmd.ecust.edu.cn/netinfer/).


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Espirostanos , Animais , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Espirostanos/química , Espirostanos/uso terapêutico
3.
Bioorg Chem ; 130: 106268, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399863

RESUMO

The phytoconstituents of the fraction with hemostatic activity of the 70% aqueous ethanol extract of Ypsilandra thibetica Franch. were investigated. As a result, fourteen previously unreported spirostanol saponins, ypsilandrosides Z1-Z14, and nine known analogues were isolated and characterized by MS, NMR, and chemical methods. Among them, ypsilandrosides Z1-Z4 (1-4) have a rare 12-O-ß-d-glucopyranosyl group, while ypsilandrosides Z5-Z8 (5-8) possess a rare double bond between C-4 and C-5, and a hydroxyl or carbonyl located at the C-6. All isolates were further tested for their hemostatic activity. The results suggested that five spirostanol tetraglycosides show favorable inducing platelet aggregation activities. Among them, ypsilandroside G (16) displayed significant inducing platelet aggregation activity with an EC50 value of 57.17 µM. Furthermore, the preliminary structure-activity relationship of these spirostanol glycosides' hemostatic activity was discussed.


Assuntos
Glicosídeos , Hemostáticos , Melanthiaceae , Espirostanos , Glicosídeos/farmacologia , Glicosídeos/química , Hemostáticos/farmacologia , Espectroscopia de Ressonância Magnética , Melanthiaceae/química , Espirostanos/química
4.
Molecules ; 27(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35335393

RESUMO

Sarsasapogenin is a natural steroidal sapogenin molecule obtained mainly from Anemarrhena asphodeloides Bunge. Among the various phytosteroids present, sarsasapogenin has emerged as a promising molecule due to the fact of its diverse pharmacological activities. In this review, the chemistry, biosynthesis and pharmacological potentials of sarsasapogenin are summarised. Between 1996 and the present, the relevant literature regarding sarsasapogenin was obtained from scientific databases including PubMed, ScienceDirect, Scopus, and Google Scholar. Overall, sarsasapogenin is a potent molecule with anti-inflammatory, anticancer, antidiabetic, anti-osteoclastogenic and neuroprotective activities. It is also a potential molecule in the treatment for precocious puberty. This review also discusses the metabolism, pharmacokinetics and possible structural modifications as well as obstacles and opportunities for sarsasapogenin to become a drug molecule in the near future. More comprehensive preclinical studies, clinical trials, drug delivery, formulations of effective doses in pharmacokinetics studies, evaluation of adverse effects and potential synergistic effects with other drugs need to be thoroughly investigated to make sarsasapogenin a potential molecule for future drug development.


Assuntos
Anemarrhena , Espirostanos , Anemarrhena/química , Desenho de Fármacos , Espirostanos/química , Espirostanos/farmacologia
5.
Molecules ; 26(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34770942

RESUMO

Saponins, a diverse group of natural compounds, offer an interesting pool of derivatives with biomedical application. In this study, three structurally related spirostanol saponins were isolated and identified from the leek flowers of Allium porrum L. (garden leek). Two of them were identical with the already known leek plant constituents: aginoside (1) and 6-deoxyaginoside (2). The third one was identified as new component of A. porrum; however, it was found identical with yayoisaponin A (3) obtained earlier from a mutant of elephant garlic Allium ampeloprasun L. It is a derivative of the aginoside (1) with additional glucose in its glycosidic chain, identified by MS and NMR analysis as (2α, 3ß, 6ß, 25R)-2,6-dihydroxyspirostan-3-yl ß-D-glucopyranosyl-(1 → 3)-ß-D-glucopranosyl-(1 → 2)-[ß-D-xylopyranosyl-(1 → 3)]-ß-D-glucopyranosyl]-(1 → 4)-ß-D-galactopyranoside, previously reported also under the name alliporin. The leek native saponins were tested together with other known and structurally related saponins (tomatonin and digitonin) and with their related aglycones (agigenin and diosgenin) for in vitro cytotoxicity and for effects on NO production in mouse peritoneal cells. The highest inhibitory effects were exhibited by 6-deoxyaginoside. The obtained toxicity data, however, closely correlated with the suppression of NO production. Therefore, an unambiguous linking of obtained bioactivities of saponins with their expected immunobiological properties remained uncertain.


Assuntos
Allium/química , Flores/química , Macrófagos Peritoneais/efeitos dos fármacos , Óxido Nítrico/antagonistas & inibidores , Saponinas/farmacologia , Espirostanos/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Conformação Molecular , Óxido Nítrico/biossíntese , Saponinas/química , Saponinas/isolamento & purificação , Espirostanos/química , Espirostanos/isolamento & purificação
6.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34639219

RESUMO

A five-step transformation of a spiroketal side chain of tigogenin into an indolizidine system present in solanidane alkaloids such as demissidine and solanidine was elaborated. The key intermediate in the synthesis was spiroimine 3 readily obtained from tigogenin by its RuO4 oxidation to 5,6-dihydrokryptogenin followed by amination with aluminum amide generated in situ from DIBAlH and ammonium chloride. The mild reduction of spiroimine to a 26-hydroxy-dihydropyrrole derivative and subsequent mesylation resulted in the formation of 25-epidemissidinium salt or 23-sulfone depending on reaction conditions.


Assuntos
Diosgenina/química , Iminas/química , Alcaloides de Solanáceas/química , Alcaloides de Solanáceas/síntese química , Espirostanos/química
7.
Am J Chin Med ; 49(6): 1449-1471, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34263719

RESUMO

Gut microbiota has been proven to play an important role in many metabolic diseases and cardiovascular disease, particularly atherosclerosis. Ophiopogonin D (OPD), one of the effective compounds in Ophiopogon japonicus, is considered beneficial to metabolic syndrome and cardiovascular diseases. In this study, we have illuminated the effect of OPD in ApoE knockout (ApoE[Formula: see text] mice on the development of atherosclerosis and gut microbiota. To investigate the potential ability of OPD to alleviate atherosclerosis, 24 eight-week-old male ApoE[Formula: see text] mice (C57BL/6 background) were fed a high-fat diet (HFD) for 12 weeks, and 8 male C57BL/6 mice were fed a normal diet, serving as the control group. ApoE[Formula: see text] mice were randomly divided into the model group, OPD group, and simvastatin group ([Formula: see text]= 8). After treatment for 12 consecutive weeks, the results showed that OPD treatment significantly decreased the plaque formation and levels of serum lipid compared with those in the model group. In addition, OPD improved oral glucose tolerance and insulin resistance as well as reducing hepatocyte steatosis. Further analysis revealed that OPD might attenuate atherosclerosis through inhibiting mTOR phosphorylation and the consequent lipid metabolism signaling pathways mediated by SREBP1 and SCD1 in vivo and in vitro. Furthermore, OPD treatment led to significant structural changes in gut microbiota and fecal metabolites in HFD-fed mice and reduced the relative abundance of Erysipelotrichaceae genera associated with cholesterol metabolism. Collectively, these findings illustrate that OPD could significantly protect against atherosclerosis, which might be associated with the moderation of lipid metabolism and alterations in gut microbiota composition and fecal metabolites.


Assuntos
Aterosclerose/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Saponinas/farmacologia , Espirostanos/farmacologia , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Saponinas/química , Espirostanos/química
8.
Molecules ; 26(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070073

RESUMO

Two new spirostanol sapogenins (5ß-spirost-25(27)-en-1ß,2ß,3ß,5ß-tetrol 3 and its 25,27-dihydro derivative, (25S)-spirostan-1ß,2ß,3ß,5ß-tetrol 4) and four new saponins were isolated from the roots and rhizomes of Convallaria majalis L. together with known sapogenins (isolated from Liliaceae): 5ß-spirost-25(27)-en-1ß,3ß-diol 1, (25S)-spirostan-1ß,3ß-diol 2, 5ß-spirost-25(27)-en-1ß,3ß,4ß,5ß-tetrol 5, (25S)-spirostan-1ß,3ß,4ß,5ß-tetrol 6, 5ß-spirost-25(27)-en-1ß,2ß,3ß,4ß,5ß-pentol 7 and (25S)-spirostan-1ß,2ß,3ß,4ß,5ß-pentol 8. New steroidal saponins were found to be pentahydroxy 5-O-glycosides; 5ß-spirost-25(27)-en-1ß,2ß,3ß,4ß,5ß-pentol 5-O-ß-galactopyranoside 9, 5ß-spirost-25(27)-en-1ß,2ß,3ß,4ß,5ß-pentol 5-O-ß-arabinonoside 11, 5ß-(25S)-spirostan-1ß,2ß,3ß,4ß,5ß-pentol 5-O-galactoside 10 and 5ß-(25S)-spirostan-1ß,2ß,3ß,4ß,5ß-pentol 5-O-arabinoside 12 were isolated for the first time. The structures of those compounds were determined by NMR spectroscopy, including 2D COSY, HMBC, HSQC, NOESY, ROESY experiments, theoretical calculations of shielding constants by GIAO DFT, and mass spectrometry (FAB/LSI HR MS). An attempt was made to test biological activity, particularly as potential chemotherapeutic agents, using in silico methods. A set of 12 compounds was docked to the PDB structures of HER2 receptor and tubulin. The results indicated that diols have a higher affinity to the analyzed targets than tetrols and pentols. Two compounds (25S)-spirosten-1ß,3ß-diol 1 and 5ß-spirost-25(27)-en-1ß,2ß,3ß,4ß,5ß-pentol 5-O-galactoside 9 were selected for further evaluation of biological activity.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Convallaria/química , Teoria da Densidade Funcional , Modelos Moleculares , Espectroscopia de Prótons por Ressonância Magnética , Sapogeninas/análise , Saponinas/análise , Espirostanos/análise , Simulação de Acoplamento Molecular , Sapogeninas/química , Sapogeninas/isolamento & purificação , Saponinas/química , Saponinas/isolamento & purificação , Espirostanos/química , Espirostanos/isolamento & purificação
9.
Molecules ; 26(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916300

RESUMO

Cholinesterase (ChE) inhibition is an important treatment strategy for Alzheimer's disease (AD) as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are involved in the pathology of AD. In the current work, ChE inhibitory potential of twenty-four natural products from different chemical classes (i.e., diosgenin, hecogenin, rockogenin, smilagenin, tigogenin, astrasieversianins II and X, astragalosides I, IV, and VI, cyclocanthosides E and G, macrophyllosaponins A-D, kokusaginin, lamiide, forsythoside B, verbascoside, alyssonoside, ipolamide, methyl rosmarinate, and luteolin-7-O-glucuronide) was examined using ELISA microtiter assay. Among them, only smilagenin and kokusaginine displayed inhibitory action against AChE (IC50 = 43.29 ± 1.38 and 70.24 ± 2.87 µg/mL, respectively). BChE was inhibited by only methyl rosmarinate and kokusaginine (IC50 = 41.46 ± 2.83 and 61.40 ± 3.67 µg/mL, respectively). IC50 values for galantamine as the reference drug were 1.33 ± 0.11 µg/mL for AChE and 52.31 ± 3.04 µg/mL for BChE. Molecular docking experiments showed that the orientation of smilagenin and kokusaginine was mainly driven by the interactions with the peripheral anionic site (PAS) comprising residues of hAChE, while kokusaginine and methyl rosmarinate were able to access deeper into the active gorge in hBChE. Our data indicate that similagenin, kokusaginine, and methyl rosmarinate could be hit compounds for designing novel anti-Alzheimer agents.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Sítios de Ligação , Produtos Biológicos/isolamento & purificação , Inibidores da Colinesterase/isolamento & purificação , Furanos/química , Furanos/farmacologia , Concentração Inibidora 50 , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Quinolinas/química , Quinolinas/farmacologia , Espirostanos/química , Espirostanos/farmacologia , Relação Estrutura-Atividade
10.
J Ethnopharmacol ; 271: 113914, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33571617

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shengmai San (SMS) has been commonly used as a traditional Chinese medicine for the treatment of cardiovascular disorders, of which drug interactions need to be assessed for the safety concern. There is little evidence for the alterations of hepatic and intestinal drug-metabolizing enzymes after repeated SMS treatments to assess drug interactions. AIM OF THE STUDY: The studies aim to illustrate the effects of repeated treatments with SMS on cytochrome P450s (CYPs), reduced nicotinamide adenine dinucleotide (phosphate)-quinone oxidoreductase (NQO), uridine diphosphate-glucuronosyltransferase (UGT), and glutathione S-transferase (GST) using in vivo rat model. MATERIALS AND METHODS: The SMS was prepared using Schisandrae Fructus, Ginseng Radix, and Ophiopogonis Radix (OR) (1:2:2). Chromatographic analyses of decoctions were performed using ultra-performance liquid chromatography (UPLC) and LC-mass spectrometry. Sprague-Dawley rats were orally treated with the SMS and its component herbal decoctions for 2 or 3 weeks. Hepatic and intestinal enzyme activities were determined. CYP3A expression and the kinetics of intestinal nifedipine oxidation (NFO, a CYP3A marker reaction) were determined. RESULTS: Schisandrol A, schisandrin B, ginsenoside Rb1 and ophiopogonin D were identified in SMS. SMS selectively suppressed intestinal, but not hepatic, NFO activity in a dose- and time-dependent manner. Hepatic and intestinal UGT, NQO and GST activities were not affected. A 3-week SMS treatment decreased the maximal velocity of intestinal NFO by 50%, while the CYP3A protein level remained unchanged. Among SMS component herbs, the decoction of OR decreased intestinal NFO activity. CONCLUSIONS: These findings demonstrate that 3-week treatment with SMS and OR suppress intestinal, but not hepatic CYP3A function. It suggested that the potential interactions of SMS with CYP 3A drug substrates should be noticed, especially the drugs whose bioavailability depends heavily on intestinal CYP3A.


Assuntos
Inibidores do Citocromo P-450 CYP3A/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Intestinos/enzimologia , Fígado/enzimologia , Animais , Biomarcadores/sangue , Ciclo-Octanos/análise , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/análise , Inibidores do Citocromo P-450 CYP3A/uso terapêutico , Combinação de Medicamentos , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/uso terapêutico , Ginsenosídeos/análise , Glucuronosiltransferase/metabolismo , Glutationa Transferase/metabolismo , Interações Ervas-Drogas , Intestinos/efeitos dos fármacos , Lignanas/análise , Fígado/efeitos dos fármacos , Masculino , Microssomos/efeitos dos fármacos , Microssomos/enzimologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Nifedipino/metabolismo , Oxirredução/efeitos dos fármacos , Compostos Policíclicos/análise , Ratos Sprague-Dawley , Saponinas/química , Espirostanos/química
11.
Drug Des Devel Ther ; 15: 233-243, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33505158

RESUMO

BACKGROUND: Reineckia carnea is commonly used to treat cough, pneumonia and other diseases in China. In our previous study, it was found that the ethanol extracts of Reineckia carnea have a strong inhibitory effect on the proliferation of human lung cancer A549 cells. Here, we isolated gracillin from ethanol extracts for the first time. PURPOSE: Clarify the antiproliferation effect of gracillin on A549 cells and further explore its mechanisms via the mitochondrial pathway. METHODS: Gracillin was isolated and purified by silica gel, D-101 macroporous resin and preparative RP-HPLC, then identified by NMR and HR-MS. The inhibitory effects of gracillin on the proliferation of A549 cells were detected by the MTS method. Its mechanisms were further explored by flow cytometry and Western blot. RESULTS: A steroid saponin, gracillin, was isolated and identified from Reineckia carnea for the first time. In a concentration-dependent and time-dependent manner, gracillin significantly inhibited the proliferation of A549 cells with an IC50 value at 2.54 µmol/L and induced morphological changes. The results of flow cytometry analysis showed that the apoptosis rate of A549 cells was significantly increased (p < 0.05), and the cells proportion was obviously arrested in S phase. The concentration of intracellular calcium was raised (p < 0.01), and the mitochondrial membrane potential was greatly decreased (p < 0.01). In addition, the expression levels of Bax, caspase-3, cleaved caspase-3, and cytochrome C were dramatically up-regulated while Bcl-2 was down-regulated (p < 0.05) in A549 cells. CONCLUSION: This study confirmed that gracillin has a significant antiproliferative effect on A549 cells. Gracillin could induce the apoptosis of A549 cells through the mitochondrial pathway, which might be associated with regulation of the concentration of intracellular calcium, the mitochondrial membrane potential and the expression levels of Bax, Bcl-2, caspase-3, cleaved caspase-3, and cytochrome C.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Liliaceae/química , Mitocôndrias/efeitos dos fármacos , Espirostanos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Humanos , Mitocôndrias/metabolismo , Espirostanos/química , Espirostanos/isolamento & purificação
12.
Oxid Med Cell Longev ; 2020: 8870656, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381274

RESUMO

Ophiopogonin D (OPD) and Ophiopogonin D' (OPD') are two bioactive ingredients in Ophiopogon japonicus. Previously published studies have often focused on the therapeutic effects related to OPD's antioxidant capacity but underestimated the cytotoxicity-related side effects of OPD', which may result in unpredictable risks. In this study, we reported another side effect of OPD', hemolysis, and what was unexpected was that this side effect also appeared with OPD. Although hemolysis effects for saponins are familiar to researchers, the hemolytic behavior of OPD or OPD' and the interactions between these two isomers are unique. Therefore, we investigated the effects of OPD and OPD' alone or in combination on the hemolytic behavior in vitro and in vivo and adopted chemical compatibility and proteomics methods to explain the potential mechanism. Meanwhile, to explain the drug-drug interactions (DDIs), molecular modeling was applied to explore the possible common targets. In this study, we reported that OPD' caused hemolysis both in vitro and in vivo, while OPD only caused hemolysis in vivo. We clarified the differences and DDIs in the hemolytic behavior of the two isomers. An analysis of the underlying mechanism governing this phenomenon showed that hemolysis caused by OPD or OPD' was related to the destruction of the redox balance of erythrocytes. In vivo, in addition to the redox imbalance, the proteomics data demonstrated that lipid metabolic disorders and mitochondrial energy metabolism are extensively involved by hemolysis. We provided a comprehensive description of the hemolysis of two isomers in Ophiopogon japonicus, and risk warnings related to hemolysis were presented. Our research also provided a positive reference for the development and further research of such bioactive components.


Assuntos
Hemólise/efeitos dos fármacos , Ophiopogon/química , Saponinas/farmacologia , Espirostanos/farmacologia , Animais , Antioxidantes/efeitos adversos , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/metabolismo , Medicamentos de Ervas Chinesas/efeitos adversos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Isomerismo , Masculino , Camundongos , Oxirredução/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Coelhos , Ratos , Ratos Wistar , Medição de Risco , Saponinas/efeitos adversos , Saponinas/química , Saponinas/isolamento & purificação , Espirostanos/efeitos adversos , Espirostanos/química , Espirostanos/isolamento & purificação , Testes de Toxicidade Aguda
13.
Molecules ; 25(19)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998410

RESUMO

Previously, various steroidal glycosides were reported from plants of Cestrum species. However, phytochemical investigation has not been conducted on Cestrum newellii. A systematic phytochemical investigation of the leaves of C. newellii resulted in the isolation of eight novel steroidal glycosides (1-8), which were classified into three spirostanol glycosides (1-3), two furostanol glycosides (4 and 5), two pseudofurostanol glycosides (6 and 7), and one cholestane glycoside (8). In addition, three known cholestane glycosides (9-11) were isolated and identified. The structures of the new compounds were determined based on spectroscopic data and chemical transformations. Compounds 1 and 2 are spirostanol glycosides having hydroxy groups at C-2, C-3, C-12, and C-24 of the aglycone moiety. Although C. newellii is known to be a poisonous plant, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay exhibited that none of the isolated compounds were cytotoxic to HL-60 human promyelocytic leukemia cells.


Assuntos
Cestrum/química , Colestanos/análise , Glicosídeos/análise , Fitosteróis/análise , Espirostanos/análise , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Colestanos/química , Glicosídeos/química , Fitosteróis/química , Espectroscopia de Prótons por Ressonância Magnética , Espirostanos/química
14.
Drug Des Devel Ther ; 14: 3435-3447, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32943842

RESUMO

INTRODUCTION: Osteoclasts are giant polynuclear cells; their main function is bone resorption. An increased number of osteoclasts and enhanced bone resorption exert significant effects on osteoclast-related bone-lytic diseases, including osteoporosis. Given the limitations of current therapies for osteolytic diseases, it is urgently required to develop safer and more effective alternatives. Sarsasapogenin, a major sapogenin from Anemarrhena asphodeloides Bunge, possesses potent antitumor effects and inhibits NF-κB and MAPK signaling. However, the manner in which it affects osteoclasts is unclear. METHODS: We investigated the effects of anti-osteoclastogenic and anti-resorptive of sarsasapogenin on bone marrow-derived osteoclasts. RESULTS: Sarsasapogenin inhibited multiple RANKL-induced signaling cascades, thereby inhibiting the induction of key osteoclast transcription factor NFATc1. The in vivo and in vitro results were consistent: sarsasapogenin treatment protected against bone loss in a mouse osteolysis model induced by lipopolysaccharide. CONCLUSION: Our research confirms that sarsasapogenin can be used as a new treatment for osteoclast-related osteolytic diseases.


Assuntos
Lipopolissacarídeos/antagonistas & inibidores , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteólise/prevenção & controle , Ligante RANK/antagonistas & inibidores , Espirostanos/farmacologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Conformação Molecular , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteólise/patologia , Ligante RANK/metabolismo , Espirostanos/química , Relação Estrutura-Atividade
15.
Molecules ; 25(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751592

RESUMO

An efficient method of thiol group introduction to the structure of common natural products and synthetic active compounds with recognized biological efficacy such genistein (1), 5,11-dimethyl-5H-indolo[2,3-b]quinolin (2), capecitabine (3), diosgenin (4), tigogenin (5), flumethasone (6), fluticasone propionate (7), ursolic acid methyl ester (8), and ß-sitosterol (9) was developed. In most cases, the desired compounds were obtained easily via two-step processes involving esterification reaction employing S-trityl protected thioacetic acid and the corresponding hydoxy-derivative, followed by removal of the trityl-protecting group to obtain the final compounds. The results of our preliminary experiments forced us to change the strategy in the case of genistein (1), and the derivatization of diosgenin (4), tigogenin (5), and capecitabine (3) resulted in obtaining different compounds from those designed. Nevertheless, in all above cases we were able to obtain thiol-containing derivatives of selected biological active compounds. Moreover, a modelling study for the two-step thiolation of genistein and some of its derivatives was accomplished using the density functional theory (B3LP). A hypothesis on a possible reason for the unsuccessful deprotection of the thiolated genistein is also presented based on the semiempirical (PM7) calculations. The developed methodology gives access to new sulphur derivatives, which might find a potential therapeutic benefit.


Assuntos
Capecitabina/química , Diosgenina/química , Genisteína/química , Nanotecnologia/métodos , Compostos Fitoquímicos/química , Espirostanos/química , Compostos de Sulfidrila/síntese química , Compostos de Sulfidrila/química
16.
Molecules ; 25(17)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847104

RESUMO

Yucca schidigera Roezl (Mojave), a kind of ornamental plant belonging to the Yucca genus (Agavaceae), whose extract exhibits important roles in food, beverage, cosmetic and feed additives owing to its rich spirostanol saponins. To provide a comprehensive chemical profiling of the spirostanol saponins in it, this study was performed by using a multi-phase liquid chromatography method combining a reversed phase chromatography T3 column with a normal phase chromatography silica column for the separation and an ESI-Q-Exactive-Orbitrap MS in positive ion mode as the detector. By comparing the retention time and ion fragments with standards, thirty-one spirostanol saponins were identified. In addition, according to the summary of the chromatographic retention behaviors and the MS/MS cleavage patterns and biosynthetic pathway, another seventy-nine spirostanol saponins were speculatively identified, forty ones of which were potentially new ones. Moreover, ten novel spirostanol saponins (three pairs of (25R/S)-spirostanol saponin isomer mixtures) were targeted for isolation to verify the speculation. Then, the comprehensive chemical profiling of spirostanol saponins from Y. schidigera was reported here firstly.


Assuntos
Extratos Vegetais/química , Saponinas , Espirostanos , Yucca/química , Cromatografia Líquida de Alta Pressão , Saponinas/química , Saponinas/isolamento & purificação , Sílica Gel , Espirostanos/química , Espirostanos/isolamento & purificação , Espectrometria de Massas em Tandem
17.
Phytomedicine ; 77: 153284, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32707371

RESUMO

BACKGROUND: Modulation of the arachidonic acid (AA) cascade via 5-lipoxygenase (5-LOX) and cyclooxygenase-2 (COX-2) represent the two major pathways for treatments of inflammation and pain. The design and development of inhibitors targeting both 5-LOX and COX-2 has gained increasing popularity. As evidenced, 5-LOX and COX-2 dual targeted inhibitors have recently emerged as the front runners of anti-inflammatory drugs with improved efficacy and reduced side effects. Natural products represent a rich resource for the discovery of dual targeted 5-LOX and COX-2 inhibitors. By combining affinity ultrafiltration and high-performance liquid chromatography-mass spectrometry (AUF-LC-MS), an efficient method was developed to identify spirostanol glycosides and furostanol glycosides as the 5-LOX/COX-2 dual inhibitors from saponins extract of Anemarrhenae Rhizoma (SEAR). METHODS: A highly efficient method by combining affinity ultrafiltration and high-performance liquid chromatography-mass spectrometry (AUF-LC-MS) was first developed to screen and characterize the 5-LOX/COX-2 dual targeted inhibitors from SEAR. The structures of compounds in the ultrafiltrate were characterized by high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). In addition, in vitro 5-LOX/COX-2 inhibition assays and their dual expression in vivo were performed to confirm the inhibitory activities of the compounds screened by AUF-LC-MS. Molecular docking studies with the corresponding binding energy were obtained which fit nicely to both 5-LOX and COX-2 protein cavities and in agreement with our affinity studies. RESULTS: A total of 5 compounds, timosaponin A-II, timosaponin A-III, timosaponin B-II, timosaponin B-III and anemarrhenasaponin I, were identified as potential 5-LOX/COX-2 dual targeted inhibitors with specific binding values > 1.5 and IC50 ≤ 6.07 µM. CONCLUSION: The present work demonstrated that spirostanol glycoside and furostanol glycoside were identified as two novel classes of dual inhibitors of 5-LOX/COX-2 enzymes by employing a highly efficient screening method of AUF-LC-MS. These natural products represent a novel class of anti-inflammatory agents with the potential of improved efficacy and reduced side effects.


Assuntos
Anemarrhena/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Glicosídeos/química , Inibidores de Lipoxigenase/farmacologia , Espirostanos/química , Esteróis/química , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Araquidonato 5-Lipoxigenase/química , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/metabolismo , Cromatografia Líquida de Alta Pressão , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/química , Avaliação Pré-Clínica de Medicamentos , Glicosídeos/farmacologia , Inflamação/tratamento farmacológico , Inibidores de Lipoxigenase/química , Espectrometria de Massas , Simulação de Acoplamento Molecular , Ratos , Rizoma/química , Saponinas/química , Saponinas/farmacologia , Espirostanos/farmacologia , Esteroides/química , Esteroides/farmacologia , Esteróis/farmacologia , Ultrafiltração
18.
J Chromatogr Sci ; 58(5): 454-463, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32166322

RESUMO

The dried root of Asparagus cochinchinensis (RAC) has been used as an important traditional Chinese medicine for a long time in China. Steroidal saponins (SSs) are considered to be the main active ingredients of this herb. However, the isolation and structural determination of SSs from RAC are time-consuming and laborious. For this reason, the development of new methods for the separation and characterization of SSs is highly desirable. In this study, a new high-performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS/MS) method with precursor ions and the corresponding fragment ions was developed for the identification of SSs in RAC. Finally, 30 SSs have been detected and identified, including 17 potential new compounds. This is the first systematic study of SSs in RAC by HPLC-ESI-QTOF-MS/MS method.


Assuntos
Asparagus/química , Cromatografia Líquida de Alta Pressão/métodos , Saponinas/análise , Medicamentos de Ervas Chinesas/química , Glicosídeos/análise , Glicosídeos/química , Raízes de Plantas/química , Pregnanos/análise , Pregnanos/química , Saponinas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espirostanos/análise , Espirostanos/química , Esteroides/análise , Esteroides/química , Esteróis/análise , Esteróis/química , Espectrometria de Massas em Tandem/métodos
19.
J Steroid Biochem Mol Biol ; 198: 105573, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32017993

RESUMO

A series of novel diosgenin (DSG) and tigogenin (TGG) derivatives with diosgenin or tigogenin steroid aglycons linked to levulinic and 3,4-dihydroxycinnamic acids, dipeptides and various amino acids by an ester bond at the C3-oxygen atom of the steroid skeleton has been synthesized. Diosgenyl esters have been prepared by an esterification reaction (DCC/DMAP) of diosgenin with the corresponding acids. All analogues have been evaluated in vitro for their antiproliferative profile against cancer cell lines (MCF-7, MDA-MB-231, PC-3) and human umbilical vein endothelial cells (HUVEC). Analogue2c (l-serine derivative of TGG), the best representative of the series showed IC50 of 1.5 µM (MCF-7), and induced apoptosis in MCF-7 by activating caspase-3/7. The immunomodulatory properties of six synthesized analogues have been determined by examining their effects on the expression of cytokine genes essential for the functioning of the human immune system (IL-1, IL-4, IL-10, IL-12 and TNF-α). Biological evaluation has revealed that new compounds 4c and 16a do not induce the expression of pro-inflammatory cytokines in THP-1 cells after the lipopolysaccharide (LPS) stimulation. They also stimulate the expression of anti-inflammatory IL-10 that acts stronger than diosgenin itself. An in silico ADME properties(absorption, distribution, metabolism, excretion) study was also performed to predict the pharmacokinetic profile of the synthesized compounds. To shed light on the molecular interactions between the synthesized compounds and the glucocorticoid receptor and the estrogen receptor, 2c, 4c and 16a compounds were docked into the active binding sites of these receptors. The in silico and in vitro data suggested that this new group of compounds might be considered as a promising scaffold for further modification of more potent and selective anticancer and immunomodulatory agents.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Diosgenina/análogos & derivados , Diosgenina/farmacologia , Espirostanos/química , Espirostanos/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diosgenina/síntese química , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células Endoteliais da Veia Umbilical Humana , Humanos , Fatores Imunológicos/síntese química , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Células MCF-7 , Simulação de Acoplamento Molecular , Células PC-3 , Espirostanos/síntese química
20.
Steroids ; 155: 108569, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31899263

RESUMO

Three new spirostanol glycosides, trilliumosides K-M (1-3), one new sesquiterpenoid glycoside, tritschsesuquiside A (4), along with three known analogues (5-7) were obtained from the rhizomes of Trillium tschonoskii. The structures of new glycosides were elucidated by spectroscopic analyses (HRMS and NMR) and chemical methods. Glycosides 5-7 displayed cytotoxicities against five human cancer cell lines with IC50 values ranging from 10.5 ±â€¯1.0 to 1.0 ±â€¯0.2 µM, with 7 being the most cytotoxic compound with IC50 values of 1.0 ±â€¯0.2, 2.2 ±â€¯1.2, and 3.4 ±â€¯0.4 µM against Huh7, CCRF-CEM, and HeLa cell lines, respectively. The flow cytometric results revealed that both 5 and 6 could induce apoptosis of HCT116 and Huh7 cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Glicosídeos/farmacologia , Rizoma/química , Sesquiterpenos/farmacologia , Espirostanos/farmacologia , Trillium/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glicosídeos/química , Glicosídeos/isolamento & purificação , Células HCT116 , Células HeLa , Humanos , Modelos Moleculares , Conformação Molecular , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Espirostanos/química , Espirostanos/isolamento & purificação , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...