Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
1.
Physiol Plant ; 175(1): e13848, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36628548

RESUMO

During fern spore germination, lipid hydrolysis primarily provides the energy to activate their metabolism. In this research, fatty acids (linoleic, oleic, palmitic and stearic) were quantified in the spores exposed or not to priming (hydration-dehydration treatments). Five fern species were investigated, two from xerophilous shrubland and three from a cloud forest. We hypothesised that during the priming hydration phase, the fatty acids profile would change in concentration, depending on the spore type (non-chlorophyllous and crypto-chlorophyllous). The fatty acid concentration was determined by gas chromatograph-mass spectrometer. Chlorophyll in spores was vizualised by epifluorescence microscopy and quantified by high-resolution liquid chromatography with a DAD-UV/Vis detector. Considering all five species and all the treatments, the oleic acid was the most catabolised. After priming, we identified two patterns in the fatty acid metabolism: (1) in non-chlorophyllous species, oleic, palmitic, and linoleic acids were catabolised during imbibition and (2) in crypto-chlorophyllous species, these fatty acids increased in concentration. These patterns suggest that crypto-chlorophyllous spores with homoiochlorophylly (chlorophyll retained after drying) might not require the assembly of new photosynthetic apparatus during dark imbibition. Thus, these spores might require less energy from pre-existing lipids and less fatty acids as 'building blocks' for cell membranes than non-chlorophyllous spores, which require de novo synthesis and structuring of the photosynthetic apparatus.


Assuntos
Ácidos Graxos , Gleiquênias , Ácidos Graxos/metabolismo , Gleiquênias/metabolismo , Esporos/fisiologia , Metabolismo dos Lipídeos , Ácido Oleico/metabolismo , Ácidos Esteáricos/metabolismo , Ácido Palmítico/metabolismo
2.
Am J Bot ; 109(12): 2068-2081, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36310350

RESUMO

PREMISE: Approximately 14% of all fern species have physiologically active chlorophyllous spores that are much more short-lived than the more common and dormant achlorophyllous spores. Most chlorophyllous-spored species (70%) are epiphytes and account for almost 37% of all epiphytic ferns. Chlorophyllous-spored ferns are also overrepresented among fern species in habitats with waterlogged soils, of which nearly 60% have chlorophyllous spores. Ferns in these disparate habitat types also have a low incidence of mycorrhizal associations. We therefore hypothesized that autotrophic chlorophyllous spores represent an adaptation of ferns to habitats with scarce mycorrhizal associations. METHODS: We evaluated the coevolution of chlorophyllous spores and mycorrhizal associations in ferns and their relation to habitat type using phylogenetic comparative methods. RESULTS: Although we did not find support for the coevolution of spore type and mycorrhizal associations, we did find that chlorophyllous spores and the absence of mycorrhizal associations have coevolved with epiphytic and waterlogged habitats. Transition rates to epiphytic and waterlogged habitats were significantly higher in species with chlorophyllous spores compared to achlorophyllous lineages. CONCLUSIONS: Spore type and mycorrhizal associations appear to play important roles in the radiation of ferns into different habitat types. Future work should focus on clarifying the functional significance of these associations.


Assuntos
Gleiquênias , Micorrizas , Micorrizas/fisiologia , Gleiquênias/fisiologia , Filogenia , Esporos Fúngicos , Evolução Biológica , Esporos/fisiologia
3.
Ann Bot ; 129(5): 519-528, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-34878516

RESUMO

BACKGROUND AND AIMS: The sensitive fern, Onoclea sensibilis, is a widespread species in eastern North America and has an atypical timing of spore dispersal among temperate ferns. During early summer, this dimorphic species produces heavily modified spore-bearing fronds with leaflets tightly enveloping their sporangia and spores. These fronds senesce and persist above ground as dead mature structures until the following early spring when the leaflets finally open and spores are dispersed. While this timing of spore dispersal has been observed for over 120 years, the structural mechanisms underpinning this phenology have remained elusive. METHODS: Based on field observations, growth chamber manipulations and scanning electron microscopy, the mechanisms underlying this distinctive timing of spore dispersal in the sensitive fern were investigated. KEY RESULTS: I show that fertile leaflets of the sensitive fern move in direct response to changes in humidity, exhibiting structural and functional parallels with multicellular hygromorphic structures in seed plants, such as pine cones. These parallels include differences in cellulose microfibril orientation in cells on the abaxial and adaxial sides of the leaflet. The dynamics of this hygroscopic movement concomitant with regular abscission zones along the pinnules and coordinated senescence lead to the specific timing of early spring spore dispersal in the sensitive fern. CONCLUSIONS: While hygroscopic movement is common in seed-free plants, it mostly occurs in small structures that are either one or a few cells in size, such as the leptosporangium. Given its multicellular structure and integration across many cells and tissues, the movement and construction of the sensitive fern pinnules are more similar to structures in seed plants. The evolution of this complex trait in the sensitive fern efficiently regulates the timing of spore release, leading to early spring dispersal. This phenology likely gives gametophytes and subsequent sporophytes an advantage with early germination and growth.


Assuntos
Gleiquênias , Gleiquênias/fisiologia , Células Germinativas Vegetais , Umidade , Cone de Plantas , Esporos/fisiologia , Esporos Fúngicos
4.
Carbohydr Polym ; 261: 117821, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766331

RESUMO

Damage to the cell membrane is an effective method to prevent drug resistance in plant fungal diseases. Here, we proposed a negative remodeling model of the cell membrane structure induced by the C-coordinated O-carboxymethyl chitosan Cu (II) complex (O-CSLn-Cu). FITC-labeled O-CSLn-Cu (FITC-O-CSLn-Cu) was first synthesized via a nucleophilic substitution reaction and confirmed by FT-IR. FITC-labeled O-CSLn-Cu could pass through the fungal cell membrane, as detected by confocal laser scanning microscopy (CLSM) coupled with fluorescein isothiocyanate (FITC)-fluorescence. O-CSLn-Cu treatment led to apparent morphological changes in the membranes of P. capsici Leonian and giant unilamellar vesicles (GUVs) by transmission electron microscopy (TEM). Then, we performed component analysis of the cell membrane from the P. capsici Leonian affected by O-CSLn-Cu with a particular interest in membrane physicochemical properties. Many unsaturated fatty acids (UFAs) and key enzymes promoting UFA synthesis of the cell membrane were downregulated. Similarly, a large number of membrane proteins responsible for substance transport and biochemical reactions were downregulated. Furthermore, O-CSLn-Cu treatments increased plasma membrane permeability with significant leakage of intercellular electrolytes, soluble proteins and sugars, and lipid peroxidation with decreasing membrane fluidity. Finally, aquaporin 10 was proven to be a potential molecular target sensitive to antimicrobial agents according to composition analysis of membrane structure and immunohistochemistry.


Assuntos
Antifúngicos/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Quitosana/análogos & derivados , Cobre/química , Phytophthora/efeitos dos fármacos , Animais , Antifúngicos/síntese química , Antifúngicos/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Quitosana/química , Quitosana/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Fluidez de Membrana/efeitos dos fármacos , Lipídeos de Membrana/fisiologia , Phytophthora/metabolismo , Phytophthora/ultraestrutura , Coelhos , Esporos/efeitos dos fármacos , Esporos/fisiologia
5.
Adv Mater ; 32(45): e2004529, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33006175

RESUMO

While microbial-based therapy has been considered as an effective strategy for treating diseases such as colon cancer, its safety remains the biggest challenge. Here, probiotics and prebiotics, which possess ideal biocompatibility and are extensively used as additives in food and pharmaceutical products, are combined to construct a safe microbiota-modulating material. Through the host-guest chemistry between commercial Clostridium butyricum and chemically modified prebiotic dextran, prebiotics-encapsulated probiotic spores (spores-dex) are prepared. It is found that spores-dex can specifically enrich in colon cancers after oral administration. In the lesion, dextran is fermented by C. butyricum, and thereby produces anti-cancer short-chain fatty acids (SCFAs). Additionally, spores-dex regulate the gut microbiota, augment the abundance of SCFA-producing bacteria (e.g., Eubacterium and Roseburia), and markedly increase the overall richness of microbiota. In subcutaneous and orthotopic tumor models, drug-loaded spores-dex inhibit tumor growth up to 89% and 65%, respectively. Importantly, no obvious adverse effect is found. The work sheds light on the possibility of using a highly safe strategy to regulate gut microbiota, and provides a promising avenue for treating various gastrointestinal diseases.


Assuntos
Neoplasias do Colo/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Prebióticos , Probióticos/farmacologia , Esporos/fisiologia , Neoplasias do Colo/tratamento farmacológico , Dextranos/química , Humanos , Probióticos/química , Segurança
6.
Sci Rep ; 10(1): 8797, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32472019

RESUMO

Unicellular protozoa that encyst individually upon starvation evolved at least eight times into organisms that instead form multicellular fruiting bodies with spores. The Dictyostelia are the largest and most complex group of such organisms. They can be subdivided into 4 major groups, with many species in groups 1-3 having additionally retained encystment. To understand fitness differences between spores and cysts, we measured long-term survival of spores and cysts under climate-mimicking conditions, investigated spore and cyst ultrastructure, and related fitness characteristics to species ecology. We found that spores and cysts survived 22 °C equally well, but that spores survived wet and dry frost better than cysts, with group 4 spores being most resilient. Spore walls consist of three layers and those of cysts of maximally two, while spores were also more compacted than cysts, with group 4 spores being the most compacted. Group 4 species were frequently isolated from arctic and alpine zones, which was rarely the case for group 1-3 species. We inferred a fossil-calibrated phylogeny of Dictyostelia, which showed that its two major branches diverged 0.52 billion years ago, following several global glaciations. Our results suggest that Dictyostelium multicellular sporulation was a likely adaptation to a cold climate.


Assuntos
Dictyostelium/classificação , Dictyostelium/fisiologia , Fósseis/parasitologia , Aclimatação , Evolução Biológica , Clima Frio , Filogenia , Esporos/fisiologia
7.
Microbiology (Reading) ; 166(5): 425-427, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32391747

RESUMO

Bacillus subtilis is the best studied model organism of the Gram-positive lineage. It is naturally transformable and has an extremely powerful genetic toolbox. It is fast growing and easy to cultivate. It is an important industrial organism, being proficient at secreting proteins and making small fine chemicals, as well as acting as a plant growth promoter. It has been an important model system for studying biofilms. Finally, it makes endospores, which have provided an exceptionally fruitful system for studying various central problems of cellular development, including the generation of asymmetry, cell fate determination and morphogenesis.


Assuntos
Bacillus subtilis/fisiologia , Microbiologia Industrial , Biofilmes , Genoma Bacteriano , Filogenia , Esporos/fisiologia
8.
Biosci Biotechnol Biochem ; 84(5): 1030-1038, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31906820

RESUMO

Kudoa septempunctata, a myxosporean parasite infecting the trunk muscles of olive flounder (Paralichthys olivaceus), is reported to cause food poisoning in humans. The molecular mechanisms underlying the toxicity of K. septempunctata spores remain largely unknown. In the present study, we examine the molecular basis of such toxicity using DNA microarray analysis of K. septempunctata-inoculated human colon adenocarcinoma cells (Caco-2). We observed that the transepithelial resistance of the K. septempunctata-inoculated Caco-2 cell monolayers decreased markedly. DNA microarray analysis revealed that the mRNA expression profiles of control and inoculated cells clearly differed. Inflammatory and bacteria-related pathways, such as interleukin-8 (IL-8) production and MAPK/NF-kappa B pathway, were enriched. The concentrations of IL-8 and serotonin (5-HT) were higher in inoculated cells than in controls. K. septempunctata invasion damages the human intestinal epithelium, causing increased production of IL-8 and 5-HT, which likely results in the vomiting associated with K. septempunctata invasion.Abbreviations: AP-1: activator protein 1; DAVID: Database for Annotation, Visualization and Integrated Discovery; ENS: enteric nervous system; FARMS: Factor Analysis for Robust Microarray Summarization; FDR: false discovery rate; GO: Gene Ontology; 5-HT: 5-hydroxytryptamine; IL-8: Interleukin-8; KEGG: Kyoto Encyclopedia of Genes and Genomes; K. septempunctata: Kudoa septempunctata; NF-kappa B: nuclear factor-kappa B; TJ: tight junction; TER: transepithelial electrical resistance.


Assuntos
Doenças dos Peixes/transmissão , Linguado/parasitologia , Mucosa Intestinal/parasitologia , Myxozoa/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Doenças Parasitárias em Animais/transmissão , Esporos/fisiologia , Transcriptoma , Animais , Células CACO-2 , Doenças dos Peixes/parasitologia , Doenças Transmitidas por Alimentos/parasitologia , Humanos , Interleucina-8/análise , Interleucina-8/metabolismo , Mucosa Intestinal/metabolismo , Doenças Parasitárias em Animais/parasitologia , RNA Mensageiro/genética , Serotonina/análise , Serotonina/metabolismo
9.
Mol Plant Pathol ; 20(11): 1523-1534, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31557400

RESUMO

Gene silencing exists in eukaryotic organisms as a conserved regulation of the gene expression mechanism. In general, small RNAs (sRNAs) are produced within the eukaryotic cells and incorporated into an RNA-induced silencing complex (RISC) within cells. However, exogenous sRNAs, once delivered into cells, can also silence target genes via the same RISC. Here, we explored this concept by targeting the Cellulose synthase A3 (CesA3) gene of Hyaloperonospora arabidopsidis (Hpa), the downy mildew pathogen of Arabidopsis thaliana. Hpa spore suspensions were mixed with sense or antisense sRNAs and inoculated onto susceptible Arabidopsis seedlings. While sense sRNAs had no obvious effect on Hpa pathogenicity, antisense sRNAs inhibited spore germination and hence infection. Such inhibition of infection was not race-specific, but dependent on the length and capping of sRNAs. Inhibition of infection by double stranded sRNA was more efficient than that observed with antisense sRNA. Thus, exogenous sRNA targeting conserved CesA3 could suppress Hpa infection in Arabidopsis, indicating the potential of this simple and efficient sRNA-based approach for deciphering gene functions in obligate biotrophic pathogens as well as for R-gene independent control of diseases in plants.


Assuntos
Peronospora/patogenicidade , Doenças das Plantas/microbiologia , RNA de Plantas/genética , Arabidopsis/microbiologia , Inativação Gênica , Domínios Proteicos , Capuzes de RNA/metabolismo , RNA Antissenso/metabolismo , RNA de Plantas/metabolismo , Plântula/microbiologia , Esporos/fisiologia
10.
Biofouling ; 35(6): 684-695, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31429598

RESUMO

An extended model of the surface energetic attachment (SEA) model is introduced to study the fouling of marine organisms on microtopographic surfaces, taking into account the excluded volume interaction and the attraction between the organisms. It is shown that the excluded volume interaction leads to changes in the site-typed attachment probabilities which increase with the average spore density on the surface. As a result of these changes, the spore density map is flattened under very high density fouling. The attractive interaction on the other hand leads to aggregation of spores and the average aggregate size increased with the strength of attraction. The model can be mapped to a specific experiment to determine the attachment energy parameters. In contrast to various prior empirical approaches, the extended SEA model is rigorous from the statistical mechanics viewpoint, thus it provides a reliable tool for studying complex attachment behaviors of microorganisms on topographic surfaces.


Assuntos
Incrustação Biológica , Esporos/fisiologia , Simulação por Computador , Modelos Biológicos , Método de Monte Carlo , Propriedades de Superfície
11.
Sci Rep ; 9(1): 12357, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31451717

RESUMO

The algal cell immobilization is a commonly used technique for treatment of waste water, production of useful metabolites and management of stock culture. However, control over the size of immobilized droplets, the population of microbes, and production rate in current techniques need to be improved. Here, we use drop-on-demand inkjet printing to immobilize spores of the alga Ecklonia cava within alginate microparticles for the first time. Microparticles with immobilized spores were generated by printing alginate-spore suspensions into a calcium chloride solution. We demonstrate that the inkjet technique can control the number of spores in an ejected droplet in the range of 0.23 to 1.87 by varying spore densities in bioink. After the printing-based spore encapsulation, we observe initial sprouting and continuous growth of thallus until 45 days of culture. Our study suggest that inkjet printing has a great potential to immobilize algae, and that the ability to control the number of encapsulated spores and their microenvironments can facilitate research into microscopic interactions of encapsulated spores.


Assuntos
Phaeophyceae/fisiologia , Plâncton/fisiologia , Impressão , Esporos/fisiologia , Alginatos/química , Hidrogéis/química , Microesferas , Viscosidade
12.
Am J Bot ; 106(7): 984-995, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31188481

RESUMO

PREMISE: When two populations of related cytotypes grow in sympatry, the rarer cytotype tends to be excluded due to a frequency-dependent mating disadvantage. Evolutionary models predict that polyploids, which are typically the rarer cytotype upon first formation, should have higher relative fitness and/or higher selfing rates to establish and then coexist with diploid parents. METHODS: Performance during early recruitment was compared among three co-occurring rupicolous fern species: the allotetraploid Cheilanthes tinaei and its diploid ancestors, C. hispanica and C. maderensis. In culture experiments, fresh spores and samples of soil spore banks were tested for variation among cytotypes in germination, survival, fecundity, and mating system of gametophytes. RESULTS: Compared with its diploid parents, C. tinaei fresh spores had higher abortion percentages, lower dispersal ability as a result of its larger spores, and similar vigor at germination. For gametophytes from soil spore banks, C. tinaei had high survival similar to C. maderensis, but its sex expression resembled that of C. hispanica, with a high proportion of males. Patterns of sporophyte formation by females and bisexuals indicate that the polyploid does not have an increased gametophytic selfing rate. Gametophytes were larger in C. tinaei, but its reproductive success (sporophyte formation) was intermediate relative to diploids. CONCLUSIONS: Our results show no evidence of higher selfing or fitness advantage of the allopolyploid over both diploid parents at any stage of early recruitment. These two unexpected findings suggest that further factors, such as niche differentiation, play a more important role in cytotype coexistence.


Assuntos
Aptidão Genética , Germinação , Pteridaceae/fisiologia , Esporos/fisiologia , Tetraploidia , Fertilidade , Pteridaceae/citologia , Esporos/citologia
13.
Appl Microbiol Biotechnol ; 103(14): 5879-5889, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31139899

RESUMO

Bacillus methanolicus is a thermophilic, Gram-positive, rod-shaped bacterium. It is a facultative methylotroph which can use carbon and energy sources including mannitol and the one-carbon (C1) and non-food substrate methanol for growth and overproduction of amino acids, which makes it a promising candidate for biotechnological applications. Despite a growing tool box for gene cloning and expression, tools for targeted chromosomal gene knockouts and gene repression are still missing for this organism. Here, the CRISPRi-dCas9 technique for gene repression was established in B. methanolicus MGA3. Significantly reduced spore formation on the one hand and increased biofilm formation on the other hand could be demonstrated when the stage zero sporulation protein A gene spo0A was targeted. Furthermore, when the mannitol-1-phosphate 5-dehydrogenase gene mtlD was targeted by CRISPRi, mtlD RNA levels, and MtlD specific activities in crude extracts were decreased to about 50 % which resulted in reduced biomass formation from mannitol. As a third target, the catalase gene katA was chosen. Upon targeting katA by CRISPRi, catalase activity was decreased to about 25 % as shown in H2O2 drop assays and by determination of specific catalase activity in crude extracts. Our results support the predicted functions of Spo0A in sporulation and biofilm formation, of MtlD for mannitol catabolism, and of catalase in hydrogen peroxide dismutation. Thus, CRISPR interference as developed here serves as basis for the functional characterization of B. methanolicus physiology as well as for its application in biotechnology.


Assuntos
Bacillus/genética , Bacillus/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Peróxido de Hidrogênio/metabolismo , Manitol/metabolismo , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Catalase/genética , Catalase/metabolismo , Clonagem Molecular , Expressão Gênica , Inativação Gênica , Metanol/metabolismo , Análise de Sequência de DNA , Esporos/fisiologia
14.
Mycologia ; 111(4): 632-646, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31136264

RESUMO

Impatiens downy mildew is caused by Plasmopara obducens, a pathogen known in the United States for over a hundred years, but newly attacking ornamental Impatiens walleriana in production and in the landscape. Little is known about the life cycle of P. obducens; thus, in this study an attempt was made to determine whether the pathogen is homothallic or heterothallic. Fourteen single-sporangium isolates and three single-zoospore isolates were used in single and dual inoculations of stem tissue to see whether the pathogen was homothallic or heterothallic; all isolates tested were able to produce oospores when inoculated singly, suggesting homothally. Cold treatment at 0 C for at least 1 mo induced oospores to germinate and produce primary sporangia. Inoculation of plant tissue with germinating oospores resulted in infection. Other incubation temperatures (-10, 10, and 20 C) did not induce germination, but fluctuating temperatures (between -10 and 0 C, or 0 and 10 C) induced some germination. Spores incubated at -10 C had significantly thicker walls than spores incubated at other temperatures. Evidence suggests that oospores can serve as an overwintering stage.


Assuntos
Oomicetos , Doenças das Plantas/microbiologia , Esporos/crescimento & desenvolvimento , Germinação/fisiologia , Impatiens/microbiologia , Oomicetos/classificação , Oomicetos/citologia , Oomicetos/crescimento & desenvolvimento , Reprodução , Esporos/fisiologia , Temperatura
15.
Appl Microbiol Biotechnol ; 103(14): 5593-5605, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31098686

RESUMO

The goal of the study was to compare the production of secondary metabolites by Aspergillus terreus ATCC 20542 under the conditions of submerged mono- and co-cultivation. The suggested experimental scheme encompassed a diverse set of co-culture initiation strategies differing mostly with respect to the development stage of tested fungal strains at the moment of their confrontation. Three species of filamentous fungi exhibiting distinct patterns of morphological evolution under submerged conditions, namely Penicillium rubens, Chaetomium globosum, and Mucor racemosus, were selected as the co-cultivation partners of A. terreus. The choice of the co-cultivated species and the approach of co-culture triggering noticeably influenced the levels of lovastatin (mevinolinic acid), (+)-geodin, asterric acid, and butyrolactone I in the broth. Even though the evaluated co-cultures did not lead to the increased titers of lovastatin relative to standard monocultures, the biosynthesis of the remaining three metabolites was either enhanced or inhibited depending on the experimental variant. The production of butyrolactone I turned out to be particularly affected by the presence of C. globosum. Interestingly, in the A. terreus/C. globosum co-cultures, the decrease of lovastatin concentration was recorded. According to the most probable scenario, lovastatin was in this case converted to monacolin J acid, a polyketide molecule that may be applied as a substrate for the synthesis of statin drugs. The study revealed that the spores of two distinct fungal species, namely A. terreus and C. globosum, co-agglomerate under submerged conditions to form pellets. Finally, the biosynthetic performance of co-cultures involving four fungal species was evaluated.


Assuntos
Aspergillus/metabolismo , Reatores Biológicos , Lovastatina/biossíntese , Metabolismo Secundário , Biomassa , Técnicas de Cocultura , Cinética , Técnicas Microbiológicas , Naftalenos/metabolismo , Penicillium/metabolismo , Esporos/fisiologia
16.
Plant Signal Behav ; 14(6): 1596010, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30892985

RESUMO

Heterospory (i.e. dimorphic spores) is a long-lasting topic discussed in plant biology. It is observed in many of ferns, fern allies, and seed plants. The rise of heterospory and the mechanisms underlying its success in plant evolution are not clearly elucidated. In this short communication, an attempt is made to shed some light on these two questions.


Assuntos
Gleiquênias/fisiologia , Esporos/fisiologia , Gleiquênias/crescimento & desenvolvimento , Modelos Biológicos , Morfogênese , Esporos/crescimento & desenvolvimento
17.
Plant Sci ; 281: 251-260, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30824058

RESUMO

Fern spores are unicellular structures produced by the sporophyte generation that give rise to the haploid gametophyte. When released from the sporangium, spores are desiccation tolerant (DT) in the royal fern (Osmunda regalis) and contain fully developed chloroplasts. As a consequence, this type of spores is called chlorophyllous spores (CS). Upon transfer to germination conditions, CS initiate a process of imbibition that suppresses DT in 72 h, before the germination starts. In parallel to such change in DT, thylakoids undergo a profound remodelling in composition and function. Firstly, sustained quenching of chlorophyll fluorescence is relaxed, giving rise to photochemically active CS, while lipid composition shifts from that of a resting structure to a metabolically active cell. Basically trigalactolipids decreased in favour of monogalactolipids, with a parallel desaturation of fatty acids. Storage lipids such as triacylglycerol were quickly depleted. These results highlight the importance of the structure of thylakoids lipid as a key to protect membrane integrity during desiccation, together with the saturation of fatty acids and the constitutive chlorophyll quenching to prevent oxidative damage. The CS used here, in which the same cell shifts from DT to sensitive strategy in 72 h, reveal their potential as unicellular models for future studies on DT.


Assuntos
Cloroplastos/metabolismo , Gleiquênias/metabolismo , Esporos/metabolismo , Cloroplastos/fisiologia , Gleiquênias/fisiologia , Germinação/fisiologia , Esporos/fisiologia , Tilacoides/metabolismo , Tilacoides/fisiologia
18.
Parasitol Res ; 118(4): 1137-1146, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30838454

RESUMO

Myxozoans are economically important cnidarian endoparasites. Members of this group have been traditionally characterized by a morphology-based taxonomic system. Because myxozoans possess few morphological characters, these data are routinely accompanied by biological traits (host/organ/tissue specificity) and molecular data when describing or identifying myxozoan species. In the present study, a species of Myxobolus was collected from the fins of yellow catfish Tachysurus fulvidraco Richardson, 1846, which was consistent in spore morphology and host/organ specificity with Chinese records of Myxobolus physophilus Reuss, 1906. However, these earlier records and our own findings are inconsistent with the original description of M. physophilus from Russia. Specifically, there are differences in spore morphology (shape, intercapsular appendix, and polar capsule size), the infection site (air bladder vs. fins), and the host affinity (common rudd vs. yellow catfish). The inconsistencies allow us to conclude that both the present Myxobolus species and Chinese records of M. physophilus are distinct from the original description of M. physophilus and represent a new Myxobolus species, which we named Myxobolus xiantaoensis n. sp.


Assuntos
Nadadeiras de Animais/parasitologia , Peixes-Gato/parasitologia , Doenças dos Peixes/parasitologia , Myxobolus/classificação , Doenças Parasitárias em Animais/parasitologia , Esporos/fisiologia , Animais , China , Myxobolus/isolamento & purificação , Filogenia , Federação Russa
19.
Plant Cell Physiol ; 60(2): 376-392, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30398653

RESUMO

This study explores the temperature dependency of the aging rate in dry cells over a broad temperature range encompassing the fluid to solid transition (Tg) and well below. Spores from diverse species of eight families of ferns were stored at temperatures ranging from +45�C to approximately -176�C (vapor phase above liquid nitrogen), and viability was monitored periodically for up to 4,300 d (∼12 years). Accompanying measurements using differential scanning calorimetry (DSC) provide insights into structural changes that occur, such as Tg between +45 and -20�C (depending on moisture), and triacylglycerol (TAG) crystallization between -5 and -35�C (depending on species). We detected aging even at cryogenic temperatures, which we consider analogous to unscheduled degradation of pharmaceuticals stored well below Tg caused by a shift in the nature of molecular motions that dominate chemical reactivity. We occasionally observed faster aging of spores stored at -18�C (conventional freezer) compared with 5�C (refrigerator), and linked this with mobility and crystallization within TAGs, which probably influences molecular motion of dried cytoplasm in a narrow temperature range. Temperature dependency of longevity was remarkably similar among diverse fern spores, despite widely disparate aging rates; this provides a powerful tool to predict deterioration of germplasm preserved in the solid state. Future work will increase our understanding of molecular organization and composition contributing to differences in longevity.


Assuntos
Gleiquênias/fisiologia , Esporos/fisiologia , Varredura Diferencial de Calorimetria , Polystichum/fisiologia , Pteris/fisiologia , Temperatura , Fatores de Tempo
20.
Mol Microbiol ; 111(3): 825-843, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30582883

RESUMO

Surface properties, such as adhesion and hydrophobicity, constrain dispersal of bacterial spores in the environment. In Bacillus subtilis, these properties are influenced by the outermost layer of the spore, the crust. Previous work has shown that two clusters, cotVWXYZ and cgeAB, encode the protein components of the crust. Here, we characterize the respective roles of these genes in surface properties using Bacterial Adherence to Hydrocarbons assays, negative staining of polysaccharides by India ink and Transmission Electron Microscopy. We showed that inactivation of crust genes caused increases in spore relative hydrophobicity, disrupted the spore polysaccharide layer, and impaired crust structure and attachment to the rest of the coat. We also found that cotO, previously identified for its role in outer coat formation, is necessary for proper encasement of the spore by the crust. In parallel, we conducted fluorescence microscopy experiments to determine the full network of genetic dependencies for subcellular localization of crust proteins. We determined that CotZ is required for the localization of most crust proteins, while CgeA is at the bottom of the genetic interaction hierarchy.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Esporos/metabolismo , Propriedades de Superfície , Bacillus subtilis/fisiologia , Bacillus subtilis/ultraestrutura , Aderência Bacteriana , Microscopia Eletrônica de Transmissão , Esporos/fisiologia , Esporos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...