Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Hum Genet ; 143(3): 311-329, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38459354

RESUMO

Identification of genes associated with nonsyndromic hearing loss is a crucial endeavor given the substantial number of individuals who remain without a diagnosis after even the most advanced genetic testing. PKHD1L1 was established as necessary for the formation of the cochlear hair-cell stereociliary coat and causes hearing loss in mice and zebrafish when mutated. We sought to determine if biallelic variants in PKHD1L1 also cause hearing loss in humans. Exome sequencing was performed on DNA of four families segregating autosomal recessive nonsyndromic sensorineural hearing loss. Compound heterozygous p.[(Gly129Ser)];p.[(Gly1314Val)] and p.[(Gly605Arg)];p[(Leu2818TyrfsTer5)], homozygous missense p.(His2479Gln) and nonsense p.(Arg3381Ter) variants were identified in PKHD1L1 that were predicted to be damaging using in silico pathogenicity prediction methods. In vitro functional analysis of two missense variants was performed using purified recombinant PKHD1L1 protein fragments. We then evaluated protein thermodynamic stability with and without the missense variants found in one of the families and performed a minigene splicing assay for another variant. In silico molecular modeling using AlphaFold2 and protein sequence alignment analysis were carried out to further explore potential variant effects on structure. In vitro functional assessment indicated that both engineered PKHD1L1 p.(Gly129Ser) and p.(Gly1314Val) mutant constructs significantly reduced the folding and structural stabilities of the expressed protein fragments, providing further evidence to support pathogenicity of these variants. Minigene assay of the c.1813G>A p.(Gly605Arg) variant, located at the boundary of exon 17, revealed exon skipping leading to an in-frame deletion of 48 amino acids. In silico molecular modeling exposed key structural features that might suggest PKHD1L1 protein destabilization. Multiple lines of evidence collectively associate PKHD1L1 with nonsyndromic mild-moderate to severe sensorineural hearing loss. PKHD1L1 testing in individuals with mild-moderate hearing loss may identify further affected families.


Assuntos
Surdez , Mutação de Sentido Incorreto , Linhagem , Receptores de Superfície Celular , Estereocílios , Animais , Feminino , Humanos , Masculino , Surdez/genética , Sequenciamento do Exoma , Genes Recessivos , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Modelos Moleculares , Receptores de Superfície Celular/genética , Estereocílios/metabolismo , Estereocílios/patologia , Estereocílios/genética
2.
Mol Ther ; 32(3): 800-817, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38243601

RESUMO

Hearing loss is a major health concern affecting millions of people worldwide with currently limited treatment options. In clarin-2-deficient Clrn2-/- mice, used here as a model of progressive hearing loss, we report synaptic auditory abnormalities in addition to the previously demonstrated defects of hair bundle structure and mechanoelectrical transduction. We sought an in-depth evaluation of viral-mediated gene delivery as a therapy for these hearing-impaired mice. Supplementation with either the murine Clrn2 or human CLRN2 genes preserved normal hearing in treated Clrn2-/- mice. Conversely, mutated forms of CLRN2, identified in patients with post-lingual moderate to severe hearing loss, failed to prevent hearing loss. The ectopic expression of clarin-2 successfully prevented the loss of stereocilia, maintained normal mechanoelectrical transduction, preserved inner hair cell synaptic function, and ensured near-normal hearing thresholds over time. Maximal hearing preservation was observed when Clrn2 was delivered prior to the loss of transducing stereocilia. Our findings demonstrate that gene therapy is effective for the treatment of post-lingual hearing impairment and age-related deafness associated with CLRN2 patient mutations.


Assuntos
Células Ciliadas Auditivas , Perda Auditiva , Humanos , Animais , Camundongos , Células Ciliadas Auditivas/metabolismo , Audição , Perda Auditiva/genética , Perda Auditiva/terapia , Estereocílios/metabolismo , Suplementos Nutricionais
3.
Nat Commun ; 15(1): 526, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228630

RESUMO

The inner ear is the hub where hair cells (HCs) transduce sound, gravity, and head acceleration stimuli to the brain. Hearing and balance rely on mechanosensation, the fastest sensory signals transmitted to the brain. The mechanoelectrical transducer (MET) channel is the entryway for the sound-balance-brain interface, but the channel-complex composition is not entirely known. Here, we report that the mouse utilizes Piezo1 (Pz1) and Piezo2 (Pz2) isoforms as MET-complex components. The Pz channels, expressed in HC stereocilia, and cell lines are co-localized and co-assembled with MET complex partners. Mice expressing non-functional Pz1 and Pz2 at the ROSA26 locus have impaired auditory and vestibular traits that can only be explained if the Pzs are integral to the MET complex. We suggest that Pz subunits constitute part of the MET complex and that interactions with other MET complex components yield functional MET units to generate HC MET currents.


Assuntos
Orelha Interna , Células Ciliadas Auditivas Internas , Animais , Camundongos , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas/metabolismo , Estereocílios/metabolismo , Orelha Interna/metabolismo , Audição , Mecanotransdução Celular , Mamíferos/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo
4.
Mol Ther ; 32(1): 204-217, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37952086

RESUMO

Inner ear hair cells detect sound vibration through the deflection of mechanosensory stereocilia. Cytoplasmic protein TPRN has been shown to localize at the taper region of the stereocilia, and mutations in TPRN cause hereditary hearing loss through an unknown mechanism. Here, using biochemistry and dual stimulated emission depletion microscopy imaging, we show that the TPRN, together with its binding proteins CLIC5 and PTPRQ, forms concentric rings in the taper region of stereocilia. The disruption of TPRN rings, triggered by the competitive inhibition of the interaction of TPRN and CLIC5 or exogenous TPRN overexpression, leads to stereocilia degeneration and severe hearing loss. Most importantly, restoration of the TPRN rings can rescue the damaged auditory function of Tprn knockout mice by exogenously expressing TPRN at an appropriate level in HCs via promoter recombinant adeno-associated virus (AAV). In summary, our results reveal highly structured TPRN rings near the taper region of stereocilia that are crucial for stereocilia function and hearing. Also, TPRN ring restoration in stereocilia by AAV-Tprn effectively repairs damaged hearing, which lays the foundation for the clinical application of AAV-mediated gene therapy in patients with TPRN mutation.


Assuntos
Surdez , Perda Auditiva , Animais , Humanos , Camundongos , Surdez/genética , Audição/genética , Perda Auditiva/genética , Perda Auditiva/terapia , Camundongos Knockout , Proteínas/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Estereocílios/metabolismo
5.
Elife ; 122023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37982489

RESUMO

The MRTF-SRF pathway has been extensively studied for its crucial role in driving the expression of a large number of genes involved in actin cytoskeleton of various cell types. However, the specific contribution of MRTF-SRF in hair cells remains unknown. In this study, we showed that hair cell-specific deletion of Srf or Mrtfb, but not Mrtfa, leads to similar defects in the development of stereocilia dimensions and the maintenance of cuticular plate integrity. We used fluorescence-activated cell sorting-based hair cell RNA-Seq analysis to investigate the mechanistic underpinnings of the changes observed in Srf and Mrtfb mutants, respectively. Interestingly, the transcriptome analysis revealed distinct profiles of genes regulated by Srf and Mrtfb, suggesting different transcriptional regulation mechanisms of actin cytoskeleton activities mediated by Srf and Mrtfb. Exogenous delivery of calponin 2 using Adeno-associated virus transduction in Srf mutants partially rescued the impairments of stereocilia dimensions and the F-actin intensity of cuticular plate, suggesting the involvement of Cnn2, as an Srf downstream target, in regulating the hair bundle morphology and cuticular plate actin cytoskeleton organization. Our study uncovers, for the first time, the unexpected differential transcriptional regulation of actin cytoskeleton mediated by Srf and Mrtfb in hair cells, and also demonstrates the critical role of SRF-CNN2 in modulating actin dynamics of the stereocilia and cuticular plate, providing new insights into the molecular mechanism underlying hair cell development and maintenance.


Assuntos
Citoesqueleto de Actina , Células Ciliadas Auditivas , Células Ciliadas Auditivas/fisiologia , Citoesqueleto de Actina/metabolismo , Estereocílios/metabolismo , Actinas/genética , Actinas/metabolismo , Regulação da Expressão Gênica
6.
Elife ; 122023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294664

RESUMO

Prolonged exposure to loud noise has been shown to affect inner ear sensory hair cells in a variety of deleterious manners, including damaging the stereocilia core. The damaged sites can be visualized as 'gaps' in phalloidin staining of F-actin, and the enrichment of monomeric actin at these sites, along with an actin nucleator and crosslinker, suggests that localized remodeling occurs to repair the broken filaments. Herein, we show that gaps in mouse auditory hair cells are largely repaired within 1 week of traumatic noise exposure through the incorporation of newly synthesized actin. We provide evidence that Xin actin binding repeat containing 2 (XIRP2) is required for the repair process and facilitates the enrichment of monomeric γ-actin at gaps. Recruitment of XIRP2 to stereocilia gaps and stress fiber strain sites in fibroblasts is force-dependent, mediated by a novel mechanosensor domain located in the C-terminus of XIRP2. Our study describes a novel process by which hair cells can recover from sublethal hair bundle damage and which may contribute to recovery from temporary hearing threshold shifts and the prevention of age-related hearing loss.


Assuntos
Actinas , Estereocílios , Animais , Camundongos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Estereocílios/metabolismo
7.
PLoS One ; 18(6): e0287249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37352201

RESUMO

Transmembrane channel-like protein 1 (TMC1) is a transmembrane protein forming mechano-electrical transduction (MET) channel, which transduces mechanical stimuli into electrical signals at the top of stereocilia of hair cells in the inner ear. As an unexpected phenomenon, we found that the cytosolic N-terminal (Nt) region of heterologously-expressed mouse TMC1 (mTMC1) was localized in nuclei of a small population of the transfected HEK293 cells. This raised the possibility that the Nt region of heterologously-expressed mTMC1 was cleaved and transported into the nucleus. To confirm the cleavage, we performed western blot analyses. The results revealed that at least a fragment of the Nt region was produced from heterologously-expressed mTMC1. Site-directed mutagenesis experiments identified amino acid residues which were required to produce the fragment. The accumulation of the heterologously-expressed Nt fragment into the nuclei depended on nuclear localization signals within the Nt region. Furthermore, a structural comparison showed a similarity between the Nt region of mTMC1 and basic region leucine zipper (bZIP) transcription factors. However, transcriptome analyses using a next-generation sequencer showed that the heterologously-expression of the Nt fragment of mTMC1 hardly altered expression levels of genes. Although it is still unknown what is the precise mechanism and the physiological significance of this cleavage, these results showed that the cytosolic Nt region of heterologously-expressed mTMC1 could be cleaved in HEK293 cells. Therefore, it should be taken into account that the cleavage of Nt region might influence the functional analysis of TMC1 by the heterologous-expression system using HEK293 cells.


Assuntos
Células Ciliadas Auditivas Internas , Células Ciliadas Auditivas , Animais , Humanos , Camundongos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Células HEK293 , Mecanotransdução Celular/fisiologia , Proteínas de Membrana/metabolismo , Estereocílios/metabolismo
8.
eNeuro ; 10(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37225424

RESUMO

The cochlea hair cells transform mechanic sounds to neural signals with a remarkable sensitivity and resolution. This is achieved via the precisely sculpted mechanotransduction apparatus of the hair cells and the supporting structure of the cochlea. The shaping of the mechanotransduction apparatus, the staircased stereocilia bundles on the apical surface of the hair cells, requires an intricate regulatory network including planar cell polarity (PCP) and primary cilia genes in orienting stereocilia bundles and building molecular machinery of the apical protrusions. The mechanism linking these regulatory components is unknown. Here, we show that a small GTPase known for its role in protein trafficking, Rab11a, is required for ciliogenesis in hair cells during development in mice. In addition, in the absence of Rab11a, stereocilia bundles lost their cohesion and integrity, and mice are deaf. These data indicate an essential role of protein trafficking in the formation of hair cell mechanotransduction apparatus, implicating a role of Rab11a or protein trafficking in linking the cilia and polarity regulatory components with the molecular machinery in building the cohesive and precisely shaped stereocilia bundles.


Assuntos
Cílios , Estereocílios , Animais , Camundongos , Cílios/fisiologia , Cóclea , Células Ciliadas Auditivas/metabolismo , Mecanotransdução Celular/fisiologia , Estereocílios/metabolismo
9.
PLoS Biol ; 21(4): e3001964, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37011103

RESUMO

Assembly of the hair bundle, the sensory organelle of the inner ear, depends on differential growth of actin-based stereocilia. Separate rows of stereocilia, labeled 1 through 3 from tallest to shortest, lengthen or shorten during discrete time intervals during development. We used lattice structured illumination microscopy and surface rendering to measure dimensions of stereocilia from mouse apical inner hair cells during early postnatal development; these measurements revealed a sharp transition at postnatal day 8 between stage III (row 1 and 2 widening; row 2 shortening) and stage IV (final row 1 lengthening and widening). Tip proteins that determine row 1 lengthening did not accumulate simultaneously during stages III and IV; while the actin-bundling protein EPS8 peaked at the end of stage III, GNAI3 peaked several days later-in early stage IV-and GPSM2 peaked near the end of stage IV. To establish the contributions of key macromolecular assemblies to bundle structure, we examined mouse mutants that eliminated tip links (Cdh23v2J or Pcdh15av3J), transduction channels (TmieKO), or the row 1 tip complex (Myo15ash2). Cdh23v2J/v2J and Pcdh15av3J/av3J bundles had adjacent stereocilia in the same row that were not matched in length, revealing that a major role of these cadherins is to synchronize lengths of side-by-side stereocilia. Use of the tip-link mutants also allowed us to distinguish the role of transduction from effects of transduction proteins themselves. While levels of GNAI3 and GPSM2, which stimulate stereocilia elongation, were greatly attenuated at the tips of TmieKO/KO row 1 stereocilia, they accumulated normally in Cdh23v2J/v2J and Pcdh15av3J/av3J stereocilia. These results reinforced the suggestion that the transduction proteins themselves facilitate localization of proteins in the row 1 complex. By contrast, EPS8 concentrates at tips of all TmieKO/KO, Cdh23v2J/v2J, and Pcdh15av3J/av3J stereocilia, correlating with the less polarized distribution of stereocilia lengths in these bundles. These latter results indicated that in wild-type hair cells, the transduction complex prevents accumulation of EPS8 at the tips of shorter stereocilia, causing them to shrink (rows 2 and 3) or disappear (row 4 and microvilli). Reduced rhodamine-actin labeling at row 2 stereocilia tips of tip-link and transduction mutants suggests that transduction's role is to destabilize actin filaments there. These results suggest that regulation of stereocilia length occurs through EPS8 and that CDH23 and PCDH15 regulate stereocilia lengthening beyond their role in gating mechanotransduction channels.


Assuntos
Mecanotransdução Celular , Estereocílios , Camundongos , Animais , Estereocílios/metabolismo , Mecanotransdução Celular/fisiologia , Actinas/metabolismo , Células Ciliadas Auditivas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Caderinas/genética , Caderinas/metabolismo
10.
Stem Cell Res ; 69: 103100, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37099934

RESUMO

Usher syndrome type 2A (USH2A) gene mutations have been identified as the most frequent genetic causes of hereditary deafness in Usher syndrome, and an effective treatment has yet to be established. The encoded protein, Usherin, is essential for the ankle link associated with extracellular connections between the stereocilia of inner ear hair cells. We report the generation of a patient-derived USH2A iPSC line with compound mutations c.1907_1912ATGTTT > TCACAG (p.D636V + V637T + C638G) and c.8328_8329delAA (p.L2276fs*12). The iPSC showed the expression of pluripotency markers, the ability to differentiate into three germ layers in vitro, and USH2A mutations with normal karyotype.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndromes de Usher , Humanos , Síndromes de Usher/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Estereocílios/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo
11.
Cell Prolif ; 56(11): e13483, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37084708

RESUMO

Hair cells (HCs) in mammals cannot spontaneously regenerate after damage. Atoh1 overexpression can promote HC regeneration in the postnatal cochlea, but the regenerated HCs do not possess the structural and functional characteristics of HCs in situ. The stereocilia on the apical surface of HCs are the first-level structure for sound conduction, and regeneration of functional stereocilia is the key basis for the reproduction of functional HCs. Espin, as an actin bundling protein, plays an important role in the development and structural maintenance of the stereocilia. Here, we found that the upregulation of Espin by AAV-ie was able to induced the aggregation of actin fibres in Atoh1-induced HCs in both cochlear organoids and explants. In addition, we found that persistent Atoh1 overexpression resulted in impaired stereocilia in both endogenous and newly formed HCs. In contrast, the forced expression of Espin in endogenous and regenerative HCs was able to eliminate the stereocilia damage caused by persistent Atoh1 overexpression. Our study shows that the enhanced expression of Espin can optimize the developmental process of stereocilia in Atoh1-induced HCs and can attenuate the damage to native HCs induced by Atoh1 overexpression. These results suggest an effective method to induce the maturation of stereocilia in regenerative HCs and pave the way for functional HC regeneration via supporting cell transdifferentiation.


Assuntos
Actinas , Estereocílios , Animais , Estereocílios/metabolismo , Actinas/metabolismo , Células Ciliadas Auditivas/metabolismo , Cóclea , Epitélio/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Mamíferos/metabolismo
12.
J Neurosci ; 43(18): 3219-3231, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37001993

RESUMO

The mechanoelectrical transduction (MET) protein complex in the inner-ear hair cells is essential for hearing and balance perception. Calcium and integrin-binding protein 2 (CIB2) has been reported to be a component of MET complex, and loss of CIB2 completely abolishes MET currents in auditory hair cells, causing profound congenital hearing loss. However, loss of CIB2 does not affect MET currents in vestibular hair cells (VHCs) as well as general balance function. Here, we show that CIB2 and CIB3 act redundantly to regulate MET in VHCs, as MET currents are completely abolished in the VHCs of Cib2/Cib3 double knock-out mice of either sex. Furthermore, we show that Cib2 and Cib3 transcripts have complementary expression patterns in the vestibular maculae, and that they play different roles in stereocilia maintenance in VHCs. Cib2 transcripts are highly expressed in the striolar region, and knock-out of Cib2 affects stereocilia maintenance in striolar VHCs. In contrast, Cib3 transcripts are highly expressed in the extrastriolar region, and knock-out of Cib3 mainly affects stereocilia maintenance in extrastriolar VHCs. Simultaneous knock-out of Cib2 and Cib3 affects stereocilia maintenance in all VHCs and leads to severe balance deficits. Taken together, our present work reveals that CIB2 and CIB3 are important for stereocilia maintenance as well as MET in mouse VHCs.SIGNIFICANCE STATEMENT Calcium and integrin-binding protein 2 (CIB2) is an important component of mechanoelectrical transduction (MET) complex, and loss of CIB2 completely abolishes MET in auditory hair cells. However, MET is unaffected in Cib2 knock-out vestibular hair cells (VHCs). In the present work, we show that CIB3 could compensate for the loss of CIB2 in VHCs, and Cib2/Cib3 double knock-out completely abolishes MET in VHCs. Interestingly, CIB2 and CIB3 could also regulate VHC stereocilia maintenance in a nonredundant way. Cib2 and Cib3 transcripts are highly expressed in the striolar and extrastriolar regions, respectively. Stereocilia maintenance and balance function are differently affected in Cib2 or Cib3 knock-out mice. In conclusion, our data suggest that CIB2 and CIB3 are important for stereocilia maintenance and MET in mouse VHCs.


Assuntos
Células Ciliadas Vestibulares , Animais , Camundongos , Cálcio/metabolismo , Células Ciliadas Vestibulares/metabolismo , Integrinas , Camundongos Knockout , Estereocílios/metabolismo
13.
Nat Commun ; 14(1): 1657, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964137

RESUMO

Stereocilia are actin-based cell protrusions of inner ear hair cells and are indispensable for mechanotransduction. Ankle links connect the ankle region of developing stereocilia, playing an essential role in stereocilia development. WHRN, PDZD7, ADGRV1 and USH2A have been identified to form the so-called ankle link complex (ALC); however, the detailed mechanism underlying the temporal emergence and degeneration of ankle links remains elusive. Here we show that WHRN and PDZD7 orchestrate ADGRV1 and USH2A to assemble the ALC through liquid-liquid phase separation (LLPS). Disruption of the ALC multivalency for LLPS largely abolishes the distribution of WHRN at the ankle region of stereocilia. Interestingly, high concentration of ADGRV1 inhibits LLPS, providing a potential mechanism for ALC disassembly. Moreover, certain deafness mutations of ALC genes weaken the multivalent interactions of ALC and impair LLPS. In conclusion, our study demonstrates that LLPS mediates ALC formation, providing essential clues for understanding the pathogenesis of deafness.


Assuntos
Células Ciliadas Auditivas , Síndromes de Usher , Humanos , Células Ciliadas Auditivas/metabolismo , Tornozelo , Mecanotransdução Celular , Proteínas de Transporte/metabolismo , Estereocílios/metabolismo , Síndromes de Usher/genética , Cabelo/metabolismo
14.
Sci Rep ; 13(1): 2528, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781873

RESUMO

The mechano-electrical transduction (MET) channel of the inner ear receptor cells, termed hair cells, is a protein complex that enables our senses of hearing and balance. Hair cell MET requires an elaborate interplay of multiple proteins that form the MET channel. One of the MET complex components is the transmembrane protein LHFPL5, which is required for hair cell MET and hearing. LHFPL5 is thought to form a multi-protein complex with other MET channel proteins, such as PCDH15, TMIE, and TMC1. Despite localizing to the plasma membrane of stereocilia, the mechanosensing organelles of hair cells, LHFPL5 requires its binding partner within the MET complex, PCDH15, to localize to the stereocilia tips in hair cells and to the plasma membrane in heterologous cells. Using the Aquaporin 3-tGFP reporter (AGR) for plasma membrane localization, we found that a region within extracellular loop 1, which interacts with PCDH15, precludes the trafficking of AGR reporter to the plasma membrane in heterologous cell lines. Our results suggest that the presence of protein partners may mask endoplasmic reticulum retention regions or enable the proper folding and trafficking of the MET complex components, to facilitate expression of the MET complex at the stereocilia membrane.


Assuntos
Células Ciliadas Auditivas , Proteínas de Membrana , Células Ciliadas Auditivas/metabolismo , Proteínas de Membrana/metabolismo , Estereocílios/metabolismo , Membrana Celular/metabolismo , Audição/fisiologia , Mecanotransdução Celular/fisiologia
15.
J Neurosci ; 43(12): 2053-2074, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36746628

RESUMO

The hair bundle is the universal mechanosensory organelle of auditory, vestibular, and lateral-line systems. A bundle comprises mechanically coupled stereocilia, whose displacements in response to stimulation activate a receptor current. The similarity of stereociliary displacements within a bundle regulates fundamental properties of the receptor current like its speed, magnitude, and sensitivity. However, the dynamics of individual stereocilia from the mammalian cochlea in response to a known bundle stimulus has not been quantified. We developed a novel high-speed system, which dynamically stimulates and tracks individual inner-hair-cell stereocilia from male and female rats. Stimulating two to three of the tallest stereocilia within a bundle (nonuniform stimulation) caused dissimilar stereociliary displacements. Stereocilia farther from the stimulator moved less, but with little delay, implying that there is little slack in the system. Along the axis of mechanical sensitivity, stereocilium displacements peaked and reversed direction in response to a step stimulus. A viscoelastic model explained the observed displacement dynamics, which implies that coupling between the tallest stereocilia is effectively viscoelastic. Coupling elements between the tallest inner-hair-cell stereocilia were two to three times stronger than elements anchoring stereocilia to the surface of the cell but were 100-10,000 times weaker than those of a well-studied noncochlear hair bundle. Coupling was too weak to ensure that stereocilia move similarly in response to nonuniform stimulation at auditory frequencies. Our results imply that more uniform stimulation across the tallest stereocilia of an inner-hair-cell bundle in vivo is required to ensure stereociliary displacement similarity, increasing the speed, sensitivity, and magnitude of the receptor current.SIGNIFICANCE STATEMENT Generation of the receptor current of the hair cell is the first step in electrically encoding auditory information in the hearing organs of all vertebrates. The receptor current is shaped by mechanical coupling between stereocilia in the hair bundle of each hair cell. Here, we provide foundational information on the mechanical coupling between stereocilia of cochlear inner-hair cells. In contrast to other types of hair cell, coupling between inner-hair-cell stereocilia is weak, causing slower, smaller, and less sensitive receptor currents in response to stimulation of few, rather than many, stereocilia. Our results imply that inner-hair cells need many stereocilia to be stimulated in vivo to ensure fast, large, and sensitive receptor currents.


Assuntos
Células Ciliadas Vestibulares , Estereocílios , Ratos , Feminino , Masculino , Animais , Estereocílios/metabolismo , Células Ciliadas Auditivas Internas , Células Ciliadas Auditivas/fisiologia , Audição/fisiologia , Mamíferos
16.
Elife ; 112022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36317962

RESUMO

Unbiased genetic screens implicated a number of uncharacterized genes in hearing loss, suggesting some biological processes required for auditory function remain unexplored. Loss of Kiaa1024L/Minar2, a previously understudied gene, caused deafness in mice, but how it functioned in the hearing was unclear. Here, we show that disruption of kiaa1024L/minar2 causes hearing loss in the zebrafish. Defects in mechanotransduction, longer and thinner hair bundles, and enlarged apical lysosomes in hair cells are observed in the kiaa1024L/minar2 mutant. In cultured cells, Kiaa1024L/Minar2 is mainly localized to lysosomes, and its overexpression recruits cholesterol and increases cholesterol labeling. Strikingly, cholesterol is highly enriched in the hair bundle membrane, and loss of kiaa1024L/minar2 reduces cholesterol localization to the hair bundles. Lowering cholesterol levels aggravates, while increasing cholesterol levels rescues the hair cell defects in the kiaa1024L/minar2 mutant. Therefore, cholesterol plays an essential role in hair bundles, and Kiaa1024L/Minar2 regulates cholesterol distribution and homeostasis to ensure normal hearing.


Cholesterol is present in every cell of the body. While it is best known for its role in heart health, it also plays a major role in hearing, with changes in cholesterol levels negatively affecting this sense. To convert sound waves into electrical brain signals, specialised ear cells rely on hair-like structures which can move with vibrations; cholesterol is present within these hair 'bundles', but its exact role remains unknown. Genetic studies have identified over 120 genes essential for normal hearing. Animal data suggest there may be many more ­ including, potentially, some which control cholesterol. For instance, in mice, loss of the Minar2 gene causes profound deafness. Yet exactly which role the protein that Minar2 codes for plays in the ear remains unknown. This is in part because that protein does not resemble any other related proteins, making it difficult to infer its function. To find out more, Gao et al. investigated loss of minar2 in zebrafish, showing that deleting the gene induced deafness in the animals. Without minar2, the hair bundles in ear cells were longer, thinner, and less able to sense vibrations: cholesterol could not move into these structures, causing them to dysfunction. Exposing the animals to drugs that lower or raise cholesterol levels respectively worsened or improved their hearing abilities. A recent study revealed that mutations in MINAR2 also cause deafness in humans. The findings by Gao et al. highlight the need for further research which explores the role of cholesterol and MINAR2 in hair bundle function, as this may potentially uncover cholesterol-based treatments for hearing problems.


Assuntos
Perda Auditiva , Mecanotransdução Celular , Peixe-Zebra , Animais , Colesterol/metabolismo , Audição/fisiologia , Perda Auditiva/genética , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Estereocílios/genética , Estereocílios/metabolismo , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética
17.
Sci Adv ; 8(42): eabq2826, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36260679

RESUMO

Inhibitory G proteins (GNAI/Gαi) bind to the scaffold G protein signaling modulator 2 (GPSM2) to form a conserved polarity complex that regulates cytoskeleton organization. GPSM2 keeps GNAI in a guanosine diphosphate (GDP)-bound state, but how GPSM2-GNAI is generated or relates to heterotrimeric G protein signaling remains unclear. We find that RGS12, a GTPase-activating protein (GAP), is required to polarize GPSM2-GNAI at the hair cell apical membrane and to organize mechanosensory stereocilia in rows of graded heights. Accordingly, RGS12 and the guanine nucleotide exchange factor (GEF) DAPLE are asymmetrically co-enriched at the hair cell apical junction, and Rgs12 mouse mutants are deaf. GPSM2 and RGS12 share GoLoco motifs that stabilize GNAI(GDP), and GPSM2 outcompetes RGS12 to bind GNAI. Our results suggest that polarized GEF/GAP junctional activity might dissociate heterotrimeric G proteins, generating free GNAI(GDP) for GPSM2 at the adjacent apical membrane. GPSM2-GNAI(GDP), in turn, imparts asymmetry to the forming stereocilia to enable sensory function in hair cells.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Proteínas RGS , Animais , Camundongos , Proteínas de Transporte/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Guanosina Difosfato/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Estereocílios/metabolismo
18.
Proc Natl Acad Sci U S A ; 119(41): e2210849119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191207

RESUMO

Transmembrane channel-like protein 1 (TMC1) is thought to form the ion-conducting pore of the mechanoelectrical transducer (MET) channel in auditory hair cells. Using single-channel analysis and ionic permeability measurements, we characterized six missense mutations in the purported pore region of mouse TMC1. All mutations reduced the Ca2+ permeability of the MET channel, triggering hair cell apoptosis and deafness. In addition, Tmc1 p.E520Q and Tmc1 p.D528N reduced channel conductance, whereas Tmc1 p.W554L and Tmc1 p.D569N lowered channel expression without affecting the conductance. Tmc1 p.M412K and Tmc1 p.T416K reduced only the Ca2+ permeability. The consequences of these mutations endorse TMC1 as the pore of the MET channel. The accessory subunits, LHFPL5 and TMIE, are thought to be involved in targeting TMC1 to the tips of the stereocilia. We found sufficient expression of TMC1 in outer hair cells of Lhfpl5 and Tmie knockout mice to determine the properties of the channels, which could still be gated by hair bundle displacement. Single-channel conductance was unaffected in Lhfpl5-/- but was reduced in Tmie-/-, implying TMIE very likely contributes to the pore. Both the working range and half-saturation point of the residual MET current in Lhfpl5-/- were substantially increased, suggesting that LHFPL5 is part of the mechanical coupling between the tip-link and the MET channel. Based on counts of numbers of stereocilia per bundle, we estimate that each PCDH15 and LHFPL5 monomer may contact two channels irrespective of location.


Assuntos
Células Ciliadas Vestibulares , Mecanotransdução Celular , Animais , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Vestibulares/metabolismo , Mecanotransdução Celular/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Estereocílios/metabolismo
19.
Mol Brain ; 15(1): 80, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104704

RESUMO

Tubby mice exhibit hearing impairment due to the loss of stereocilin from the tip regions that connect the tallest stereocilia of the outer hair cells (OHCs) to the tectorial membrane. Stereocilin is an essential stereociliary protein in the OHCs, the mutation of which in humans causes autosomal recessive non-syndromic deafness. Map1a is a modifier of tubby hearing (moth1), and its wild-type allele, rather than the moth1 allele from the C57BL/6 J strain, restores stereocilin localization to the stereocilia and rescues the hearing impairment of tubby mice. The mechanism by which MAP1A accomplishes this is unclear, partly due to ambiguity regarding whether the tubby mutation is a true null. We therefore generated Tub-null (Tub-/-) mice by deleting exon 3 and found that they exhibit hearing impairment like that of tubby mice, suggesting the tubby mutation is a loss-of-function mutation with regard to hearing. When we crossed Tub-/- mice with AKR mice that have wild-type Map1a alleles, we found that wild-type MAP1A restores stereocilin localization to the tips of stereocilia and rescues hearing impairment. These data suggest MAP1A does not require interaction with tubby protein in maintaining stereocilin at the tips of stereocilia and that OHCs use two independent molecules-MAP1A and tubby-to doubly ensure proper stereocilin localization.


Assuntos
Perda Auditiva , Estereocílios , Proteínas Adaptadoras de Transdução de Sinal , Animais , Células Ciliadas Auditivas Internas , Perda Auditiva/genética , Perda Auditiva/metabolismo , Perda Auditiva Neurossensorial , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Estafilocócica A/metabolismo , Estereocílios/metabolismo
20.
Sci Rep ; 12(1): 13764, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962067

RESUMO

During hair cell development, the mechanoelectrical transduction (MET) apparatus is assembled at the stereocilia tips, where it coexists with the stereocilia actin regulatory machinery. While the myosin-based tipward transport of actin regulatory proteins is well studied, isoform complexity and built-in redundancies in the MET apparatus have limited our understanding of how MET components are transported. We used a heterologous expression system to elucidate the myosin selective transport of isoforms of protocadherin 15 (PCDH15), the protein that mechanically gates the MET apparatus. We show that MYO7A selectively transports the CD3 isoform while MYO3A and MYO3B transports the CD2 isoform. Furthermore, MYO15A showed an insignificant role in the transport of PCDH15, and none of the myosins tested transport PCDH15-CD1. Our data suggest an important role for MYO3A, MYO3B, and MYO7A in the MET apparatus formation and highlight the intricate nature of MET and actin regulation during development and functional maturation of the stereocilia bundle.


Assuntos
Protocaderinas , Estereocílios , Actinas/metabolismo , Miosinas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estereocílios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...