Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Emerg Infect Dis ; 30(5): 1004-1008, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38666640

RESUMO

We evaluated the in vitro effects of lyophilization for 2 vesicular stomatitis virus-based vaccines by using 3 stabilizing formulations and demonstrated protective immunity of lyophilized/reconstituted vaccine in guinea pigs. Lyophilization increased stability of the vaccines, but specific vesicular stomatitis virus-based vaccines will each require extensive analysis to optimize stabilizing formulations.


Assuntos
Modelos Animais de Doenças , Liofilização , Estomatite Vesicular , Vacinas Virais , Animais , Cobaias , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Estomatite Vesicular/imunologia , Estomatite Vesicular/prevenção & controle , Estomatite Vesicular/virologia , Vesiculovirus/imunologia , Vesiculovirus/genética , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Eficácia de Vacinas , Vírus da Estomatite Vesicular Indiana/imunologia
2.
J Infect Dis ; 228(Suppl 7): S671-S676, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290042

RESUMO

Ebola virus (EBOV) and Marburg virus (MARV) made headlines in the past decade, causing outbreaks of human disease in previously nonendemic yet overlapping areas. While EBOV outbreaks can be mitigated with licensed vaccines and treatments, there is not yet a licensed countermeasure for MARV. Here, we used nonhuman primates (NHPs) previously vaccinated with vesicular stomatitis virus (VSV)-MARV and protected against lethal MARV challenge. After a resting period of 9 months, these NHPs were revaccinated with VSV-EBOV and challenged with EBOV, resulting in 75% survival. Surviving NHPs developed EBOV glycoprotein (GP)-specific antibody titers and no viremia or clinical signs of disease. The single vaccinated NHP succumbing to challenge showed the lowest EBOV GP-specific antibody response after challenge, supporting previous findings with VSV-EBOV that antigen-specific antibodies are critical in mediating protection. This study again demonstrates that VSVΔG-based filovirus vaccine can be successfully used in individuals with preexisting VSV vector immunity, highlighting the platform's applicability for consecutive outbreak response.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Marburgvirus , Estomatite Vesicular , Animais , Humanos , Doença pelo Vírus Ebola/prevenção & controle , Estomatite Vesicular/prevenção & controle , Vesiculovirus , Vírus da Estomatite Vesicular Indiana , Anticorpos Antivirais , Glicoproteínas , Primatas
3.
J Infect Dis ; 228(Suppl 7): S712-S720, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290053

RESUMO

BACKGROUND: The filovirus Bundibugyo virus (BDBV) causes severe disease with a mortality rate of approximately 20%-51%. The only licensed filovirus vaccine in the United States, Ervebo, consists of a recombinant vesicular stomatitis virus (rVSV) vector that expresses Ebola virus (EBOV) glycoprotein (GP). Ervebo was shown to rapidly protect against fatal Ebola disease in clinical trials; however, the vaccine is only indicated against EBOV. Recent outbreaks of other filoviruses underscore the need for additional vaccine candidates, particularly for BDBV infections. METHODS: To examine whether the rVSV vaccine candidate rVSVΔG/BDBV-GP could provide therapeutic protection against BDBV, we inoculated seven cynomolgus macaques with 1000 plaque-forming units of BDBV, administering rVSVΔG/BDBV-GP vaccine to 6 of them 20-23 minutes after infection. RESULTS: Five of the treated animals survived infection (83%) compared to an expected natural survival rate of 21% in this macaque model. All treated animals showed an early circulating immune response, while the untreated animal did not. Surviving animals showed evidence of both GP-specific IgM and IgG production, while animals that succumbed did not produce significant IgG. CONCLUSIONS: This small, proof-of-concept study demonstrated early treatment with rVSVΔG/BDBV-GP provides a survival benefit in this nonhuman primate model of BDBV infection, perhaps through earlier initiation of adaptive immunity.


Assuntos
Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Estomatite Vesicular , Vacinas Virais , Animais , Estomatite Vesicular/prevenção & controle , Anticorpos Antivirais , Vesiculovirus/genética , Glicoproteínas/genética , Macaca fascicularis , Imunoglobulina G
4.
Proc Natl Acad Sci U S A ; 119(35): e2110105119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994646

RESUMO

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the main target for neutralizing antibodies (NAbs). The S protein trimer is anchored in the virion membrane in its prefusion (preS) but metastable form. The preS protein has been stabilized by introducing two or six proline substitutions, to generate stabilized, soluble 2P or HexaPro (6P) preS proteins. Currently, it is not known which form is the most immunogenic. Here, we generated recombinant vesicular stomatitis virus (rVSV) expressing preS-2P, preS-HexaPro, and native full-length S, and compared their immunogenicity in mice and hamsters. The rVSV-preS-HexaPro produced and secreted significantly more preS protein compared to rVSV-preS-2P. Importantly, rVSV-preS-HexaPro triggered significantly more preS-specific serum IgG antibody than rVSV-preS-2P in both mice and hamsters. Antibodies induced by preS-HexaPro neutralized the B.1.1.7, B.1.351, P.1, B.1.427, and B.1.617.2 variants approximately two to four times better than those induced by preS-2P. Furthermore, preS-HexaPro induced a more robust Th1-biased cellular immune response than preS-2P. A single dose (104 pfu) immunization with rVSV-preS-HexaPro and rVSV-preS-2P provided complete protection against challenge with mouse-adapted SARS-CoV-2 and B.1.617.2 variant, whereas rVSV-S only conferred partial protection. When the immunization dose was lowered to 103 pfu, rVSV-preS-HexaPro induced two- to sixfold higher antibody responses than rVSV-preS-2P in hamsters. In addition, rVSV-preS-HexaPro conferred 70% protection against lung infection whereas only 30% protection was observed in the rVSV-preS-2P. Collectively, our data demonstrate that both preS-2P and preS-HexaPro are highly efficacious but preS-HexaPro is more immunogenic and protective, highlighting the advantages of using preS-HexaPro in the next generation of SARS-CoV-2 vaccines.


Assuntos
Prolina , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Desenvolvimento de Vacinas , Estomatite Vesicular , Vacinas Virais , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/genética , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Cricetinae , Humanos , Camundongos , Prolina/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Estomatite Vesicular/imunologia , Estomatite Vesicular/prevenção & controle , Estomatite Vesicular/virologia , Vesiculovirus/imunologia , Proteínas Virais/imunologia , Vacinas Virais/imunologia
5.
PLoS Pathog ; 18(6): e1010658, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35759511

RESUMO

Nipah virus (NiV) disease is a bat-borne zoonosis responsible for outbreaks with high lethality and is a priority for vaccine development. With funding from the Coalition of Epidemic Preparedness Innovations (CEPI), we are developing a chimeric vaccine (PHV02) composed of recombinant vesicular stomatitis virus (VSV) expressing the envelope glycoproteins of both Ebola virus (EBOV) and NiV. The EBOV glycoprotein (GP) mediates fusion and viral entry and the NiV attachment glycoprotein (G) is a ligand for cell receptors, and stimulates neutralizing antibody, the putative mediator of protection against NiV. PHV02 is identical in construction to the registered Ebola vaccine (Ervebo) with the addition of the NiV G gene. NiV ephrin B2 and B3 receptors are expressed on neural cells and the wild-type NiV is neurotropic and causes encephalitis in affected patients. It was therefore important to assess whether the NiV G alters tropism of the rVSV vector and serves as a virulence factor. PHV02 was fully attenuated in adult hamsters inoculated by the intramuscular (IM) route, whereas parental wild-type VSV was 100% lethal. Two rodent models (mice, hamsters) were infected by the intracerebral (IC) route with graded doses of PHV02. Comparator active controls in various experiments included rVSV-EBOV (representative of Ebola vaccine) and yellow fever (YF) 17DD commercial vaccine. These studies showed PHV02 to be more neurovirulent than both rVSV-EBOV and YF 17DD in infant animals. PHV02 was lethal for adult hamsters inoculated IC but not for adult mice. In contrast YF 17DD retained virulence for adult mice inoculated IC but was not virulent for adult hamsters. Because of the inconsistency of neurovirulence patterns in the rodent models, a monkey neurovirulence test (MNVT) was performed, using YF 17DD as the active comparator because it has a well-established profile of quantifiable microscopic changes in brain centers and a known reporting rate of neurotropic adverse events in humans. In the MNVT PHV02 was significantly less neurovirulent than the YF 17DD vaccine reference control, indicating that the vaccine will have an acceptable safety profile for humans. The findings are important because they illustrate the complexities of phenotypic assessment of novel viral vectors with tissue tropisms determined by transgenic proteins, and because it is unprecedented to use a heterologous comparator virus (YF vaccine) in a regulatory-enabling study. This approach may have value in future studies of other novel viral vectors.


Assuntos
Infecções por Henipavirus , Estomatite Vesicular , Vacinas Virais , Animais , Modelos Animais de Doenças , Vacinas contra Ebola , Glicoproteínas/genética , Doença pelo Vírus Ebola/prevenção & controle , Infecções por Henipavirus/prevenção & controle , Humanos , Camundongos , Vírus Nipah/genética , Vacinas Atenuadas/efeitos adversos , Vacinas Sintéticas/efeitos adversos , Estomatite Vesicular/prevenção & controle , Vacinas Virais/efeitos adversos
6.
mBio ; 13(1): e0337921, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35012339

RESUMO

The ongoing pandemic of coronavirus (CoV) disease 2019 (COVID-19) continues to exert a significant burden on health care systems worldwide. With limited treatments available, vaccination remains an effective strategy to counter transmission of severe acute respiratory syndrome CoV 2 (SARS-CoV-2). Recent discussions concerning vaccination strategies have focused on identifying vaccine platforms, number of doses, route of administration, and time to reach peak immunity against SARS-CoV-2. Here, we generated a single-dose, fast-acting vesicular stomatitis virus (VSV)-based vaccine derived from the licensed Ebola virus (EBOV) vaccine rVSV-ZEBOV, expressing the SARS-CoV-2 spike protein and the EBOV glycoprotein (VSV-SARS2-EBOV). Rhesus macaques vaccinated intramuscularly (i.m.) with a single dose of VSV-SARS2-EBOV were protected within 10 days and did not show signs of COVID-19 pneumonia. In contrast, intranasal (i.n.) vaccination resulted in limited immunogenicity and enhanced COVID-19 pneumonia compared to results for control animals. While both i.m. and i.n. vaccination induced neutralizing antibody titers, only i.m. vaccination resulted in a significant cellular immune response. RNA sequencing data bolstered these results by revealing robust activation of the innate and adaptive immune transcriptional signatures in the lungs of i.m. vaccinated animals only. Overall, the data demonstrate that VSV-SARS2-EBOV is a potent single-dose COVID-19 vaccine candidate that offers rapid protection based on the protective efficacy observed in our study. IMPORTANCE The vesicular stomatitis virus (VSV) vaccine platform rose to fame in 2019, when a VSV-based Ebola virus (EBOV) vaccine was approved by the European Medicines Agency and the U.S. Food and Drug Administration for human use against the deadly disease. Here, we demonstrate the protective efficacy of a VSV-EBOV-based COVID-19 vaccine against challenge in nonhuman primates (NHPs). When a single dose of the VSV-SARS2-EBOV vaccine was administered intramuscularly (i.m.), the NHPs were protected from COVID-19 within 10 days. In contrast, if the vaccine was administered intranasally, there was no benefit from the vaccine and the NHPs developed pneumonia. The i.m. vaccinated NHPs quickly developed antigen-specific IgG, including neutralizing antibodies. Transcriptional analysis highlighted the development of protective innate and adaptive immune responses in the i.m. vaccination group only.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacinas contra Ebola , Ebolavirus , Macaca mulatta , Estomatite Vesicular , Animais , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/uso terapêutico , Vacinas contra Ebola/genética , Vacinas contra Ebola/imunologia , Vacinas contra Ebola/uso terapêutico , Ebolavirus/genética , Ebolavirus/imunologia , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Macaca mulatta/imunologia , SARS-CoV-2 , Vacinação/métodos , Estomatite Vesicular/genética , Estomatite Vesicular/imunologia , Estomatite Vesicular/prevenção & controle , Vesiculovirus/genética
7.
Commun Biol ; 4(1): 921, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326461

RESUMO

Retinoic acid-inducible gene I (RIG-I) senses viral RNA and instigates an innate immune signaling cascade to induce type I interferon expression. Currently, the regulatory mechanisms controlling RIG-I activation remain to be fully elucidated. Here we show that the FAK family kinase-interacting protein of 200 kDa (FIP200) facilitates RIG-I activation. FIP200 deficiency impaired RIG-I signaling and increased host susceptibility to RNA virus infection. In vivo studies further demonstrated FIP200 knockout mice were more susceptible to RNA virus infection due to the reduced innate immune response. Mechanistic studies revealed that FIP200 competed with the helicase domain of RIG-I for interaction with the two tandem caspase activation and recruitment domains (2CARD), thereby facilitating the release of 2CARD from the suppression status. Furthermore, FIP200 formed a dimer and facilitated 2CARD oligomerization, thereby promoting RIG-I activation. Taken together, our study defines FIP200 as an innate immune signaling molecule that positively regulates RIG-I activation.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Resfriado Comum/prevenção & controle , Coronavirus Humano OC43/fisiologia , Proteína DEAD-box 58/genética , Infecções por Rhabdoviridae/prevenção & controle , Vírus da Estomatite Vesicular Indiana/fisiologia , Células A549 , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Chlorocebus aethiops , Resfriado Comum/metabolismo , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/prevenção & controle , Proteína DEAD-box 58/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Células RAW 264.7 , Infecções por Rhabdoviridae/metabolismo , Células Vero , Estomatite Vesicular/metabolismo , Estomatite Vesicular/prevenção & controle
8.
BMC Vet Res ; 17(1): 36, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33461549

RESUMO

BACKGROUND: Vesicular stomatitis (VS) is an acute, highly contagious and economically important zoonotic disease caused by the vesicular stomatitis virus (VSV). There is a need for effective and safe stable recombinant vaccine for the control of the disease. The human type 5 replication-defective adenovirus expression vector is a good way to construct recombinant vaccines. RESULTS: Three recombinant adenoviruses (rAd) were successfully constructed that expressed the VSV Indiana serotype glycoprotein (VSV-IN-G), VSV New Jersey serotype glycoprotein (VSV-NJ-G), and the G fusion protein (both serotypes of G [VSV-IN-G-NJ-G]) with potentiality to induce protective immunity. G proteins were successfully expressed with good immunogenicity. The rAds could induce the production of VSV antibodies in mice, and VSV neutralizing antibodies in goats, respectively. The neutralizing antibody titers could reach 1:32 in mice and 1:64 in goats. The rAds induced strong lymphocyte proliferation in mice and goats, which was significantly higher compared to the negative control groups. CONCLUSIONS: The three rAds constructed in the study expressed VSV-G proteins and induced both humoral and cellular immune responses in mice and goats. These results lay the foundation for further studies on the use of rAds in vaccines expressing VSV-G.


Assuntos
Glicoproteínas de Membrana/imunologia , Estomatite Vesicular/prevenção & controle , Vírus da Estomatite Vesicular Indiana/imunologia , Vírus da Estomatite Vesicular New Jersey/imunologia , Proteínas do Envelope Viral/imunologia , Adenoviridae , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Feminino , Doenças das Cabras/imunologia , Doenças das Cabras/prevenção & controle , Doenças das Cabras/virologia , Cabras , Imunidade Celular , Imunidade Humoral , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos BALB C , Vacinas Sintéticas/imunologia , Estomatite Vesicular/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Vacinas Virais/imunologia
9.
Vet Microbiol ; 252: 108928, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33248402

RESUMO

Binary ethylenimine (BEI) has been widely used as a virucide to inactivate viruses. For regulatory exclusion of a select agent, the United States Federal Select Agent Program (FSAP) requires an inactivation procedure that renders a select agent non-viable but allows the select agent to retain antigenic characteristics for future use must be validated, and the inactivated agent must be confirmed by a viability testing. In this curve-based validation study, we examined impacts of BEI concentration, treatment temperature, and time on our in-house inactivation procedures of Foot-and-Mouth Disease Virus (FMDV), Vesicular Stomatitis Virus (VSV), and Swine Vesicular Disease Virus (SVDV). The inactivation efficacy was confirmed by virus titration and 3 consecutive blind passages on the monolayers of susceptible cells. A linear correlation between the virus titer reduction and BEI concentration, treatment time, and temperature was established. The results confirmed our in-house BEI inactivation procedure of two doses of 1.5 mM BEI treatment at 37 °C, 1st dose for 24 h, then 2nd dose for 6 more hours for a total of 30 h BEI contact time, can ensure complete inactivation of FMDV, VSV, and SVDV.


Assuntos
Aziridinas/farmacologia , Enterovirus Humano B/efeitos dos fármacos , Vírus da Febre Aftosa/efeitos dos fármacos , Febre Aftosa/prevenção & controle , Doenças dos Suínos/prevenção & controle , Estomatite Vesicular/prevenção & controle , Vírus da Estomatite Vesicular Indiana/efeitos dos fármacos , Animais , Contenção de Riscos Biológicos/veterinária , Suínos , Doenças dos Suínos/virologia , Estomatite Vesicular/virologia , Inativação de Vírus/efeitos dos fármacos
10.
Viruses ; 12(9)2020 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842671

RESUMO

Filoviruses, including Ebola virus (EBOV) and Marburg virus (MARV), cause severe hemorrhagic fever in humans and nonhuman primates with high mortality rates. There is no approved therapy against these deadly viruses. Antiviral drug development has been hampered by the requirement of a biosafety level (BSL)-4 facility to handle infectious EBOV and MARV because of their high pathogenicity to humans. In this study, we aimed to establish a surrogate animal model that can be used for anti-EBOV and -MARV drug screening under BSL-2 conditions by focusing on the replication-competent recombinant vesicular stomatitis virus (rVSV) pseudotyped with the envelope glycoprotein (GP) of EBOV (rVSV/EBOV) and MARV (rVSV/MARV), which has been investigated as vaccine candidates and thus widely used in BSL-2 laboratories. We first inoculated mice, rats, and hamsters intraperitoneally with rVSV/EBOV and found that only hamsters showed disease signs and succumbed within 4 days post-infection. Infection with rVSV/MARV also caused lethal infection in hamsters. Both rVSV/EBOV and rVSV/MARV were detected at high titers in multiple organs including the liver, spleen, kidney, and lungs of infected hamsters, indicating acute and systemic infection resulting in fatal outcomes. Therapeutic effects of passive immunization with an anti-EBOV neutralizing antibody were specifically observed in rVSV/EBOV-infected hamsters. Thus, this animal model is expected to be a useful tool to facilitate in vivo screening of anti-filovirus drugs targeting the GP molecule.


Assuntos
Modelos Animais de Doenças , Ebolavirus/genética , Marburgvirus/genética , Estomatite Vesicular/virologia , Vesiculovirus/genética , Proteínas do Envelope Viral/genética , Animais , Anticorpos Antivirais/administração & dosagem , Cricetinae , Suscetibilidade a Doenças , Avaliação Pré-Clínica de Medicamentos , Ebolavirus/imunologia , Mesocricetus , Camundongos , Ratos , Vacinas Sintéticas , Estomatite Vesicular/patologia , Estomatite Vesicular/prevenção & controle , Estomatite Vesicular/terapia , Vesiculovirus/patogenicidade , Proteínas do Envelope Viral/imunologia , Carga Viral
11.
J Virol ; 94(17)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32554698

RESUMO

The nonstructural protein 1 (NS1) of several flaviviruses, including West Nile, dengue, and yellow fever viruses, is capable of inducing variable degrees of protection against flavivirus infection in animal models. However, the immunogenicity of NS1 protein of Zika virus (ZIKV) is less understood. Here, we determined the efficacy of ZIKV NS1-based vaccine candidates using two delivery platforms, methyltransferase-defective recombinant vesicular stomatitis virus (mtdVSV) and a DNA vaccine. We first show that expression of ZIKV NS1 could be significantly enhanced by optimizing the signal peptide. A single dose of mtdVSV-NS1-based vaccine or two doses of DNA vaccine induced high levels of NS1-specfic antibody and T cell immune responses but provided only partial protection against ZIKV viremia in BALB/c mice. In Ifnar1-/- mice, neither NS1-based vaccine provided protection against a lethal high dose (105 PFU) ZIKV challenge, but mtdVSV-NS1-based vaccine prevented deaths from a low dose (103 PFU) challenge, though they experienced viremia and body weight loss. We conclude that ZIKV NS1 alone conferred substantial, but not complete, protection against ZIKV infection. Nevertheless, these results highlight the value of ZIKV NS1 for vaccine development.IMPORTANCE Most Zika virus (ZIKV) vaccine research has focused on the E or prM-E proteins and the induction of high levels of neutralizing antibodies. However, these ZIKV neutralizing antibodies cross-react with other flaviviruses, which may aggravate the disease via an antibody-dependent enhancement (ADE) mechanism. ZIKV NS1 protein may be an alternative antigen for vaccine development, since antibodies to NS1 do not bind to the virion, thereby eliminating the risk of ADE. Here, we show that recombinant VSV and DNA vaccines expressing NS1, alone, confer partial protection against ZIKV infection in both immunocompetent and immunodeficient mice, highlighting the value of NS1 as a potential vaccine candidate.


Assuntos
Vacinas de DNA/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Reações Cruzadas , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptor de Interferon alfa e beta/genética , Vacinas de DNA/genética , Estomatite Vesicular/prevenção & controle , Proteínas não Estruturais Virais/genética , Infecção por Zika virus/virologia
12.
J Equine Vet Sci ; 90: 103026, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32534788

RESUMO

Vesicular stomatitis viruses (VSVs) cause a condition known as vesicular stomatitis (VS), which results in painful lesions in equines, cattle, swine, and camelids, and when transmitted to humans, can cause flu-like symptoms. When animal premises are affected by VS, they are subject to a quarantine. The equine industry more broadly may incur economic losses due to interruptions of animal trade and transportation to shows, competitions, and other events. Equine owners, barn managers, and veterinarians can take proactive measures to reduce the risk of equines contracting VS. To identify appropriate risk management strategies, it helps to understand which biting insects are capable of transmitting the virus to animals, and to identify these insect vectors' preferred habitats and behaviors. We make this area of science more accessible to equine owners, barn managers, and veterinarians, by (1) translating the most relevant scientific information about biting insect vectors of VSV and (2) identifying practical management strategies that might reduce the risk of equines contracting VSV from infectious biting insects or from other equines already infected with VSV. We address transmission risk at four different spatial scales-the animal, the barn/shelter, the barnyard/premises, and the surrounding environment/neighborhood-noting that a multiscale and spatially collaborative strategy may be needed to reduce the risk of VS.


Assuntos
Doenças dos Bovinos , Doenças dos Cavalos , Doenças dos Suínos , Estomatite Vesicular , Vesiculovirus , Animais , Bovinos , Doenças dos Cavalos/prevenção & controle , Cavalos , Insetos Vetores , Suínos , Estados Unidos , Estomatite Vesicular/prevenção & controle , Vírus da Estomatite Vesicular Indiana
13.
Toxicol In Vitro ; 62: 104698, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31669364

RESUMO

Both PM2.5 and respiratory viruses are part of the atmospheric constituents. Respiratory viruses are often associated with PM2.5 exposure, but the mechanism of toxicity remains to be explored. The vitro models that adequately reproduce healthy cells or diseased cells exposing to PM2.5 and infecting VSV can provide a useful tool for studying innate immune mechanisms and investigating new therapeutic focus. In the environment of PM2.5, an infection model in which VSV infected A549 cells was established, that mimics the state in which the antiviral innate immune pathways are activated after the respiratory system is infected with RNA viruses. Subsequently, the model was exposed to PM2.5 for 24 h. PM2.5 could be ingested by A549 cells and synergize with VSV to inhibit cell viability and promote apoptosis. The expression of VSV-G were more abundant after VSV-infected A549 cells were exposed to PM2.5. Furthermore, PM2.5 inhibits VSV-induced IFN-ß expression in A549 cells. ISG15, CCL-5, and CXCL-10 had the same expression tendency with IFN-ß mRNA, consistently. Interestingly, when MG132 was applied, the expression of p-IRF-3 and IFN-ß proteins reduced by PM2.5 were refreshed. Conversely, the expression of VSV-G proteins were decreased. PM2.5 could degrade p-IRF-3 proteins by ubiquitination pathway to inhibit VSV-induced IFN-ß expression in A549 cells. Therefore, replication of the VSV viruses was promoted.


Assuntos
Poluentes Atmosféricos/toxicidade , Fator Regulador 3 de Interferon/metabolismo , Material Particulado/toxicidade , Ubiquitinação/efeitos dos fármacos , Vesiculovirus/efeitos dos fármacos , Células A549 , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Fator Regulador 3 de Interferon/efeitos dos fármacos , Interferon beta/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estomatite Vesicular/prevenção & controle , Estomatite Vesicular/virologia
14.
Nat Immunol ; 19(1): 41-52, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29242538

RESUMO

Prolonged activation of interferon-STAT1 signaling is closely related to inflammatory autoimmune disorders, and therefore the identification of negative regulators of these pathways is important. Through high-content screening of 115 mouse RING-domain E3 ligases, we identified the E3 ubiquitin ligase RNF2 as a potent inhibitor of interferon-dependent antiviral responses. RNF2 deficiency substantially enhanced interferon-stimulated gene (ISG) expression and antiviral responses. Mechanistically, nuclear RNF2 directly bound to STAT1 after interferon stimulation and increased K33-linked polyubiquitination of the DNA-binding domain of STAT1 at position K379, in addition to promoting the disassociation of STAT1/STAT2 from DNA and consequently suppressing ISG transcription. Our study provides insight into the regulation of interferon-dependent responses via a previously unrecognized post-translational modification of STAT1 in the nucleus.


Assuntos
DNA/metabolismo , Interferon Tipo I/farmacologia , Lisina/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Fator de Transcrição STAT1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Antivirais/farmacologia , Linhagem Celular , Expressão Gênica/efeitos dos fármacos , Lisina/genética , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Complexo Repressor Polycomb 1/genética , Ligação Proteica/efeitos dos fármacos , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/efeitos dos fármacos , Estomatite Vesicular/genética , Estomatite Vesicular/prevenção & controle , Estomatite Vesicular/virologia , Vírus da Estomatite Vesicular Indiana/fisiologia
15.
Hum Vaccin Immunother ; 14(4): 994-1002, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29206076

RESUMO

V920, rVSVΔG-ZEBOV-GP, is a recombinant vesicular stomatitis-Zaire ebolavirus vaccine which has shown an acceptable safety profile and provides a protective immune response against Ebola virus disease (EVD) induced by Zaire ebolavirus in humans. The purpose of this study was to determine whether the V920 vaccine is capable of replicating in arthropod cell cultures of relevant vector species and of replicating in live mosquitoes. While the V920 vaccine replicated well in Vero cells, no replication was observed in Anopheles or Aedes mosquito, Culicoides biting midge, or Lutzomyia sand fly cells, nor in live Culex or Aedes mosquitoes following exposure through intrathoracic inoculation or feeding on a high-titer infectious blood meal. The insect taxa selected for use in this study represent actual and potential epidemic vectors of VSV. V920 vaccine inoculated into Cx. quinquefasciatus and Ae. aegypti mosquitoes demonstrated persistence of replication-competent virus following inoculation, consistent with the recognized biological stability of the vaccine, but no evidence for active virus replication in live mosquitoes was observed. Following administration of an infectious blood meal to Ae. aegypti and Cx. quinquefasciatus mosquitoes at a titer several log10 PFU more concentrated than would be observed in vaccinated individuals, no infection or dissemination of V920 was observed in either mosquito species. In vitro and in vivo data gathered during this study support minimal risk of the vector-borne potential of the V920 vaccine.


Assuntos
Artrópodes/imunologia , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Mosquitos Vetores/imunologia , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/imunologia , Aedes/imunologia , Aedes/virologia , Animais , Artrópodes/virologia , Chlorocebus aethiops , Culex/imunologia , Culex/virologia , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Células Vero , Estomatite Vesicular/imunologia , Estomatite Vesicular/prevenção & controle , Estomatite Vesicular/virologia
16.
Vet Microbiol ; 212: 59-66, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29173589

RESUMO

The matrix protein of vesicular stomatitis virus (VSV) performs multiple functions during viral genome replication and virion production and is involved in modulating multiple host signaling pathways that favor virus replication. To perform numerous functions within infected cells, the M protein needs to recruit cellular partners. To better understand the role of M during VSV replication, we looked for interacting partners by using the two-hybrid system. The eukaryotic translation initiation factor 3, subunit i (eIF3i) was identified to be an M-binding partner, and this interaction was validated by GST pull-down and laser confocal assays. Through a mutagenesis analysis, we found that some mutants of M between amino acids 122 and 181 impaired but did not completely abolish the M-eIF3i interaction. Furthermore, the knockdown of eIF3i by RNA interference decreased viral replication and transcription in the early stages but led to increase in later stages. VSV transcription was increased at 4h post-infection but was not changed at 8 and 12h post-infection after the over-expression of eIF3i. Finally, we also demonstrated that VSV could inhibit the activity of Akt1 and that the knockdown of eIF3i inhibited the expression of the ISGs regulated by phospho-Akt1. These results indicated that eIF3i may affect VSV growth by regulating the host antiviral response in HeLa cells.


Assuntos
Fator de Iniciação 3 em Eucariotos/metabolismo , Estomatite Vesicular/prevenção & controle , Vírus da Estomatite Vesicular Indiana/crescimento & desenvolvimento , Proteínas da Matriz Viral/metabolismo , Animais , Linhagem Celular , Fator de Iniciação 3 em Eucariotos/genética , Humanos , Mesocricetus , Estomatite Vesicular/virologia , Vírus da Estomatite Vesicular Indiana/genética , Proteínas da Matriz Viral/genética , Replicação Viral
17.
Immunology ; 152(1): 102-114, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28464285

RESUMO

As the most important host defence against viral infection, interferon (IFN) stimulates hundreds of antiviral genes (ISGs) that together establish an 'antiviral state'. However, the antiviral function of most ISGs in viral infection still need further exploration. Here, we demonstrated that the expression of G-protein-coupled receptor 146 (GPR146) is highly increased by both IFN-ß and IFN-γ in a signal transducer and activator of transcription 1-dependent signalling pathway. Most importantly, overexpression of GPR146 protects the host cells from vesicular stomatitis virus and Newcastle disease virus infection but not from infection by herpes simplex virus. In contrast, the virus-induced IFN-ß production changed little in Gpr146-knockout cells. Furthermore, the Gpr146-deficient mice showed similar susceptibility to wild-type mice with vesicular stomatitis virus infection. Interestingly, the expression of GPR146 in virus-infected cells was strikingly reduced and can partially explain why the viral infection was little influenced in Gpr146-knockout mice. Surprisingly, virus-activated IFN regulatory factor 3 (IRF3) signalling not only induces the expression of IFN but also represses GPR146 expression through HES1 (hairy and enhancer of split-1)-mediated transcriptional activity to establish a dynamic equilibrium between pro-viral and antiviral stages in host cells. Taken together, these data reveal the antiviral role of GPR146 in fighting viral infection although the GPR146-mediated protection is eliminated by IRF3/HES1-signalling, which suggests a potential therapeutic significance of both GPR146 and HES1 signalling in viral infection.


Assuntos
Herpes Simples/prevenção & controle , Fator Regulador 3 de Interferon/metabolismo , Macrófagos Peritoneais/metabolismo , Doença de Newcastle/prevenção & controle , Receptores Acoplados a Proteínas G/deficiência , Transdução de Sinais , Fatores de Transcrição HES-1/metabolismo , Estomatite Vesicular/prevenção & controle , Animais , Chlorocebus aethiops , Genótipo , Células HEK293 , Herpes Simples/imunologia , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Fator Regulador 3 de Interferon/imunologia , Interferon beta/farmacologia , Interferon gama/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doença de Newcastle/imunologia , Doença de Newcastle/metabolismo , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/imunologia , Vírus da Doença de Newcastle/metabolismo , Fenótipo , Células RAW 264.7 , Interferência de RNA , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Fatores de Transcrição HES-1/imunologia , Transfecção , Células Vero , Estomatite Vesicular/imunologia , Estomatite Vesicular/metabolismo , Estomatite Vesicular/virologia , Vírus da Estomatite Vesicular Indiana/imunologia , Vírus da Estomatite Vesicular Indiana/metabolismo , Replicação Viral
18.
Vaccine ; 35(41): 5481-5486, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28427845

RESUMO

Development of vaccines against highly pathogenic viruses that could also be used as agents of bioterrorism is both a public health issue and a national security priority. Methods that can quantify neutralizing antibodies will likely be crucial in demonstrating vaccine effectiveness, as most licensed viral vaccines are effective due to their capacity to elicit neutralizing antibodies. Assays to determine whether antibodies are neutralizing traditionally involve infectious virus, and the assay most commonly used is the plaque-reduction neutralization test (PRNT). However, when the virus is highly pathogenic, this assay must be done under the appropriate level of containment; for tier one select agents, such as Ebola virus (EBOV), it is performed under Biological Safety Level 4 (BSL-4) conditions. Developing high-throughput neutralization assays for these viruses that can be done in standard BSL-2 laboratories should facilitate vaccine development. Our approach is to use a replication-competent hybrid virus whose genome carries the envelope gene from the pathogenic virus on the genetic backbone of a non-pathogenic virus, such as vesicular stomatitis virus (VSV). We have generated hybrid VSVs carrying the envelope genes for several species of ebolavirus. The readout for infectivity is a one-step reverse transcriptase quantitative PCR (RT-qPCR), an approach that we have used for other viruses that allows robustness and adaptability to automation. Using this method, we have shown that neutralization can be assessed within 6-16h after infection. Importantly, the titers obtained in our assay with two characterized antibodies were in agreement with titers obtained in other assays. Finally, although in this paper we describe the VSV platform to quantify neutralizing antibodies to ebolaviruses, the platform should be directly applicable to any virus whose envelope is compatible with VSV biology.


Assuntos
Anticorpos Neutralizantes/imunologia , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Estomatite Vesicular/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Testes de Neutralização/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Células Vero , Estomatite Vesicular/prevenção & controle , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia
19.
Sci Rep ; 6: 37007, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27849057

RESUMO

Cellular senescence is often considered a protection mechanism triggered by conditions that impose cellular stress. Continuous proliferation, DNA damaging agents or activated oncogenes are well-known activators of cell senescence. Apart from a characteristic stable cell cycle arrest, this response also involves a proinflammatory phenotype known as senescence-associated secretory phenotype (SASP). This, together with the widely known interference with senescence pathways by some oncoviruses, had led to the hypothesis that senescence may also be part of the host cell response to fight virus. Here, we evaluate this hypothesis using vesicular stomatitis virus (VSV) as a model. Our results show that VSV replication is significantly impaired in both primary and tumor senescent cells in comparison with non-senescent cells, and independently of the stimulus used to trigger senescence. Importantly, we also demonstrate a protective effect of senescence against VSV in vivo. Finally, our results identify the SASP as the major contributor to the antiviral defense exerted by cell senescence in vitro, and points to a role activating and recruiting the immune system to clear out the infection. Thus, our study indicates that cell senescence has also a role as a natural antiviral defense mechanism.


Assuntos
Senescência Celular , Sistema Imunitário/fisiologia , Estomatite Vesicular/prevenção & controle , Vesiculovirus/patogenicidade , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/virologia , Humanos , Camundongos , Inoculações Seriadas , Estomatite Vesicular/imunologia , Vesiculovirus/fisiologia , Replicação Viral
20.
J Infect Dis ; 214(suppl 3): S360-S366, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27496978

RESUMO

The Ebola virus (EBOV) epidemic in West Africa increased the focus on vaccine development against this hemorrhagic fever-causing pathogen, and as a consequence human clinical trials for a few selected platforms were accelerated. One of these vaccines is vesicular stomatitis virus (VSV)-EBOV, also known as rVSV-ZEBOV, a fast-acting vaccine against EBOV and so far the only vaccine with reported efficacy against EBOV infections in humans in phase III clinical trials. In this study, we analyzed the potential of VSV-EBOV for postexposure treatment of rhesus macaques infected with EBOV-Makona. We treated groups of animals with 1 dose of VSV-EBOV either in a single injection at 1 or 24 hours after EBOV exposure or with 2 injections, half the dose at each time point; 1 control group received the same dose of the VSV-based Marburg virus vaccine at both time points; another group remained untreated. Although all untreated animals succumbed to EBOV infection, 33%-67% of the animals in each treatment group survived the infection, including the group treated with the VSV-based Marburg virus vaccine. This result suggests that protection from postexposure vaccination may be antigen unspecific and due rather to an early activation of the innate immune system. In conclusion, VSV-EBOV remains a potent and fast-acting prophylactic vaccine but demonstrates only limited efficacy in postexposure treatment.


Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Vacinação , Estomatite Vesicular/prevenção & controle , Vesiculovirus/imunologia , África Ocidental/epidemiologia , Animais , Feminino , Doença pelo Vírus Ebola/virologia , Humanos , Macaca mulatta , Masculino , Marburgvirus/imunologia , Estomatite Vesicular/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...