Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(15): 10596-10608, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38557034

RESUMO

Continuously monitoring neurotransmitter dynamics can offer profound insights into neural mechanisms and the etiology of neurological diseases. Here, we present a miniaturized implantable fluorescence probe integrated with metal-organic frameworks (MOFs) for deep brain dopamine sensing. The probe is assembled from physically thinned light-emitting diodes (LEDs) and phototransistors, along with functional surface coatings, resulting in a total thickness of 120 µm. A fluorescent MOF that specifically binds dopamine is introduced, enabling a highly sensitive dopamine measurement with a detection limit of 79.9 nM. A compact wireless circuit weighing only 0.85 g is also developed and interfaced with the probe, which was later applied to continuously monitor real-time dopamine levels during deep brain stimulation in rats, providing critical information on neurotransmitter dynamics. Cytotoxicity tests and immunofluorescence analysis further suggest a favorable biocompatibility of the probe for implantable applications. This work presents fundamental principles and techniques for integrating fluorescent MOFs and flexible electronics for brain-computer interfaces and may provide more customized platforms for applications in neuroscience, disease tracing, and smart diagnostics.


Assuntos
Dopamina , Estruturas Metalorgânicas , Ratos , Animais , Dopamina/análise , Estruturas Metalorgânicas/metabolismo , Corantes Fluorescentes/metabolismo , Fluorescência , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Neurotransmissores/metabolismo
2.
Redox Biol ; 71: 103106, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38442647

RESUMO

Cytoprotection has emerged as an effective therapeutic strategy for mitigating brain injury following acute ischemic stroke (AIS). The sulfonylurea receptor 1-transient receptor potential M4 (SUR1-TRPM4) channel plays a pivotal role in brain edema and neuroinflammation. However, the practical use of the inhibitor glyburide (GLB) is hindered by its low bioavailability. Additionally, the elevated reactive oxygen species (ROS) after AIS exacerbate SUR1-TRPM4 activation, contributing to irreversible brain damage. To overcome these challenges, GLB and superoxide dismutase (SOD) were embedded in a covalent organic framework (COF) with a porous structure and great stability. The resulting S/G@COF demonstrated significant improvements in survival and neurological functions. This was achieved by eliminating ROS, preventing neuronal loss and apoptosis, suppressing neuroinflammation, modulating microglia activation, and ameliorating blood-brain barrier (BBB) disruption. Mechanistic investigations revealed that S/G@COF concurrently activated the Wnt/ß-catenin signaling pathway while suppressing the upregulation of SUR1-TRPM4. This study underscores the potential of employing multi-target therapy and drug modification in cytoprotective strategies for ischemic stroke.


Assuntos
AVC Isquêmico , Estruturas Metalorgânicas , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/tratamento farmacológico , Estruturas Metalorgânicas/metabolismo , Estruturas Metalorgânicas/farmacologia , Doenças Neuroinflamatórias , Espécies Reativas de Oxigênio/metabolismo , Barreira Hematoencefálica , Glibureto/metabolismo , Glibureto/farmacologia , Glibureto/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo
3.
Anal Chem ; 96(6): 2727-2736, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38300748

RESUMO

Exosomes, a growing focus for liquid biopsies, contain diverse molecular cargos. In particular, exosome metabolites with valuable information have exhibited great potential for improving the efficiency of liquid biopsies for addressing complex medical conditions. In this work, we design the directional growth of Ti-metal-organic frameworks on polar-functionalized magnetic particles. This design facilitates the rapid synergistic capture of exosomes with the assistance of an external magnetic field and additionally synergistically enhances the ionization of their metabolites during mass spectrometry detection. Benefiting from this dual synergistic effect, we identified three high-performance exosome metabolites through the differential comparison of a large number of serum samples from individuals with Alzheimer's disease (AD) and normal cognition. Notably, the accuracy of AD identification ranges from 93.18 to 100% using a single exosome metabolite and reaches a flawless 100% with three metabolites. These findings emphasize the transformative potential of this work to enhance the precision and reliability of AD diagnosis, ushering in a new era of improved diagnostic accuracy.


Assuntos
Doença de Alzheimer , Exossomos , Estruturas Metalorgânicas , Humanos , Doença de Alzheimer/patologia , Estruturas Metalorgânicas/metabolismo , Exossomos/química , Reprodutibilidade dos Testes , Titânio/análise
4.
Small ; 20(1): e2304491, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37653587

RESUMO

A composite nanoagent capable of phototriggered tumor microenvironment (TME) regulation is developed based on copper (II) metal-organic frameworks (MOFs) with encapsulation of blebbistatin (Bb) and surface modification of fibroblast activation protein-αtargeted peptide (Tp). Tp enables active targeting of the nanoagents to cancer-associated fibroblast (CAF) while near-infrared light triggers Cu2+ -to-Cu+ photoreduction in MOFs, which brings about the collapse of MOFs and the release of Bb and Cu+ . Bb mediates photogeneration of hydroxyl radicals (•OH) and therefore inhibits extracellular matrix production by inducing CAF apoptosis, which facilitates the penetration of nanoagent to deep tumor tissue. The dual-channel generation of •OH based on Bb and the Cu+ species, via distinct mechanisms, synergistically reinforces oxidative stress in TME capable of inducing immunogenic cell death, which activates the antitumor immune response and therefore reverses the immunosuppressive TME. The synergistic antitumor phototherapy efficacy of such a type of nanoagent based on the abovementioned TME remodeling is unequivocally verified in a cell-derived tumor xenograft model.


Assuntos
Fibroblastos Associados a Câncer , Estruturas Metalorgânicas , Neoplasias , Humanos , Estruturas Metalorgânicas/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Microambiente Tumoral , Cobre/metabolismo , Neoplasias/metabolismo , Linhagem Celular Tumoral
5.
Adv Sci (Weinh) ; 11(6): e2306780, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38037294

RESUMO

Although mitochondria are crucial for recovery after spinal cord injury (SCI), therapeutic strategies to modulate mitochondrial metabolic energy to coordinate the immune response and nerve regeneration are lacking. Here, a ligand-screened cerium-based metal-organic framework (MOF) with better ROS scavenging and drug-loading abilities is encapsulated with polydopamine after loading creatine to obtain microcapsules (Cr/Ce@PDA nanoparticles), which reverse the energy deficits in both macrophages and neuronal cells by combining ROS scavenging and energy supplementation. It reprogrames inflammatory macrophages to the proregenerative phenotype via the succinate/HIF-1α/IL-1ß signaling axis. It also promotes the regeneration and differentiation of neural cells by activating the mTOR pathway and paracrine function of macrophages. In vivo experiments further confirm the effect of the microcapsules in regulating early ROS-inflammation positive-feedback chain reactions and continuously promoting nerve regeneration. This study provides a new strategy for correcting mitochondrial energy deficiency in the immune response and nerve regeneration following SCI.


Assuntos
Estruturas Metalorgânicas , Traumatismos da Medula Espinal , Humanos , Estruturas Metalorgânicas/metabolismo , Ligantes , Cápsulas/metabolismo , Cápsulas/farmacologia , Cápsulas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Mitocôndrias/metabolismo
6.
In Vivo ; 38(1): 235-245, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38148076

RESUMO

BACKGROUND/AIM: Hypertrophic scars (HS) are an abnormal cutaneous condition of wound healing characterized by excessive fibrosis and disrupted collagen deposition. This study assessed the potential of a silicone patch embedded with chemically stable zirconium-based metal-organic frameworks (MOF)-808 structures to mitigate HS formation using a rabbit ear model. MATERIALS AND METHODS: A silicone patch was strategically engineered by incorporating Zr-MOF-808, a composite structure comprising metal ions and organic ligands. Structural integrity of the Zr-MOF-808 silicone patch was validated using scanning electron microscopy and X-ray diffraction analysis. The animals were divided into three groups: a control, no treatment group (Group 1), a silicone patch treatment group (Group 2), and a group treated with a 0.2% loaded Zr-MOF-808 silicone patch (Group 3). HS suppression effects were quantified using scar elevation index (SEI), dorsal skin thickness measurements, and myofibroblast protein expression. RESULTS: Histopathological examination of post-treatment HS samples revealed substantial reductions in SEI (34.6%) and epidermal thickness (49.5%) in Group 3. Scar hyperplasia was significantly diminished by 53.5% (p<0.05), while collagen density declined by 15.7% in Group 3 compared to Group 1. Western blot analysis of protein markers, including TGF-ß1, collagen-1, and α-SMA, exhibited diminished levels by 8.8%, 12%, and 21.3%, respectively, in Group 3, and substantially higher levels by 21.9%, 27%, and 39.9%, respectively, in Group 2. On the 35th day post-wound generation, Zr-MOF-808-treated models exhibited smoother, less conspicuous, and flatter scars. CONCLUSION: Zr-MOF-808-loaded silicone patch reduced HS formation in rabbit ear models by inducing the proliferation and remodeling of the wound healing process.


Assuntos
Cicatriz Hipertrófica , Estruturas Metalorgânicas , Animais , Coelhos , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/patologia , Estruturas Metalorgânicas/metabolismo , Estruturas Metalorgânicas/farmacologia , Fibroblastos , Colágeno Tipo I/metabolismo , Colágeno Tipo I/farmacologia , Colágeno/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
7.
J Am Chem Soc ; 146(1): 599-608, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109168

RESUMO

The rapid development of antimicrobial resistance (AMR) among infectious pathogens has become a major threat and challenge in healthcare systems globally. A strategy distinct from minimizing the overuse of antimicrobials involves the development of novel antimicrobials with a mode of action that prevents the development of AMR microbial strains. Reactive oxygen species (ROS) are formed as a natural byproduct of the cellular aerobic metabolism. However, it becomes pathological when ROS is produced at excessive levels. Exploiting this phenomenon, research on redox-active bactericides has been demonstrated to be beneficial. Materials that release ROS via photodynamic, thermodynamic, and photocatalytic interventions have been developed as nanomedicines and are used in various applications. However, these materials require external stimuli for ROS release to be effective as biocides. In this paper, we report novel zinc-based metal organic framework (Zn@MOF) particles that promote the spontaneous release of active ROS species. The synthesized Zn@MOF spontaneously releases superoxide anions and hydrogen peroxide, exhibiting a potent antimicrobial efficacy against various microbes. Zn@MOF-incorporated plastic films and coatings show excellent, long-lasting antimicrobial potency even under continuous microbial challenge and an aging process. These disinfecting surfaces maintain their antimicrobial properties even after 500× surface wipes. Zn@MOF is also biocompatible and safe on the skin, illustrating its broad potential applications in medical technology and consumer care applications.


Assuntos
Anti-Infecciosos , Estruturas Metalorgânicas , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/metabolismo , Zinco , Oxirredução
8.
J Hazard Mater ; 465: 133273, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38113729

RESUMO

Photocatalytic technology showed significant potential for addressing the issue of cyanobacterial blooms resulting from eutrophication in bodies of water. However, the traditional powder materials were easy to agglomerate and settle, which led to the decrease of photocatalytic activity. The emergence of floating photocatalyst was important for the practical application of controlling harmful algal blooms. This study was based on the efficient powder photocatalyst bismuth oxide composite copper-metal organic framework (Bi2O3 @Cu-MOF), which was successfully loaded onto melamine sponge (MS) by sodium alginate immobilization to prepare a floating photocatalyst MS/Bi2O3 @Cu-MOF for the inactivation of Microcystis aeruginosa (M. aeruginosa) under visible light. When the capacity was 0.4 g (CA0.4), MS/Bi2O3 @Cu-MOF showed good photocatalytic activity, and the inactivation rate of M. aeruginosa reached 74.462% after 120 h. MS/Bi2O3 @Cu-MOF-CA0.4 showed a large specific surface area of 30.490 m2/g and an average pore size of 22.862 nm, belonging to mesoporous materials. After 120 h of treatment, the content of soluble protein in the MS/Bi2O3 @Cu-MOF-CA0.4 treatment group decreased to 0.365 mg/L, the content of chlorophyll a (chla) was 0.023 mg/L, the content of malondialdehyde (MDA) increased to 3.168 nmol/mgprot, and the contents of various antioxidant enzymes experienced drastic changes, first increasing and then decreasing. The photocatalytic process generated·OH and·O2-, which played key role in inactivating the algae cells. Additionally, the release of Cu2+ and adsorption of the material also contributed to the process.


Assuntos
Estruturas Metalorgânicas , Microcystis , Triazinas , Cobre/metabolismo , Microcystis/metabolismo , Estruturas Metalorgânicas/metabolismo , Clorofila A , Seda/metabolismo , Pós/metabolismo , Bismuto , Proliferação Nociva de Algas
9.
Angew Chem Int Ed Engl ; 62(47): e202308827, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37802975

RESUMO

Enzymatic catalysis with high efficiency allows them a great prospect in metabolite monitoring in living cells. However, complex tumor microenvironments, such as acidity, H2 O2 , and hypoxia, are bound to disturb catalytic reactions for misleading results. Here, we report a spatially compartmentalized artificial organelle to correct intratumoral glucose analysis, where the zeolitic imidazolate framework-8 immobilized glucose oxidase-horseradish peroxidase cascade core and catalase-directed shell act as signal transduction and guarding rooms respectively. The acid-digested core and stable shell provide appropriate spaces to boost biocatalytic efficiency with good tolerability. Notably, the endogenous H2 O2 is in situ decomposed to O2 by catalase, which not only overcomes the interference in signal output but also alleviates the hypoxic states to maximize glucose oxidation. The marked protective effect and biocompatibility render artificial organelles to correct the signal transduction for dynamic monitoring glucose in vitro and in vivo, achieving our goal of accurate intratumoral metabolite analysis.


Assuntos
Células Artificiais , Estruturas Metalorgânicas , Estruturas Metalorgânicas/metabolismo , Glucose/análise , Catalase/metabolismo , Oxirredução , Glucose Oxidase/metabolismo
10.
Adv Sci (Weinh) ; 10(30): e2303872, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37661565

RESUMO

The lethality and chemotherapy resistance of pancreatic cancer necessitates the urgent development of innovative strategies to improve patient outcomes. To address this issue, we designed a novel drug delivery system named GDMCN2,which uses iron-based metal organic framework (Fe-MOF) nanocages encased in a covalent organic framework (COF) and modified with the pancreatic cancer-specific antibody, NRP2. After being targeted into tumor cells, GDMCN2 gradually release the sonosensitizer sinoporphyrin sodium (DVDMS) and chemotherapeutic gemcitabine (GEM) and simultaneously generated reactive oxygen species (ROS) under ultrasound (US) irradiation. This system can overcome gemcitabine resistance in pancreatic cancer and reduce its toxicity to non-targeted cells and tissues. In a mechanistic cascade, the release of ROS activates the mitochondrial transition pore (MPTP), leading to the release of Ca2+ and induction of endoplasmic reticulum (ER) stress. Therefore, microtubule-associated protein 1A/1B-light chain 3 (LC3) is activated, promoting lysosomal autophagy. This process also induces autophagy-dependent ferroptosis, aided by the upregulation of Nuclear Receptor Coactivator 4 (NCOA4). This mechanism increases the sensitivity of pancreatic cancer cells to chemotherapeutic drugs and increases mitochondrial and DNA damage. The findings demonstrate the potential of GDMCN2 nanocages as a new avenue for the development of cancer therapeutics.


Assuntos
Ferroptose , Estruturas Metalorgânicas , Neoplasias Pancreáticas , Humanos , Estruturas Metalorgânicas/metabolismo , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Anticorpos Monoclonais/uso terapêutico , Autofagia , Gencitabina , Neoplasias Pancreáticas/tratamento farmacológico , Retículo Endoplasmático/metabolismo , Neoplasias Pancreáticas
11.
J Med Chem ; 66(19): 13838-13857, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37752076

RESUMO

In this study, PD-L1 and CYP51 were selected as key dual-target enzymes, which play an important role in the process of fungal proliferation and immune suppression. A series of novel bifonazole dual-target compounds were designed through the method of fragment combination. Their chemical structure was synthesized, characterized, and evaluated. Among them, the compounds (10c-1, 14a-2, 17c-2) exhibited excellent antifungal and antidrug-resistant fungal activity in vitro. In particular, the preferred compound 14a-2 with high-efficiency dual-target inhibitor ability could block the fungal proliferation and activate the organism's immune efficacy. Moreover, the corresponding covalent organic framework carrier was also successfully constructed to improve its bioavailability. This significantly accelerated the body's recovery process from fungal infection in vivo. In summary, this study expanded the scientific frontier of antifungal drugs and provided a feasible candidate pathway for clinical treatment of fungal infections.


Assuntos
Antifúngicos , Estruturas Metalorgânicas , Antifúngicos/química , Estruturas Metalorgânicas/metabolismo , Candida albicans , Testes de Sensibilidade Microbiana
12.
ACS Appl Mater Interfaces ; 15(30): 35884-35894, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37487181

RESUMO

The effect of photodynamic therapy (PDT) is severely limited by tumor hypoxia and the short half-life of reactive oxygen species (ROS). Herein, we constructed a near-infrared (NIR) light-regulated PDT nanoplatform (TPP-UCNPs@MOF-Pt) consisting of an upconversion nanoparticle (UCNP) core and porphyrin-based metal-organic framework (MOF) shell with platinum nanoparticles (PtNPs) and a mitochondria-targeting triphenylphosphine (TPP) group on the surface. TPP-UCNPs@MOF-Pt could effectively relieve the tumor hypoxia by converting intracellular H2O2 to oxygen (O2) and elevated the ROS level to enhance PDT efficacy under NIR light irradiation. In addition, the mitochondria-targeting TPP-UCNPs@MOF-Pt was localized on the mitochondria, leading to severe depolarization of the mitochondrial membrane and activation of the apoptotic pathway, further amplifying the therapeutic efficacy. In vitro and in vivo experiments demonstrated that the greatly enhanced photodynamic therapeutic efficacy of TPP-UCNPs@MOF-Pt was achieved by combining relief of tumor hypoxia with mitochondrial targeting and NIR activation. This study provides a promising strategy for construction of an MOF-based multifunctional nanoplatform to address the current limitations of PDT treatment for hypoxic tumors.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Platina , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Oxigênio/metabolismo , Mitocôndrias/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/metabolismo , Linhagem Celular Tumoral
13.
J Biotechnol ; 371-372: 10-21, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37301292

RESUMO

Metal-organic frameworks (MOFs) are used as ideal support materials thanks to their unique properties and have become the focus of interest in enzyme immobilization studies, especially in recent years. In order to increase the catalytic activity and stability of Candida rugosa lipase (CRL), a new fluorescence-based MOF (UiO-66-Nap) derived from UiO-66 was synthesized. The structures of the materials were confirmed by spectroscopic techniques such as FTIR, 1H NMR, SEM, and PXRD. CRL was immobilized on UiO-66-NH2 and UiO-66-Nap by adsorption technique and immobilization and stability parameters of UiO-66-Nap@CRL were examined. Immobilized lipases UiO-66-Nap@CRL exhibited higher catalytic activity (204 U/g) than UiO-66-NH2 @CRL (168 U/g), which indicates that the immobilized lipase (UiO-66-Nap@CRL) carries sulfonate groups, this is due to strong ionic interactions between the surfactant's polar groups and certain charged locations on the protein surface. The Free CRL lost its catalytic activity completely at 60 °C after 100 min, while UiO-66-NH2 @CRL and UiO-66-Nap@CRL retained 45 % and 56 % of their catalytic activity at the end of 120 min, respectively. After 5 cycles, the activity of UiO-66-Nap@CRL remained 50 %, while the activity of UiO-66-NH2 @CRL was about 40 %. This difference is due to the surfactant groups (Nap) in UiO-66-Nap@CRL. These results show that the newly synthesized fluorescence-based MOF derivative (UiO-66-Nap) can be an ideal support material for enzyme immobilization and can be used successfully to protect and increase the activities of enzymes.


Assuntos
Estruturas Metalorgânicas , Biocatálise , Estruturas Metalorgânicas/metabolismo , Tensoativos , Candida , Enzimas Imobilizadas/química , Lipase/química
14.
J Hazard Mater ; 454: 131545, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37148794

RESUMO

Electroactive bacteria (EAB) and metal oxides are capable of synergistically removing chloramphenicol (CAP). However, the effects of redox-active metal-organic frameworks (MOFs) on CAP degradation with EAB are not yet known. This study investigated the synergism of iron-based MOFs (Fe-MIL-101) and Shewanella oneidensis MR-1 on CAP degradation. 0.5 g/L Fe-MIL-101 with more possible active sites led to a three-fold higher CAP removal rate in the synergistic system with MR-1 (initial bacterial concentration of 0.2 at OD600), and showed a superior catalytic effect than exogenously added Fe(III)/Fe(II) or magnetite. Mass spectrometry revealed that CAP was transformed into smaller molecular weight and less toxic metabolites in cultures. Transcriptomic analysis showed that Fe-MIL-101 enhanced the expression of genes related to nitro and chlorinated contaminants degradation. Additionally, genes encoding hydrogenases and c-type cytochromes associated with extracellular electron transfer were significantly upregulated, which may contribute to the simultaneous bioreduction of CAP both intracellularly and extracellularly. These results indicated that Fe-MIL-101 can be used as a catalyst to synergize with EAB to effectively facilitate CAP degradation, which might shed new light on the application in the in situ bioremediation of antibiotic-contaminated environments.


Assuntos
Estruturas Metalorgânicas , Shewanella , Compostos Férricos/metabolismo , Estruturas Metalorgânicas/metabolismo , Cloranfenicol/farmacologia , Cloranfenicol/metabolismo , Shewanella/genética , Shewanella/metabolismo , Oxirredução
15.
ACS Nano ; 17(8): 7721-7732, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37023215

RESUMO

Antisense oligonucleotides (ASOs) are promising tools for gene silencing and have been exploited as therapeutics for human disease. However, delivery of therapeutic ASOs to diseased tissues or cells and subsequent escape from the endosomes and release of ASO in the cytosol remain a challenge. Here, we reported a neutrophil-membrane-coated zeolitic imidazolate framework-8 (ZIF-8) nanodelivery platform (AM@ZIF@NM) for the targeted transportation of ASOs against microRNA-155 (anti-miRNA-155) to the endothelial cells in atherosclerotic lesions. Neutrophil membrane could improve plaque endothelial cells targeting through the interaction between neutrophil membrane protein CD18 and endothelial cell membrane protein intercellular adhesion molecule-1 (ICAM-1). The ZIF-8 "core" provided high loading capacity and efficient endolysosomal escaping ability. Delivery of anti-miR-155 effectively downregulated miR-155 expression and also saved the expression of its target gene BCL6. Moreover, RELA expression and the expression of its downstream target genes CCL2 and ICAM-1 were correspondingly reduced. Consequently, this anti-miR-155 nanotherapy can inhibit the inflammation of atherosclerotic lesions and alleviate atherosclerosis. Our study shows that the designed biomimetic nanodelivery system has great application prospects in the treatment of other chronic diseases.


Assuntos
Aterosclerose , Estruturas Metalorgânicas , MicroRNAs , Nanopartículas , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Estruturas Metalorgânicas/metabolismo , Células Endoteliais/metabolismo , Antagomirs , Neutrófilos/metabolismo , Aterosclerose/metabolismo , Inativação Gênica , MicroRNAs/genética
16.
Small ; 19(22): e2300218, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36864579

RESUMO

Metal-organic framework (MOF) nanoparticles have recently emerged as a promising vehicle for drug delivery with high porosity and feasibility. However, employing a MOF-based drug delivery system remains a challenge due to the difficulty in controlling interfaces of particles in a biological environment. In this paper, protein corona-blocked Zr6 -based MOF (PCN-224) nanoparticles are presented for targeted cancer therapy with high efficiency. The unmodified PCN-224 surface is precoated with glutathione transferase (GST)-fused targetable affibody (GST-Afb) proteins via simple mixing conjugations instead of chemical modifications that can induce the impairment of proteins. GST-Afb proteins are shown to stably protect the surface of PCN-224 particles in a specific orientation with GST adsorbed onto the porous surface and the GST-linked Afb posed outward, minimizing the unwanted interfacial interactions of particles with external biological proteins. The Afb-directed cell-specific targeting ability of particles and consequent induction of cell death is demonstrated both in vitro and in vivo by using two kinds of Afb, which targets the surface membrane receptor, human epidermal growth factor receptor 2 (HER2) or epidermal growth factor receptor (EGFR). This study provides insight into the way of regulating the protein-adhesive surface of MOF nanoparticles and designing a more effective MOF-hosted targeted delivery system.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Humanos , Estruturas Metalorgânicas/metabolismo , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Proteínas de Membrana
17.
Colloids Surf B Biointerfaces ; 225: 113253, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36934611

RESUMO

Disulfiram (DSF), a drug for alcohol withdrawal, has attracted extensive scientific attention due to its potential to treat cancer. The metabolite of DSF, diethyl dithiocarbamate (DDTC), forms a Cu-DDTC complex in vivo with copper ions, which has been shown to be a proteasome inhibitor with high antitumor activity. However, the in vivo stability of Cu-DDTC complexes remains a challenge. In this study, the nanomedicine Cu-BTC@DDTC with high antitumor activity was prepared by using the nanoscale metal-organic framework (MOF) Cu-BTC as a carrier and loading diethyldithiocarbamate (DDTC) through coordination interaction. The results showed that Cu-BTC@DDTC had high drug loading and adequate stability, and exhibited DDTC-Cu(I) chemical valence characteristics and polycrystalline structure features. In vitro cytocompatibility investigation and animal xenograft tumor model evaluation demonstrated the anti-cancer potential of Cu-BTC@DDTC, especially the combination of Cu-BTC@DDTC with low-dose cisplatin showed significant antitumor effect and biosafety. This study provides a feasible protocol for developing antitumor drugs based on the drug repurposing strategy.


Assuntos
Alcoolismo , Ferroptose , Melanoma , Estruturas Metalorgânicas , Síndrome de Abstinência a Substâncias , Animais , Humanos , Ditiocarb/farmacologia , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/metabolismo , Dissulfiram/farmacologia , Dissulfiram/metabolismo , Melanoma/tratamento farmacológico , Cobre/química , Linhagem Celular Tumoral , Sistema y+ de Transporte de Aminoácidos
18.
ACS Appl Mater Interfaces ; 15(4): 4947-4958, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651694

RESUMO

Oxidative stress due to Cu2+-triggered aggregation of ß-amyloid protein (Aß) and reactive oxygen species (ROS) overexpression in the brain is an important hallmark of early stages of Alzheimer's disease (AD) pathogenesis. The ideal modulator for improving the oxidative stress microenvironment in AD brains should take both Cu2+ and ROS into consideration, which has been rarely reported. Here, a combined therapeutic strategy was achieved by co-encapsulating superoxide dismutase (SOD) and catalase (CAT) in imine-linked covalent organic frameworks (COFs), which were modified with peptide KLVFF (T5). The nanocomposite SC@COF-T5 exhibited an oxidative stress eradicating ability through ROS elimination and Cu2+ chelation, combined with the inhibition of Aß42 monomer aggregation and disaggregation of Aß42 fibrils. In vivo experiments indicated that SC@COF-T5 with a high blood-brain barrier (BBB) penetration efficiency was effective to reduce Aß deposition, expression of pro-inflammatory cytokines, ROS levels, and neurologic damage in AD model mice, consequently rescuing memory deficits of AD mice. This work not only confirms the feasibility and merits of the therapeutic strategy regarding multiple targets for treatment of early AD pathogenesis but also opens up a novel direction for imine-linked COFs in biomedical applications.


Assuntos
Doença de Alzheimer , Estruturas Metalorgânicas , Camundongos , Animais , Doença de Alzheimer/metabolismo , Estruturas Metalorgânicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peptídeos beta-Amiloides/metabolismo , Estresse Oxidativo , Encéfalo/metabolismo
19.
Adv Mater ; 35(14): e2210047, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36637449

RESUMO

Intestinal milieu disorders are strongly related to the occurrence of inflammatory bowel diseases (IBDs), which results from mucosa destruction, epithelium disruption, and tight junction (TJ) proteins loss. Excess of H2 S in the intestinal milieu produced by the sulfate-reducing bacteria metabolism contributes to development of IBDs via epithelial barrier breakdown. Conventional interventions, such as surgery and anti-inflammatory medications, are considered not completely effective because of frequent recurrence and other complications. Herein, a novel oral delivery system, a hydroxypropyl methylcellulose acetate succinate (HPMCAS)-based polymer-coated Zr-based metal-organic framework (UiO-66) with a Cux -rhodamine B (CR) probe (hereinafter referred to as HUR), is produced via a co-flow microfluidic approach with the ability to reduce H2 S levels, thus restoring the intestinal lumen milieu. HPMCAS serves as an enteric coating that exposes UiO-66@CR at the pH of the intestine but not the acidic pH of the stomach. The synthesized HUR exhibits notable therapeutic efficacy, including mucosa recovery, epithelium integrity restoration, and TJ proteins upregulation via H2 S scavenging to protect against intestinal barrier damage and microbiome dysbiosis. Thus, HUR is verified to be a promising theranostic platform able to decrease the H2 S content for intestinal milieu disorder treatment. The presented study therefore opens the door for further exploitation for IBDs therapy.


Assuntos
Estruturas Metalorgânicas , Mucosa Intestinal/metabolismo , Intestinos , Estruturas Metalorgânicas/metabolismo , Microfluídica , Junções Íntimas , Sulfeto de Hidrogênio/química
20.
Biomater Sci ; 11(3): 854-872, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36515094

RESUMO

Inadequate angiogenesis in diabetic wound healing has been identified as one of the most difficult issues to treat. Copper ions (Cu2+) have been confirmed to stimulate angiogenesis; nevertheless, the rapid rise in non-physiological Cu2+ concentrations increases the danger of ion poisoning. For the first time, biotin was used to stabilize a copper-based metal-organic framework (HKUST-1) to change its hydrophobicity and achieve sustained release of Cu2+. The inability to offer a suitable area for the dynamic interaction between cells and growth factors still restricts the use of nanomaterials for the regeneration of injured skin in diabetes. Acellular dermal matrix (ADM) scaffolds are collagen fibers with natural spatial tissue that can create a biological "niche" for cell attachment and growth. In this study, biotin-stabilized HKUST-1 (B-HKUST-1) nanoparticles were modified with an ADM to form a novel scaffold (ADM-B-HKUST-1). Notably, Cu2+ and mesenchymal stem cells (MSCs) released by the composite scaffold may synergistically promote MSC adhesion, proliferation and endothelial differentiation by upregulating the expression of transforming growth factor-ß (TGF-ß), vascular endothelial growth factor (VEGF) and alpha-smooth muscle actin (α-SMA). Overall, the ADM-B-HKUST1 scaffold combines the dual advantages of the sustained release of Cu2+ and creating a biological "niche" can provide a potential strategy for enhancing angiogenesis and promoting diabetic wound healing.


Assuntos
Derme Acelular , Diabetes Mellitus , Estruturas Metalorgânicas , Humanos , Estruturas Metalorgânicas/metabolismo , Biotina , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cobre , Preparações de Ação Retardada/metabolismo , Alicerces Teciduais , Cicatrização , Diabetes Mellitus/metabolismo , Diferenciação Celular , Neovascularização Patológica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...