Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
1.
Nature ; 629(8012): 710-716, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693265

RESUMO

Phosphatidylcholine and phosphatidylethanolamine, the two most abundant phospholipids in mammalian cells, are synthesized de novo by the Kennedy pathway from choline and ethanolamine, respectively1-6. Despite the essential roles of these lipids, the mechanisms that enable the cellular uptake of choline and ethanolamine remain unknown. Here we show that the protein encoded by FLVCR1, whose mutation leads to the neurodegenerative syndrome posterior column ataxia and retinitis pigmentosa7-9, transports extracellular choline and ethanolamine into cells for phosphorylation by downstream kinases to initiate the Kennedy pathway. Structures of FLVCR1 in the presence of choline and ethanolamine reveal that both metabolites bind to a common binding site comprising aromatic and polar residues. Despite binding to a common site, FLVCR1 interacts in different ways with the larger quaternary amine of choline in and with the primary amine of ethanolamine. Structure-guided mutagenesis identified residues that are crucial for the transport of ethanolamine, but dispensable for choline transport, enabling functional separation of the entry points into the two branches of the Kennedy pathway. Altogether, these studies reveal how FLVCR1 is a high-affinity metabolite transporter that serves as the common origin for phospholipid biosynthesis by two branches of the Kennedy pathway.


Assuntos
Colina , Etanolamina , Proteínas de Membrana Transportadoras , Modelos Moleculares , Humanos , Colina/metabolismo , Sítios de Ligação , Etanolamina/metabolismo , Etanolamina/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Fosfatidiletanolaminas/metabolismo , Transporte Biológico , Animais , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/química , Fosforilação
2.
Nanomedicine ; 55: 102724, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007066

RESUMO

In recent decades, nanopores have become a promising diagnostic tool. Protein and solid-state nanopores are increasingly used for both RNA/DNA sequencing and small molecule detection. The latter is of great importance, as their detection is difficult or expensive using available methods such as HPLC or LC-MS. DNA aptamers are an excellent detection element for sensitive and specific detection of small molecules. Herein, a method for quantifying small molecules using a ready-to-use sequencing platform is described. Taking ethanolamine as an example, a strand displacement assay is developed in which the target-binding aptamer is displaced from the surface of magnetic particles by ethanolamine. Non-displaced aptamer and thus the ethanolamine concentration are detected by the nanopore system and can be quantified in the micromolar range using our in-house developed analysis software. This method is thus the first to describe a label-free approach for the detection of small molecules in a protein nanopore system.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanoporos , Etanolamina/análise , Etanolamina/química , Etanolaminas , DNA/química , Sequência de Bases , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos
3.
J Environ Manage ; 332: 117398, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36738721

RESUMO

Capturing CO2 has become increasingly important. However, wide industrial applications of conventional CO2 capture technologies are limited by their slow CO2 sorption and desorption kinetics. Accordingly, this research is designed to overcome the challenge by synthesizing mesoporous MgO nanoparticles (MgO-NPs) with a new method that uses PEG 1500 as a soft template. MgO surface structure is nonstoichiometric due to its distinctive shape; the abundant Lewis base sites provided by oxygen vacancies promote CO2 capture. Adding 2 wt % MgO-NPs to 20 wt % monoethanolamine (MEA) can increase the breakthrough time (the time with 90% CO2 capturing efficiency) by ∼3000% and can increase the CO2 absorption capacity within the breakthrough time by ∼3660%. The data suggest that MgO-NPs can accelerate the rate and increase CO2 desorption capacity by up to ∼8740% and ∼2290% at 90 °C, respectively. Also, the excellent stability of the system within 50 cycles is verified. These findings demonstrate a new strategy to innovate MEA absorbents currently widely used in commercial post-combustion CO2 capture plants.


Assuntos
Dióxido de Carbono , Óxido de Magnésio , Dióxido de Carbono/química , Óxido de Magnésio/química , Bases de Lewis , Etanolamina/química , Cinética
4.
J Phys Chem A ; 126(25): 4057-4067, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35729723

RESUMO

Alkanolamines such as monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA) are extensively used for CO2 capture and consumer products. Despite their prevalence in industrial applications, the fate of alkanolamines in the atmosphere remains relatively unknown. One likely reaction pathway for these chemicals in the atmosphere is new particle formation with sulfuric acid. Here, we present the first experimental results showing the formation of sulfuric acid dimers enhanced by MEA, DEA, and TEA from the measurement of molecular clusters. This study examines the nucleation reactions of MEA, DEA, and TEA with sulfuric acid in a clean, laminar flow reactor. The chemical compositions and concentrations of the freshly nucleated clusters were analyzed using a custom-built atmospheric pressure chemical ionization long time-of-flight mass spectrometer known as the Pittsburgh Cluster CIMS. Quantum chemical calculations and kinetic modeling of sulfuric acid-MEA/DEA/TEA clusters were also performed to determine relative cluster stabilities between these sulfuric acid-base systems. Experimental results indicate that MEA, DEA, and TEA at the part per trillion by volume (pptv) concentrations can enhance sulfuric acid dimer formation rates but to a lesser extent than dimethylamine (DMA). Thus, MEA, DEA, and TEA will potentially play an important role in new particle formation in industrial cities where these alkanolamines are emitted.


Assuntos
Etanolamina , Ácidos Sulfúricos , Atmosfera/química , Etanolamina/química , Modelos Teóricos , Ácidos Sulfúricos/química
5.
Analyst ; 147(7): 1348-1356, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35244657

RESUMO

Ethanolamine is an important analyte for environmental chemistry and biological sciences. A few DNA aptamers were previously reported for binding ethanolamine with a dissociation constant (Kd) as low as 9.6 nM. However, most of the previous binding assays and sensing work used either immobilized ethanolamine or immobilized aptamers. In this work, we studied three previously reported DNA sequences, two of which were supposed to bind ethanolamine while the other could not bind. Isothermal titration calorimetry revealed no binding for any of these sequences. In addition, due to their guanine-rich sequences, thioflavin T was used as a probe. Little fluorescence change was observed with up to 1 µM ethanolamine. Responses within the millimolar range of ethanolamine were attributed to the general fluorescence quenching effect of ethanolamine instead of aptamer binding. Finally, after studying the adsorption of ethanolamine to gold nanoparticles (AuNPs), we confirmed the feasibility of using AuNPs as a probe when the concentration of ethanolamine was below 0.1 mM. However, no indication of specific aptamer binding was observed by comparing the three DNA sequences for their color changing trends. This work articulates the importance of careful homogeneous binding assays using free target molecules.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Aptâmeros de Nucleotídeos/química , Etanolamina/química , Etanolaminas , Ouro/química , Nanopartículas Metálicas/química
6.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163818

RESUMO

Deep eutectic solvents (DESs) have been widely used to capture CO2 in recent years. Understanding CO2 mechanisms by DESs is crucial to the design of efficient DESs for carbon capture. In this work, we studied the CO2 absorption mechanism by DESs based on ethylene glycol (EG) and protic ionic liquid ([MEAH][Im]), formed by monoethanolamine (MEA) with imidazole (Im). The interactions between CO2 and DESs [MEAH][Im]-EG (1:3) are investigated thoroughly by applying 1H and 13 C nuclear magnetic resonance (NMR), 2-D NMR, and Fourier-transform infrared (FTIR) techniques. Surprisingly, the results indicate that CO2 not only binds to the amine group of MEA but also reacts with the deprotonated EG, yielding carbamate and carbonate species, respectively. The reaction mechanism between CO2 and DESs is proposed, which includes two pathways. One pathway is the deprotonation of the [MEAH]+ cation by the [Im]- anion, resulting in the formation of neutral molecule MEA, which then reacts with CO2 to form a carbamate species. In the other pathway, EG is deprotonated by the [Im]-, and then the deprotonated EG, HO-CH2-CH2-O-, binds with CO2 to form a carbonate species. The absorption mechanism found by this work is different from those of other DESs formed by protic ionic liquids and EG, and we believe the new insights into the interactions between CO2 and DESs will be beneficial to the design and applications of DESs for carbon capture in the future.


Assuntos
Dióxido de Carbono/química , Etanolamina/química , Etilenoglicol/química , Imidazóis/química , Solventes/química , Adsorção , Solventes Eutéticos Profundos/química , Líquidos Iônicos/química , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Int J Biol Macromol ; 193(Pt B): 1610-1616, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742852

RESUMO

In recent years, deep eutectic solvents (DESs) are used for enhancing the enzymatic digestibility and lignin fractionation in pretreatment, while hemicellulosic fraction receives scant attention. Herein, we report a novel approach of applying alkaline deep eutectic solvents (ADESs) for dissociating hemicelluloses from woody biomass. Among these ADESs, choline chloride-monoethanolamine (C-M) was the most efficacious medium for deconstructing the recalcitrant structure of poplar and 63.3% of hemicelluloses was obtained at 80 °C. Structure analysis showed that the ADESs-extracted hemicelluloses retained partial of O-acetyl groups. Different ADESs could be used to obtain hemicelluloses with various degrees of branching. Furthermore, the enzymatic digestibility of cellulose was significantly increased by 6.6 times compared to that of the untreated poplar under the optimum conditions (C-M, 140 °C). This work provides a view on the dissociation behavior of hemicelluloses during ADESs pretreatment, which would be beneficial for devising DESs toward effective fractionation and comprehensive utilization of biomass.


Assuntos
Antiácidos/química , Meios de Cultura/química , Solventes Eutéticos Profundos/química , Polissacarídeos/química , Biomassa , Fracionamento Químico/métodos , Colina/química , Etanolamina/química , Hidrólise , Lignina/química , Madeira/química
8.
J Oleo Sci ; 70(3): 333-339, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33583920

RESUMO

We synthesized hydrophilic amine-based protic ionic liquids (PILs) with hydroxy groups in their cations and anions, and characterized their adsorption at a solid (iron-based substrate) / aqueous solution interface. The IL samples employed in this study were triethanolamine lactate, diethanolamine lactate, and monoethanolamine lactate. Quartz crystal microbalance with dissipation monitoring (QCM-D) measurements revealed that the adsorption mass of the hydrophilic PILs was larger than that of the comparative materials, including a non-IL sample (1,2,6-hexanetriol) and an OH-free sample in the cations (triethylamine lactate). Additionally, an increase in the number of hydroxy groups in the cations resulted in an increased adsorption mass. Force curve measurements by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) measurements proved the high adsorption density of the hydrophilic PILs on the iron-based substrate. A decreased kinetic friction coefficient was also observed in the hydrophilic PIL systems. Moreover, hydrophilic PILs are expected to have potential applications as water-soluble lubricants and additives for metal surface treatments.


Assuntos
Aminas/química , Adsorção , Ânions , Cátions , Etanolamina/química , Etanolaminas/química , Interações Hidrofóbicas e Hidrofílicas , Hidroxilação , Lubrificantes , Solubilidade , Soluções , Água
9.
Food Funct ; 11(9): 8068-8076, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32852024

RESUMO

Considerable attention has been paid to the absorption mechanisms of plasmalogen (Pls) because its intake has been expected to have preventive effects on brain-related diseases. Possible structural changes of Pls during absorption (i.e., preferential arachidonic acid re-esterification at the sn-2 position and base conversion of ethanolamine Pls (PE-Pls) into choline Pls (PC-Pls)) have previously been proposed. Since the physiological functions of Pls differ according to its structure, further elucidation of such structural changes during absorption is important to understand how Pls exerts its physiological effects in vivo. Hence, the absorption mechanism of Pls was investigated using the lymph-cannulation method and the everted jejunal sac model, with a focus on Pls molecular species. In the lymph-cannulation method, relatively high amounts of PE-Pls 18:0/20:4 and PC-Pls 18:0/20:4 were detected from the lymph even though these species were minor in the administered emulsion. Moreover, a significant increase of PE-Pls 18:0/20:4 and PC-Pls 18:0/20:4 in the intestinal mucosa was also confirmed by the everted jejunal sac model. Therefore, structural changes of PE-Pls in the intestinal mucosa were strongly suggested. The results of this study may provide an understanding of the relationship between intestinal absorption of Pls and exertion of its physiological functions in vivo.


Assuntos
Etanolamina/química , Etanolamina/metabolismo , Mucosa Intestinal/metabolismo , Plasmalogênios/química , Plasmalogênios/metabolismo , Animais , Ácido Araquidônico/metabolismo , Transporte Biológico , Esterificação , Absorção Intestinal , Masculino , Ratos , Ratos Sprague-Dawley
10.
PLoS One ; 15(7): e0236367, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32701989

RESUMO

Chemical absorption of carbon dioxide from flue or natural gas in hollow-fiber membrane contactors (HFMCs) has been one of the most beneficial techniques to alleviate its emission into the environment. A theoretical research study was done to investigate the change in membrane specifications and operating conditions on CO2 absorption using different alkanolamine solvents. The mathematical model was developed for a parallel counter-current fluid flow through a HFMC. The developed model's equations were solved based on finite element method. The simulations revealed that the increase in membrane porosity, length and the number of fibers has a positive impact on CO2 removal, while the gas flow rate and tortuosity enhancement resulted in the reduction of CO2 absorption. Furthermore, it was found that 4-diethylamino-2-butanol (DEAB) with approximately 100% CO2 absorption is suggested as the best solvent in this system, but ethyl-ethanolamine (EEA) with only 46% CO2 absorption had the lowest capacity for CO2 absorption (DEAB>MEA>EDA>MDEA>TEA>EEA). It is worth pointing out that the CO2 absorption can be improved using EEA solvent via change in membrane specifications such as increase in membrane porosity, length and the number of fibres.


Assuntos
Dióxido de Carbono/química , Etanolamina/química , Membranas/química , Modelos Teóricos , Adsorção/efeitos dos fármacos , Etanolaminas/química , Polipropilenos/química , Porosidade , Solventes/química
11.
Chemosphere ; 259: 127390, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32593817

RESUMO

The dye-water treatment using UF membrane is still a challenge. In the present study, the optimized PAN-ETA ultrafiltration membrane was hydrolyzed and subsequently characterized by SEM, IR, CA, XPS, NMR, mechanic measurement, etc. The obtained membrane (H-PAN-ETA) was used for dye removal and it showed both an excellent anti-dye fouling and a good rejection property for anionic dyes. I.e. 96% rejection for methyl blue (MB), 99% for congo red (CR), 94% for acid fuchsin (AF) with no sign of contamination by dye. The flux of H-PAN-ETA membrane maintained at 50-53 L m-2⋅ h-1 during a 10-h filtration, which is higher than that of tight UF membranes reported. Meanwhile, H-PAN-ETA membrane was able to selectively remove cationic dyes, such as methylene blue (MEB), rhodamine B (RB) and, crystal violet (CV), or the mixture of anionic dye/cationic dye by adsorption process. Its adsorption capacity remained unchanged after 20 cycles. Finally, the immobile electrical double layer (EDL) theory combined with electrostatic force was introduced to explain the separation mechanism of charged UF membrane, which is helpful to instruct the preparation of UF membrane for dye removal.


Assuntos
Resinas Acrílicas/química , Corantes/química , Etanolamina/química , Purificação da Água/métodos , Adsorção , Ânions , Cátions , Filtração , Membranas , Membranas Artificiais , Azul de Metileno , Rodaminas , Ultrafiltração
12.
Enzyme Microb Technol ; 138: 109560, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32527529

RESUMO

Lipase from Thermomyces lanuginosus (TLL) was immobilized onto a novel heterofunctional support, divinyl sulfone (DVS) superparamagnetic nanoparticles (SPMNs) functionalized with polyethyleneimine (PEI). Particle size and zeta potential measurements, elemental analysis, X-ray powder diffraction, magnetic measurements, and infrared spectroscopy analysis were used to characterize the TLL preparations. At pH 10, it was possible to achieve 100 % of immobilization yield in 1 h. The immobilization pH gives TLL preparations with different stabilities; indeed the TLL preparation immobilized at pH 5.0 was the most stable during the thermal inactivation at all pH values. For the hydrolysis of racemic methyl mandelate, the nanobiocatalysts immobilized at pH 5.0 and blocked with ethylenediamine (EDA) and ethanolamine (ETA) obtained good enantioselectivities (68 % and 72 %, respectively) with high catalytic activities in the reaction medium at pH 7.0. The operational stability of the systems was evaluated in the esterification reaction of benzyl alcohol, obtaining up to 61 % conversion after the seventh reaction cycle. These results show that SPMN@PEI-DVS support is a robust strategy for the easy and rapid recovery of the nanobiocatalyst by applying a magnetic field, showing great potential for industrial applications.


Assuntos
Enzimas Imobilizadas/química , Eurotiales/enzimologia , Lipase/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Polietilenoimina/química , Sulfonas/química , Compostos de Benzil/metabolismo , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Esterificação , Etanolamina/química , Etilenodiaminas/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Lipase/metabolismo , Temperatura , Fatores de Tempo
13.
J Lipid Res ; 61(8): 1221-1231, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32576654

RESUMO

The final step of the CDP-ethanolamine pathway is catalyzed by ethanolamine phosphotransferase 1 (EPT1) and choline/EPT1 (CEPT1). These enzymes are likely involved in the transfer of ethanolamine phosphate from CDP-ethanolamine to lipid acceptors such as 1,2-diacylglycerol (DAG) for PE production and 1-alkyl-2-acyl-glycerol (AAG) for the generation of 1-alkyl-2-acyl-glycerophosphoethanolamine. Here, we investigated the intracellular location and contribution to ethanolamine phospholipid (EP) biosynthesis of EPT1 and CEPT1 in HEK293 cells. Immunohistochemical analyses revealed that EPT1 localizes to the Golgi apparatus and CEPT1 to the ER. We created EPT1-, CEPT1-, and EPTI-CEPT1-deficient cells, and labeling of these cells with radio- or deuterium-labeled ethanolamine disclosed that EPT1 is more important for the de novo biosynthesis of 1-alkenyl-2-acyl-glycerophosphoethanolamine than is CEPT1. EPT1 also contributed to the synthesis of PE species containing the fatty acids 36:1, 36:4, 38:5, 38:4, 38:3, 40:6, 40:5, and 40:4. In contrast, CEPT1 was important for PE formation from shorter fatty acids such as 32:2, 32:1, 34:2, and 34:1. Brefeldin A treatment did not significantly affect the levels of the different PE species, indicating that the subcellular localization of the two enzymes is not responsible for their substrate preferences. In vitro enzymatic analysis revealed that EPT1 prefers AAG 16-20:4 > DAG 18:0-20:4 > DAG 16:0-18:1 = AAG 16-18:1 as lipid acceptors and that CEPT1 greatly prefers DAG 16:0-18:1 to other acceptors. These results suggest that EPT1 and CEPT1 differ in organelle location and are responsible for the biosynthesis of distinct EP species.


Assuntos
Etanolamina/química , Etanolamina/metabolismo , Etanolaminofosfotransferase/metabolismo , Fosfolipídeos/química , Células HEK293 , Humanos , Espaço Intracelular/metabolismo , Transporte Proteico
14.
J Pharmacol Exp Ther ; 374(2): 283-294, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32409422

RESUMO

Lysophosphatidic acid (LPA) is the natural ligand for two phylogenetically distinct families of receptors (LPA1-3, LPA4-6) whose pathways control a variety of physiologic and pathophysiological responses. Identifying the benefit of balanced activation/repression of LPA receptors has always been a challenge because of the high lability of LPA and the limited availability of selective and/or stable agonists. In this study, we document the discovery of small benzofuran ethanolamine derivatives (called CpX and CpY) behaving as LPA1-3 agonists. Initially found as rabbit urethra contracting agents, their elusive receptors were identified from [35S]GTPγS-binding and ß-arrestin2 recruitment investigations and then confirmed by [3H]CpX binding studies (urethra, hLPA1-2 membranes). Both compounds induced a calcium response in hLPA1-3 cells within a range of 0.4-1.5-log lower potency as compared with LPA. The contractions of rabbit urethra strips induced by these compounds perfectly matched binding affinities with values reaching the two-digit nanomolar level. The antagonist, KI16425, dose-dependently antagonized CpX-induced contractions in agreement with its affinity profile (LPA1≥LPA3>>LPA2). The most potent agonist, CpY, doubled intraurethral pressure in anesthetized female rats at 3 µg/kg i.v. Alternatively, CpX was shown to inhibit human preadipocyte differentiation, a process totally reversed by KI16425. Together with original molecular docking data, these findings clearly established these molecules as potent agonists of LPA1-3 and consolidated the pivotal role of LPA1 in urethra/prostate contraction as well as in fat cell development. The discovery of these unique and less labile LPA1-3 agonists would offer new avenues to investigate the roles of LPA receptors. SIGNIFICANCE STATEMENT: We report the identification of benzofuran ethanolamine derivatives behaving as potent selective nonlipid LPA1-3 agonists and shown to alter urethra muscle contraction or preadipocyte differentiation. Unique at this level of potency, selectivity, and especially stability, compared with lysophosphatidic acid, they represent more appropriate tools for investigating the physiological roles of lysophosphatidic acid receptors and starting point for optimization of drug candidates for therapeutic applications.


Assuntos
Benzofuranos/química , Benzofuranos/farmacologia , Descoberta de Drogas , Etanolamina/química , Receptores de Ácidos Lisofosfatídicos/agonistas , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Benzofuranos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células CHO , Diferenciação Celular/efeitos dos fármacos , Cricetulus , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Simulação de Acoplamento Molecular , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Conformação Proteica , Coelhos , Ratos , Receptores de Ácidos Lisofosfatídicos/química , Receptores de Ácidos Lisofosfatídicos/metabolismo , beta-Arrestina 2/metabolismo
15.
Biomolecules ; 10(2)2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059524

RESUMO

Kynurenine (kyn) and kynurenic acid (kyna) are well-defined metabolites of tryptophan catabolism collectively known as "kynurenines", which exert regulatory functions in host-microbiome signaling, immune cell response, and neuronal excitability. Kynurenine containing peptides endowed with opioid receptor activity have been isolated from natural organisms; thus, in this work, novel opioid peptide analogs incorporating L-kynurenine (L-kyn) and kynurenic acid (kyna) in place of native amino acids have been designed and synthesized with the aim to investigate the biological effect of these modifications. The kyna-containing peptide (KA1) binds selectively the m-opioid receptor with a Ki = 1.08 ± 0.26 (selectivity ratio m/d/k = 1:514:10000), while the L-kyn-containing peptide (K6) shows a mixed binding affinity for m, d, and k-opioid receptors, with efficacy and potency (Emax = 209.7 + 3.4%; LogEC50 = -5.984 + 0.054) higher than those of the reference compound DAMGO. This novel oligopeptide exhibits a strong antinociceptive effect after i.c.v. and s.c. administrations in in vivo tests, according to good stability in human plasma (t1/2 = 47 min).


Assuntos
Cinurenina/química , Oligopeptídeos/química , Receptores Opioides/agonistas , Animais , Encéfalo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ésteres/química , Etanolamina/química , Feminino , Formaldeído/química , Proteínas de Ligação ao GTP/química , Cobaias , Humanos , Ácido Cinurênico/química , Masculino , Oligopeptídeos/farmacocinética , Ligação Proteica , Ratos , Ratos Wistar , Receptores Opioides mu/química , Triptofano/metabolismo
16.
J Med Food ; 23(3): 319-325, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31928490

RESUMO

Oxidative stress and lipid peroxidation are considered key factors linking obesity with its associated complications. Epigallo catechin-3-gallate (EGCG) and oleoylethanolamide, together with its phospholipid precursor N-oleoyl-phosphatidylethanolamine (NOPE), are nutritional compounds that might improve the oxidative stress status of obese people. Unfortunately, the bioavailability of these compounds is low; however, the coadministration of NOPE with EGCG has been shown to ameliorate both the plasma availability of EGCG and the intestinal levels of NOPE in rats. This double-blind placebo-controlled study investigated the effects of 2 months' supplementation with EGCG complexed with NOPE, combined with moderate energy restriction, on plasma oxidative status of overweight and class I obese subjects. A total of 138 subjects (body mass index: 25-35 kg/m2) were recruited and randomized into two groups: the first (n = 67) received caps of placebo and the second (n = 71) caps of an oily dispersion of EGCG complexed with NOPE for 2 months. Subjects' supplementation was combined with moderate energy restriction (-800 kcal/day). Plasma oxidative status was determined by measuring the levels of oxidized low-density lipoprotein (Ox-LDL), malondialdehyde and reactive oxygen metabolites, and by calculating the lag time and the slope of Cu-induced lipid peroxidation kinetics. In total 116 subjects (27 M/89 F) completed the supplementation period, 49 in the placebo group and 67 in the treated group. Treatment induced a similar significant weight reduction in the two groups. Moreover, we found the mean changes of Ox-LDL significantly lower and the mean changes of antioxidant capacity (lag time) significantly higher in NOPE-EGCG group than in placebo group (treatment effect mean difference: -3.15 UL, P < .044 and +5.37 min, P < .0347, respectively). EGCG plasma levels were detectable only after 2 months of NOPE-EGCG diet. The NOPE-EGCG integration to a low-energy diet seems, therefore, useful for ameliorating oxidative stress-related markers, which are concomitant causes of obesity-induced disorders.


Assuntos
Catequina/análogos & derivados , Etanolamina/administração & dosagem , Obesidade/dietoterapia , Obesidade/tratamento farmacológico , Sobrepeso/dietoterapia , Sobrepeso/tratamento farmacológico , Adulto , Índice de Massa Corporal , Restrição Calórica , Catequina/administração & dosagem , Suplementos Nutricionais/análise , Método Duplo-Cego , Etanolamina/química , Feminino , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/metabolismo , Sobrepeso/metabolismo , Estresse Oxidativo/efeitos dos fármacos
17.
Mikrochim Acta ; 186(11): 690, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31595372

RESUMO

This work describes an aptamer-based capillary assay for ethanolamine (EA). It is making use of strand displacement format and magnetic particles. The capillary tubes are coated with three layers, viz. (a) first with short oligonucleotides complementary to the aptamer (EA-comp.); (b) then with magnetic particles (Dynabeads) coated with EA-binding aptamer (EA-aptamer), and (c) with short oligonucleotide-coated magnetic particles (EA-comp.). On exposure to a sample containing ethanolamine, the DNA-coated magnetic particles are released and subsequently collected and spatially separated using a permanent magnet. This results in the formation of a characteristic black/brown spots. The assay has a visual limit of detection of 5 nM and only requires 5 min of incubation. Quantification is possible through capture and analysis of digital (RGB) photos in the 5 to 75 nM EA concentration range. Furthermore, results from tap water and serum spiked with EA samples showed that the platform performs well in complex samples and can be applied to real sample analysis. The combined use of plastic capillaries, visual detection and passive flow make the method suited for implementation into a point-of-care device. Graphical abstract Schematic representation of the capillary assay steps.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , DNA/química , Etanolamina/sangue , Aptâmeros de Nucleotídeos/genética , Sequência de Bases , Técnicas Biossensoriais/instrumentação , DNA/genética , Água Potável/análise , Etanolamina/química , Humanos , Limite de Detecção , Fenômenos Magnéticos , Hibridização de Ácido Nucleico , Testes Imediatos
18.
Biomacromolecules ; 20(5): 2068-2074, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-30970212

RESUMO

The ErbB family of proteins, structurally related to the epidermal growth factor receptor (EGFR), is found to be overexpressed in many cancers such as gliomas, a lung and cervical carcinomas. Gene therapy allows to modify the expression of genes like ErbB and has been a promising strategy to target oncogenes and tumor suppressor genes. In the current work, novel hydroxyl-rich poly(glycidyl methacrylate) (PGMA)-based cationic glycopolymers were designed for intracellular small interfering RNA (siRNA) delivery to silence the EGFR gene. The cationic polymers with different sugar decoration degrees (0, 9, and 33%) were synthesized by ring-opening reaction of PGMA with ethanolamine and a lactobionic acid-derived aminosaccharide (Lac-NH2). Specific EGFR knockdown of the protein tyrosine kinase ErbB-overexpressing HeLa cells was achieved using these hydroxyl-rich polycation/siRNA complexes. Higher sugar content improved the biocompatibility of the polymers, but it also seems to decrease the EGFR knockdown capability, which should mainly be related to the surface charge of polyplexes. An optimum balance was observed with PGEL-1 (9% sugar content) formulation, achieving ∼52% knockdown efficiency as well as high cell viability. Considering the specific recognition between galactose residues and asialoglycoprotein receptor in hepatocytes, our novel PGMA-based cationic glycopolymers exhibited promising future to serve as a safe and targeting gene delivery vector to hepatoma cell line like HepG2.


Assuntos
Carboidratos/química , Técnicas de Transferência de Genes , Ácidos Polimetacrílicos/química , RNA Interferente Pequeno/genética , Cátions/química , Receptores ErbB/genética , Receptores ErbB/metabolismo , Etanolamina/química , Células HeLa , Células Hep G2 , Humanos
19.
Molecules ; 24(6)2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871207

RESUMO

Studies of catalytic CO2 absorption and desorption were completed in two well-performed tertiary amines: diethylmonoethanolamine (DEEA) and 1-dimethylamino-2-propanol (1DMA-2P), with the aid of CaCO3 and MgCO3 in the absorption process, and with the aid of γ-Al2O3 and H-ZSM-5 in the desorption process. The batch process was used for CO2 absorption with solid alkalis, and the recirculation process was used for CO2 desorption with solid acid catalysts. The CO2 equilibrium solubility and pKa were also measured at 293 K with results comparable to the literature. The catalytic tests discovered that the heterogeneous catalysis of tertiary amines on both absorption and desorption sides were quite different from monoethanolamine (MEA) and diethanolamine (DEA). These results were illustrative as a start-up to further study of the kinetics of heterogeneous catalysis of CO2 to tertiary amines based on their special reaction schemes and base-catalyzed hydration mechanism.


Assuntos
Aminas/química , Dióxido de Carbono/química , Carbonato de Cálcio/química , Catálise , Etanolamina/química , Cinética , Magnésio/química
20.
Prep Biochem Biotechnol ; 49(5): 511-520, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30888246

RESUMO

Osteoporosis is a disease that is characterized by deterioration of bone tissue and increased risk of fracture as it leads to a decrease in bone mineral density, which is an important public health problem. Today, bone mineral density is measured by radiological techniques. Alternative techniques are needed because of the disadvantages such as excessive radiation intake, the cost of radiological techniques, and the necessity for specialist personnel for the devices. The quantitative determination of biochemical markers that play a role in bone mineralization may be a good alternative for the osteoporosis diagnosis and especially in the follow-up of treatment. In this study, a specific and sensitive immunological biosensor, which quantitatively determines the osteocalcin molecule, has been developed to be used in the early osteoporosis diagnosis and to evaluate the response to the drug treatment. Anti-osteocalcin antibody was immobilized onto gold electrode surface via covalent immobilization method by using 6-mercaptohexanol, 1,4-butanedioldiglycidyl ether, ethanolamine, and glutaraldehyde. Immobilization steps and biosensor characterization were specified by cyclic voltammetry and electrochemical impedance spectroscopy. The detection time and range of Ocn biosensor were determined as 45 min and 10-60 pg µL-1 Ocn concentration, respectively. The Ocn biosensor was successfully applied in artificial serum samples spiked with Ocn.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Osteocalcina/sangue , Osteoporose/diagnóstico , Anticorpos/imunologia , Butileno Glicóis/química , Espectroscopia Dielétrica/métodos , Eletrodos , Etanolamina/química , Glutaral/química , Ouro/química , Hexanóis/química , Humanos , Limite de Detecção , Osteocalcina/imunologia , Reprodutibilidade dos Testes , Compostos de Sulfidrila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...