Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metallomics ; 11(12): 1984-1987, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31697289

RESUMO

Zinc deficiency is reported to be a global problem that affects cognitive function. The mechanism underlying zinc deficiency-induced impairment of cognitive function is still obscure. In this study, we treated KM mice (Kun Ming mice) with zinc chelator TPEN (N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine) by i.p. injection. NOR (New Object Recognition) tests demonstrated that TPEN can impair the cognitive function of KM mice. Disruption of the GRASP55/Golgin45 complex, and even the Golgi apparatus, was also observed in hippocampus cells by TPEN treatment. Further investigation by IHF showed that enrichment of Aß peptides occurs in neurons of the cerebral tissue of mice, suggesting that amyloidosis may mediate TPEN-induced impairment of cognitive function. This research not only clarifies that zinc plays an important role in Golgi organization in vivo, but also gives us a possible novel pathway underlying AD development.


Assuntos
Cognição/efeitos dos fármacos , Etilenodiaminas/toxicidade , Complexo de Golgi/efeitos dos fármacos , Zinco/deficiência , Amiloidose/metabolismo , Animais , Quelantes/toxicidade , Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/metabolismo , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas de Transporte Vesicular/metabolismo
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 206: 278-294, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30121473

RESUMO

Based on the importance of central metal complexes to interact with DNA, in this research focused on synthesis of some new water soluble Mn(II) complexes 1-4 which modified substituted in ligand at the same position with N, Me, H, and Cl. These complexes were isolated and characterized by elemental analyses, FT-IR, electrospray ionization mass spectrometry (ESI-MS) and UV-vis spectroscopy. DNA binding studies had been studied by using circular dichroism (CD) spectroscopy, UV-vis absorption spectroscopy, cyclic voltammetry (CV), viscosity measurements, emission spectroscopy and gel electrophoresis which proposed the metal buildings go about as effective DNA binders were studied in the presence of Fish-DNA (FS-DNA) which showed the highest binding affinity to DNA with hydrophobic and electron donating substituent. Cell toxicity assays against two human leukemia (Jurkat) and breast cancer (MCF-7) cell lines showed that the complex 3 exhibited a remarkable effects equal to a famous anticancer drug, cisplatin that high cytotoxic activity strongly depend on the hydrophobic substituted ligand. In the theoretical part, density functional theory (DFT) was performed to optimize the geometry of complexes through IR and UV spectra of the complexes that ligand substitution did not affect the geometry and theoretical IR and UV spectra showed good resemblance to the experimental data. The docking studies calculated the lowest-energy between complexes and DNA with the minor grooves mode.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Etilenodiaminas/química , Manganês/química , Simulação de Acoplamento Molecular , Água/química , DNA/metabolismo , Etilenodiaminas/metabolismo , Etilenodiaminas/toxicidade , Humanos , Células Jurkat , Células MCF-7 , Manganês/metabolismo , Manganês/toxicidade , Análise Espectral , Vibração , Viscosidade
3.
Nutr Neurosci ; 21(7): 478-486, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28421879

RESUMO

OBJECTIVE: To explore Zn2+ deficiency-induced neuronal injury in relation to DNA methylation, providing valuable data and basic information for clarifying the mechanism of Zn2+ deficiency-induced neuronal injury. METHODS: Cultured hippocampal neurons were exposed to the cell membrane-permeant Zn2+ chelator N,N,N',N'-Tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) (2 µM), and to TPEN (2 µM) plus ZnSO4 (5 µM) for 24 hours. We analyzed intracellular Zn2+ levels, neuronal viability, and protein/mRNA levels for DNA (cytosine-5) methyltransferase 1 (DNMT1), DNA (cytosine-5-) methyltransferase 3 alpha (DNMT3a), methyl CpG binding protein 2 (MeCP2), Brain-derived neurotrophic factor (BDNF), and growth arrest and DNA-damage-inducible, beta (GADD45b) in the treated neurons. RESULTS: We found that exposure of hippocampal neurons to TPEN (2 µM) for 24 hours significantly reduced intracellular Zn2+ concentration and neuronal viability. Furthermore, DNMT3a, DNMT1, BDNF, and GADD45b protein levels in TPEN-treated neurons were significantly downregulated, whereas MeCP2 levels were, as expected, upregulated. In addition, DNMT3a and DNMT1 mRNA levels in TPEN-treated neurons were downregulated, while MeCP2, GADD45b, and BDNF mRNA were largely upregulated. Addition of ZnSO4 (5 µM) almost completely reversed the TPEN-induced alterations. CONCLUSION: Our data suggest that free Zn2+ deficiency-induced hippocampal neuronal injury correlates with free Zn2+ deficiency-induced changes in methylation-related protein gene expression including DNMT3a/DNMT1/MeCP2 and GADD45b, as well as BDNF gene expression.


Assuntos
Metilação de DNA , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Zinco/deficiência , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Etilenodiaminas/toxicidade , Regulação da Expressão Gênica , Hipocampo/citologia , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Neurônios/patologia , Ratos , Ratos Wistar
4.
Carbohydr Polym ; 180: 1-12, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29103484

RESUMO

This work aims to prepare 3,6-O-N-acetylethylenediamine modified chitosan (AEDMCS) and evaluate its potential use as an antimicrobial wound dressing material. UV, FTIR, and 1H NMR results demonstrated N-acetylethylenediamine groups were successfully grafted to C3OH and C6OH on polysaccharide skeletons. TGA, XRD, and solubility tests indicated that as compared with chitosan, AEDMCS had diminished thermostability, decreased crystallinity, and greatly improved solubility. AEDMCS, with degrees of deacetylation and substitution being respectively 90.3% and 0.72, exhibited higher antibacterial activity than chitosan against six bacteria generally causing wound infections. Meanwhile, AEDMCS had permissible hemolysis and cytotoxicity and low BSA adsorption even at a AEDMCS concentration of 25mg/mL. Acute toxicity tests showed AEDMCS was nontoxic. Moreover, the wound healing property was preliminarily evaluated, illustrating that AEDMCS enhanced wound healing rates as expected and had no significant differences as compared with chitosan. These results suggested AEDMCS might be a potential material used as antibacterial wound dressings.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Quitosana/análogos & derivados , Quitosana/farmacologia , Etilenodiaminas/farmacologia , Curativos Oclusivos , Adsorção , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/toxicidade , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Bovinos , Quitosana/síntese química , Quitosana/toxicidade , Etilenodiaminas/síntese química , Etilenodiaminas/química , Etilenodiaminas/toxicidade , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Masculino , Camundongos , Coelhos , Soroalbumina Bovina/química , Solubilidade , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Água/química , Cicatrização/efeitos dos fármacos
5.
J Pharmacol Sci ; 134(4): 203-210, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28779994

RESUMO

Iron-salen, i.e., µ-oxo-N,N'-bis(salicylidene)ethylenediamine iron (Fe(Salen)) was a recently identified as a new anti-cancer compound with intrinsic magnetic properties. Chelation therapy has been widely used in management of metallic poisoning, because an administration of agents that bind metals can prevent potential lethal effects of particular metal. In this study, we confirmed the therapeutic effect of deferoxamine mesylate (DFO) chelation against Fe(Salen) as part of the chelator antidote efficacy. DFO administration resulted in reduced cytotoxicity and ROS generation by Fe(Salen) in cancer cells. DFO (25 mg/kg) reduced the onset of Fe(Salen) (25 mg/kg)-induced acute liver and renal dysfunction. DFO (300 mg/kg) improves survival rate after systematic injection of a fatal dose of Fe(Salen) (200 mg/kg) in mice. DFO enables the use of higher Fe(Salen) doses to treat progressive states of cancer, and it also appears to decrease the acute side effects of Fe(Salen). This makes DFO a potential antidote candidate for Fe(Salen)-based cancer treatments, and this novel strategy could be widely used in minimally-invasive clinical settings.


Assuntos
Antídotos , Antineoplásicos/efeitos adversos , Antineoplásicos/toxicidade , Quelantes/efeitos adversos , Quelantes/toxicidade , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Etilenodiaminas/efeitos adversos , Etilenodiaminas/toxicidade , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Ferro/efeitos adversos , Ferro/toxicidade , Injúria Renal Aguda/induzido quimicamente , Animais , Antineoplásicos/administração & dosagem , Quelantes/administração & dosagem , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Relação Dose-Resposta a Droga , Etilenodiaminas/administração & dosagem , Humanos , Ferro/administração & dosagem , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas
6.
Cell Physiol Biochem ; 42(5): 1822-1836, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28750402

RESUMO

BACKGROUND/AIMS: The effects of zinc signaling on proliferation or apoptosis of leukemia cells remain elusive. In the present study, we used N, N, N', N'-tetrakis-(2-pyridylmethyl)-ethylene-diamine (TPEN), a membrane-permeable zinc chelator, to evaluate the effect of zinc depletion on survival and apoptosis of NB4 acute promyelocytic leukemia (APL) cells. METHODS: The pro-apoptotic effects of TPEN on NB4 cells were examined by flow cytometry, and observed using an optical microscope. Intracellular labile zinc, nitric oxide (NO) or reactive oxygen species (ROS) changes caused by TPEN were measured by flow cytometry. We then explored possible roles of the crosstalk between intracellular labile zinc signaling and nitric oxide signaling in TPEN-triggered apoptosis. RESULTS: we found that TPEN induced apoptosis in NB4 APL cells in a dosage-dependent manner. We further demonstrated that TPEN triggered apoptosis by attenuating intracellular zinc and nitric oxide signaling in NB4 cells. Both exogenous zinc supplement and the nitric donor sodium nitroprusside (SNP) pre-incubation reversed TPEN-mediated inhibition of intracellular NO and Zn2+ signaling, and rescued NB4 cells from apoptosis. CONCLUSION: These results suggest for the first time that crosstalk between zinc signaling and nitric oxide pathway is essential for the survival of NB4 cells. TPEN induces apoptosis in NB4 cells via negatively regulating intracellular NO and Zn2+ signaling. Our in vitro data suggest that zinc depletion by TPEN may be a potential therapeutic strategy for APL.


Assuntos
Apoptose/efeitos dos fármacos , Quelantes/farmacologia , Etilenodiaminas/toxicidade , Zinco/química , Inibidores de Caspase/farmacologia , Caspases/química , Caspases/metabolismo , Linhagem Celular Tumoral , Quelantes/química , Etilenodiaminas/química , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Zinco/metabolismo
8.
Environ Sci Pollut Res Int ; 24(7): 6353-6360, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27044292

RESUMO

Contaminated soil has become a growing issue in recent years. The most common technique used to remove contaminants (such as metals) from the soil is the soil washing process. However, this process produces a final effluent containing chelating agents (i.e., ethylenediaminedisuccinic acid, also known as EDDS) and extracted metals (i.e., Cu, Fe, and Zn) at concentrations higher than discharge limits allowed by the Italian and Brazilian environmental law. Therefore, it is necessary to develop further treatments before its proper disposal or reuse. In the present study, soil washing tests were carried out through two sequential paths. Moreover, different artificial sunlight-driven photocatalytic treatments were used to remove Cu, Zn, Fe, and EDDS from soil washing effluents. Metal concentrations after the additional treatment were within the Brazilian and Italian regulatory limits for discharging in public sewers. The combined TiO2-photocatalytic processes applied were enough to decontaminate the effluents, allowing their reuse in soil washing treatment. Ecotoxicological assessment using different living organisms was carried out to assess the impact of the proposed two-step photocatalytic process on the effluent ecotoxicity. Graphical Abstract ᅟ.


Assuntos
Descontaminação/métodos , Processos Fotoquímicos , Poluentes do Solo/química , Poluentes do Solo/isolamento & purificação , Solo/química , Luz Solar , Catálise , Etilenodiaminas/química , Etilenodiaminas/isolamento & purificação , Etilenodiaminas/toxicidade , Metais Pesados/química , Metais Pesados/isolamento & purificação , Metais Pesados/toxicidade , Poluentes do Solo/toxicidade , Succinatos/química , Succinatos/isolamento & purificação , Succinatos/toxicidade
9.
Drug Chem Toxicol ; 39(3): 344-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26701363

RESUMO

OBJECTIVES: The toxic and teratogenic effects of salen (C16H16N2O2) and salen vanadium oxide (VOS) (C16H14N2O3V) were evaluated against chicken embryos along with chicken hepatic and fibroblastic cells in vitro cultures. METHODS: Salen and VOS complexes were injected in the following concentrations: 5, 10, 20, 40, 80, 160, and 300 µM/egg for salen and 7.5, 15, 75, 120, 150, 240, and 300 µM/egg for VOS. In order to screen for skeletal malformations, the alizarin red clearing and staining method was employed. For studying the cytotoxic effects of these compounds, hepatic and fibroblastic cells were cultured and treated. RESULTS: Our results show that injecting salen with various concentrations leads to a significant increase in embryonic mortality. Skeletal and morphological malformations resulting from salen injections included ectopic viscera and club foot. Our results show that embryonic mortality increased relative to the control group. In addition, alizarin red staining showed skeletal malformations like deletion of caudal vertebrae. DISCUSSION: Our comparison showed that salen was a stronger teratogen than VOS, which may be due roles of the vanadium element, whose derivatives show physiological particulars and at low concentrations plays anticancer specifications without toxic effect. CONCLUSION: Results show that chicken embryos were sensitive to the toxicity of salen and VOS, and these compounds can affect the growth and ossification of the chicken embryos. Moreover, the cytotoxicity of salen and VOS shows that the viability of both salen and VOS-treated cells significantly decreased in a dose-dependent manner.


Assuntos
Complexos de Coordenação/toxicidade , Etilenodiaminas/toxicidade , Fibroblastos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Óxidos/toxicidade , Teratogênicos/toxicidade , Compostos de Vanádio/toxicidade , Anormalidades Induzidas por Medicamentos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Desenvolvimento Embrionário/efeitos dos fármacos , Fibroblastos/patologia , Dose Letal Mediana , Fígado/embriologia , Fígado/patologia
11.
Theriogenology ; 84(4): 531-7, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26047708

RESUMO

This study aimed to investigate the effect of zinc on in vitro development of porcine embryos. We evaluated the effects of zinc on blastocysts formation and investigated gene expression at zinc-deficient and supplemented conditions. Zinc-deficient in vitro condition was induced by 10-µM N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylendiamine (TPEN) (zinc chelator) treatment during IVC. On parthenogenetic activated embryos, this treatment significantly decreased cleavage rate and blastocyst formation compared with the control (0.0% and 0.0% vs. 69.0% and 36.0%, respectively). And time effect of the zinc deficiency exposure is observed. Blastocyst formation rate was significantly decreased as zinc-deficient time increases (54.1%, 31.0%, 9.0%, and 1.2% for zinc deficiency during 0, 3, 5, and 7 hours). However, zinc supplementation during IVC supported in vitro embryonic development. On parthenogenetic activated embryos, supplementation of 0.8 µg/mL of zinc during IVC significantly increased blastocyst formation compared with other groups (43.9%, 57.8%, 67.1%, 51.4%, and 52.6% for zinc supplementation of 0, 0.4, 0.8, 1.2, and 1.6 µg/mL). In vitro-fertilized (IVF) embryos showed similar results. The blastocyst formation rate was significantly higher in the 0.8 µg/mL of zinc-supplemented group than in the other groups (21.3%, 24.1%, 36.1%, 25.9%, and 25.2% for zinc supplementation of 0, 0.4, 0.8, 1.2, and 1.6 µg/mL). PCNA, POU5F1, and Bcl2 messenger RNA expressions were unregulated in IVF-derived blastocysts in the 0.8 µg/mL of zinc-supplemented group compared with the control. These results suggest that zinc is required for embryonic development, and supplementation with adequate zinc concentrations during IVC improved the viability of porcine embryos, possibly by increasing PCNA, POU5F1, and Bcl2 gene expression of embryos.


Assuntos
Técnicas de Cultura Embrionária/veterinária , Suínos/embriologia , Zinco/farmacologia , Animais , Meios de Cultura/química , Etilenodiaminas/toxicidade , Regulação da Expressão Gênica no Desenvolvimento , Partenogênese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Oxid Med Cell Longev ; 2015: 453679, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25685256

RESUMO

Endoplasmic reticulum (ER) plays a key role in synthesizing secretory proteins and sensing signal function in eukaryotic cells. Responding to calcium disturbance, oxidation state change, or pharmacological agents, ER transmembrane protein, inositol-regulating enzyme 1 (IRE1), senses the stress and triggers downstream signals. Glucose-regulated protein 78 (GRP78) dissociates from IRE1 to assist protein folding and guard against cell death. In prolonged ER stress, IRE1 recruits and activates apoptosis signal-regulating kinase 1 (ASK1) as well as downstream JNK for cell death. Naphthoquinones are widespread natural phenolic compounds. Vitamin K3, a derivative of naphthoquinone, inhibits variant tumor cell growth via oxygen uptake and oxygen stress. We synthesized a novel naphthoquinone derivative PPE8 and evaluated capacity to induce ER stress in p53 null H1299 and p53 wild-type A549 cells. In H1299 cells, PPE8 induced ER enlargement, GRP78 expression, and transient IER1 activation. Activated IRE1 recruited ASK1 for downstream JNK phosphorylation. IRE1 knockdown by siRNA attenuated PPE8-induced JNK phosphorylation and cytotoxicity. Prolonged JNK phosphorylation may be involved in PPE8-induced cytotoxicity. Such results did not arise in A549 cells, but p53 knockdown by siRNA restored PPE8-induced GRP78 expression and JNK phosphorylation. We offer a novel compound to induce ER stress and cytotoxicity in p53-deficient cancer cells, presenting an opportunity for treatment.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Etilenodiaminas/toxicidade , Naftoquinonas/toxicidade , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/genética , Endorribonucleases/metabolismo , Etilenodiaminas/síntese química , Etilenodiaminas/química , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Naftoquinonas/síntese química , Naftoquinonas/química , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética
13.
Biochem Biophys Res Commun ; 459(2): 220-226, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25712525

RESUMO

During brain ischemic preconditioning (PC), mild bursts of ischemia render neurons resistant to subsequent strong ischemic injuries. Previously, we reported that zinc plays a key role in PC-induced neuroprotection in vitro and in vivo. Zinc-triggered p75(NTR) induction transiently activates caspase-3, which cleaves poly(ADP-ribose) polymerase-1 (PARP-1). Subsequently, the PARP-1 over-activation-induced depletion of nicotinamide adenine dinucleotide (NAD(+))/adenosine triphosphate (ATP) after exposures to lethal doses of zinc or N-methyl-D-aspartate is significantly attenuated in cortical neuronal cultures. In the present study, zinc-mediated preconditioning (Zn PC) reduced apoptotic neuronal death that was caused by N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), etoposide, or staurosporine in mouse cortical cells. We focused on heat shock protein 70 (HSP70) because NAD(+)/ATP depletion does not directly cause apoptosis, and HSP70 can inhibit the activation of caspase-9 or caspase-3 by preventing apoptosome formation or cytochrome C release. Zn PC-mediated HSP70 induction was required for neuroprotection against neuronal apoptosis, and geldanamycin-induced HSP70 induction sufficiently blocked neuronal apoptotic cell death. Furthermore, Zn PC-mediated HSP70 induction was blocked by chemical inhibitors of extracellular signal-regulated kinase (ERK) or p38 mitogen-activated protein kinase (MAPK) signaling, but not c-Jun N-terminal protein kinase. Similarly, neuroprotection by Zn PC against TPEN-induced apoptosis was almost completely reversed by the blockade of ERK or p38 MAPK signaling. Our findings suggest that the ERK- or p38 MAPK-mediated induction of HSP70 plays a key role in inhibiting caspase-3 activation during Zn PC.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/biossíntese , Precondicionamento Isquêmico/métodos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Zinco/administração & dosagem , Zinco/metabolismo , Animais , Células Cultivadas , Etilenodiaminas/toxicidade , Camundongos , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Zinco/toxicidade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Anticancer Res ; 34(4): 1601-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24692688

RESUMO

BACKGROUND: Compounds containing ethylenediamine (-NCH2CH2N-) moiety are known to exhibit antimicrobial, -fungal, -bacterial, -tuberculosis and -cancer activities. MATERIALS AND METHODS: In the present study, we evaluated the in vitro cytotoxic activity of N,N'-bis(2-hydroxybenzyl)- (6), N,N'-bis(5-bromo-2-hydroxybenzyl)- (7) and N,N'-bis(5-chloro-2-hydroxybenzyl) (8)- ethylenediamine dihydrochlorides; and N,N'-bis(2-hydroxybenzyl)- (9), N,N'-bis(5-bromo-2-hydroxybenzyl)- (10) and N,N'-bis(5-chloro-2-hydroxybenzyl) (11)- ethylenediamine toward human lung (A549), breast (MDA-MB-231) and prostate (PC3) cancer cell lines after 24-h treatment using crystal violet dye binding assay. Effects on the cell cycle the using flow cytometry, and mitochondrial membrane potential using rhodamine-123 florescent dye were also evaluated. RESULTS: Compounds 7 and 8 exhibit cytotoxic activity, causing cell arrest at different phases of the cell cycle and loss of mitochondrial membrane potential in the above cancer cell lines. CONCLUSION: These findings clearly demonstrate, to our knowledge for the first time, that ethylenediamine dihydrochloride salts-compounds 7 and 8-exhibit concentration-dependent cytotoxic activity towards A549, MDA-MB-231 and PC3 cancer cell lines, which may serve as a basis for future work on novel therapeutic agents.


Assuntos
Antineoplásicos/toxicidade , Etilenodiaminas/toxicidade , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Etilenodiaminas/química , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos
15.
Regul Toxicol Pharmacol ; 69(2): 217-25, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24721389

RESUMO

N,N-Bis(2-mercaptoethyl)-N',N'-diethylenediamine (BMEDA) is used in the preparation of the (188)Re-BMEDA-liposome as a chelator to deliver rhenium 188 into liposomes. Although the safety of the (188)Re-BMEDA-liposome had been established, the use of BMEDA in preparing the liposome is of interest; however, an assessment of its safety is warranted. In this present work, we report on the acute toxicity study of BMEDA in beagles to identify doses causing no adverse effect and doses causing life-threatening toxicity. In a single dose 14-day systemic toxicity study conducted in beagles, BMEDA was without compound-related adverse effects at doses of up to 2mg/kg in a series of clinical observations and clinical pathology examinations. The results of these studies could aid in choosing doses for repeat-dose studies and in the selection of starting doses for Phase 1 human studies.


Assuntos
Etilenodiaminas/administração & dosagem , Etilenodiaminas/toxicidade , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/toxicidade , Testes de Toxicidade Aguda , Animais , Cães , Relação Dose-Resposta a Droga , Feminino , Injeções Intravenosas , Lipossomos , Masculino , Radioisótopos/administração & dosagem , Rênio/administração & dosagem
16.
Toxicol Ind Health ; 30(5): 415-20, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22914266

RESUMO

N, N, N', N'-tetramethylethylenediamine (TEMED) is extensively used for initiating polymerization of acrylamide and bisacrylamide gel for electrophoresis and for inorganic complex structure formation. The present study evaluates the toxicological effect of TEMED on structures of rat brain acetylcholinesterase (AChE) activity. In vitro study showed that the Ki values for striatum, cortex, cerebellum and hypothalamus were found to be 1.24, 1.4, 1.45 and 1.47 mM. Kinetics studies indicated that TEMED caused mixed type of inhibition that is a combination of competitive and noncompetitive inhibition in striatum, cortex, hypothalamus and cerebellum. The result showed that km increased and V max decreased with increase in TEMED concentration. The IC50 values calculated for striatum, cortex, cerebellum and hypothalamus were found to be as 0.92, 0.92, 1.44 and 1.42 mM. The present study indicates that TEMED is a toxicant for brain via inhibition of AChE. Therefore, proper precaution should be made during its handling.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Etilenodiaminas/toxicidade , Acetilcolinesterase/metabolismo , Animais , Encéfalo/enzimologia , Cerebelo/efeitos dos fármacos , Cerebelo/enzimologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/enzimologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/enzimologia , Relação Dose-Resposta a Droga , Feminino , Hipotálamo/efeitos dos fármacos , Hipotálamo/enzimologia , Concentração Inibidora 50 , Ratos , Ratos Wistar
17.
J Biomater Appl ; 28(8): 1247-63, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24051202

RESUMO

Foldable intraocular lenses (IOLs) have been utilized to substitute natural lens of cataract patients. In this study, we developed a fast, in situ gelable hydrogel requiring no toxic agent as an injectable IOL material. A 4-armed PPO/PEO-phenol conjugate by a non-degradable linker was synthesized to form a hydrogel in situ by horseradish peroxidase. The gelation time and modulus could be controlled, ranging from 20 s to 2 min and from 1 to 43 kPa. The adhesion of human lens epithelial cells on the hydrogel was significantly reduced compared to that on commercial IOLs. The hydrogels were injected into the rabbit eyes to evaluate the in vivo biocompatibility for 8 weeks. Corneal endothelial cell loss and central corneal thickness were comparable with the common IOL implantation procedure. Histologically, the cornea and retina showed the intact structure. The change of refraction after application of pilocarpine was +0.42 D preoperatively and +0.83 D postoperatively, which may indicate the maintenance of accommodation amplitude.


Assuntos
Materiais Biocompatíveis/química , Etilenodiaminas/química , Lentes Intraoculares , Animais , Materiais Biocompatíveis/toxicidade , Bovinos , Adesão Celular , Linhagem Celular , Reagentes de Ligações Cruzadas , Módulo de Elasticidade , Endotélio Corneano/citologia , Endotélio Corneano/efeitos dos fármacos , Endotélio Corneano/fisiologia , Etilenodiaminas/toxicidade , Géis , Peroxidase do Rábano Silvestre , Humanos , Hidrogéis/química , Hidrogéis/toxicidade , Lentes Intraoculares/efeitos adversos , Masculino , Teste de Materiais , Estrutura Molecular , Coelhos , Reologia
18.
Bioorg Med Chem ; 21(17): 5175-81, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23859779

RESUMO

The lipophilic, cell-penetrating zinc chelator N,N,N',N',-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN, 1) and the zinc chelating procaspase-activating compound PAC-1 (2) both have been reported to induce apoptosis in various cell types. The relationship between apoptosis-inducing ability and zinc affinity (Kd), have been investigated with two new model compounds, ZnA-DPA (3) and ZnA-Pyr (4), and compared to that of TPEN and PAC-1. The zinc-chelating o-hydroxybenzylidene moiety in PAC-1 was replaced with a 2,2'-dipicoylamine (DPA) unit (ZnA-DPA, 3) and a 4-pyridoxyl unit (ZnA-Pyr, 4), rendering an order of zinc affinity TPEN>ZnA-Pyr>ZnA-DPA>PAC-1. The compounds were incubated with the rat pheochromocytoma cell line PC12 and cell death was measured in combination with ZnSO4, a caspase-3 inhibitor, or a ROS scavenger. The model compounds ZnA-DPA (3) and ZnA-Pyr (4) induced cell death at higher concentrations as compared to PAC-1 and TPEN, reflecting differences in lipophilicity and thereby cell-penetrating ability. Addition of ZnSO4 reduced cell death induced by ZnA-Pyr (4) more than for ZnA-DPA (3). The ability to induce cell death could be reversed for all compounds using a caspase-3-inhibitor, and most so for TPEN (1) and ZnA-Pyr (4). Reactive oxygen species (ROS), as monitored using dihydro-rhodamine (DHR), were involved in cell death induced by all compounds. These results indicate that the Zn-chelators ZnA-DPA (3) and ZnA-Pyr (4) exercise their apoptosis-inducing effect by mechanisms similar to TPEN (1) and PAC-1 (2), by chelation of zinc, caspase-3 activation, and ROS production.


Assuntos
Quelantes/síntese química , Etilenodiaminas/química , Hidrazonas/química , Piperazinas/química , Zinco/química , Aminas/química , Animais , Apoptose/efeitos dos fármacos , Caspase 3/química , Caspase 3/metabolismo , Inibidores de Caspase/síntese química , Inibidores de Caspase/química , Inibidores de Caspase/toxicidade , Quelantes/química , Quelantes/toxicidade , Etilenodiaminas/toxicidade , Hidrazonas/toxicidade , Células PC12 , Ácidos Picolínicos/química , Piperazinas/toxicidade , Piridoxina/química , Ratos , Espécies Reativas de Oxigênio/metabolismo , Sulfato de Zinco/química , Sulfato de Zinco/toxicidade
19.
Invest New Drugs ; 31(4): 801-11, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23224353

RESUMO

Nanoliposomes are good drug delivery systems that allow the encapsulation of drugs into vesicles for their delivery. The objective of this study is to investigate the therapeutic efficacy of a new radio-therapeutics of (188)Re-labeled pegylated liposome in a C26 murine colon carcinoma solid tumor model. The safety of (188)Re-liposome was evaluated before radiotherapy treatment. The anti-tumor effect of (188)Re-liposome was assessed by tumor growth inhibition, survival ratio and ultrasound imaging. Apoptotic marker in tumor was also evaluated by the TUNEL (terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling) method after injection of (188)Re-liposome. The group treated with (188)Re-liposome displayed slight loss in body weight and decrease in white blood cell (WBC) count 7 to 14 days post-injection. With respect to therapeutic efficacy, the tumor-bearing mice treated with (188)Re-liposome showed better mean tumor growth inhibition rate (MGI) and longer median survival time (MGI = 0.140; 80 day) than those treated with anti-cancer drug 5-FU (MGI = 0.195; 69 day) and untreated control mice (MGI = 0.413; 48 day). The ultrasound imaging showed a decrease in both tumor volume and number of blood vessels. There were significantly more apoptotic nuclei (TUNEL-positive) in (188)Re-liposome-treated mice at 8 h after treatment than in control mice. These results evidenced the potential benefits achieved by oncological application of the radio-therapeutics (188)Re-liposome for adjuvant cancer treatment.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Etilenodiaminas/uso terapêutico , Lipossomos/uso terapêutico , Compostos Organometálicos/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Etilenodiaminas/administração & dosagem , Etilenodiaminas/toxicidade , Fluoruracila/administração & dosagem , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Injeções Intravenosas , Marcação por Isótopo , Lipossomos/administração & dosagem , Lipossomos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/toxicidade , Análise de Sobrevida , Resultado do Tratamento , Ultrassonografia
20.
Ophthalmic Res ; 48(3): 124-33, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22572891

RESUMO

BACKGROUND: Poloxamines are amphiphilic tetrofunctional block copolymers composed of four polyoxyethylene-polyoxypropylene arms joined to a central ethylene diamine bridge. Their safe profile allows diverse pharmaceutical and biomedical applications. AIM: To assess their use for corneal deswelling using a porcine model of organ culture (OC). METHODS: Five poloxamines (T90R4, T904, T908, T1107 and T1307) were dissolved in a standard commercial OC medium (control) to reach 350 mosm kg(-1). In vitro cytotoxicity was tested using MTT assay on human corneal epithelial and endothelial cell (EC) lines and on primary human corneal fibroblasts. Paired porcine corneas stored in OC for 3 days were assigned for 48 h to a poloxamine medium or to a standard deswelling medium containing 5% dextran T500. Corneal EC density, morphometry, mortality, stromal thickness and transparency were evaluated before and after deswelling. Post-deswelling, EC viability/mortality was determined using a fluorescent live/dead assay. RESULTS: Besides similar corneal thickness reduction and transparency improvement, T908, T1107 and T1307 decreased EC loss (5.4 ± 1.7% vs. 9.9 ± 2.6% in controls (p < 0.001)) and mortality, improved EC morphometry and reduced endothelial lesions compared to dextran. CONCLUSION: On this porcine model, poloxamines T908, T1107 and T1307 appear as good candidates to replace dextran for the deswelling. Experiments on human corneas are now necessary to confirm their efficiency and safety profile in OC.


Assuntos
Córnea/efeitos dos fármacos , Etilenodiaminas/toxicidade , Animais , Contagem de Células , Sobrevivência Celular , Células Cultivadas , Córnea/patologia , Ceratócitos da Córnea/efeitos dos fármacos , Ceratócitos da Córnea/patologia , Dextranos/toxicidade , Endotélio Corneano/efeitos dos fármacos , Endotélio Corneano/patologia , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/patologia , Humanos , Técnicas de Cultura de Órgãos , Concentração Osmolar , Polietilenoglicóis/toxicidade , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...