RESUMO
Medicinal plants such as Aloe arborescens Miller and Aloe barbadensis Miller are used by the general population to treat various diseases. Therefore, the aim of this study was to evaluate the antimutagenicity of these two species using a methG1 system in Aspergillus nidulans and the comet assay in rats. The animals were treated with the plants at concentrations of 360 and 720 mg/kg body weight (1 and 2, respectively) by gavage for 14 days, followed by the administration of etoposide on treatment day 8. Blood samples were prepared for analysis of DNA damage. For the test in A. nidulans, the biA1methG1 lineage conidia were treated for 4 h with both plant species at concentrations of 4 and 8% (w/v). Then, they were washed and plated on a selective medium for frequency analysis of survival and mutation. The results of the comet assay showed that both plants were antigenotoxic compared to etoposide, which was not a typical response of methG1 systems, where only the highest concentration of plant extracts usually exhibit beneficial effects. This study demonstrates the potential antigenotoxicity and antimutagenicity of the Aloe plants tested and, therefore, supports their use as a form of preventive therapy and for health maintenance by the population.
Assuntos
Aloe/química , Aspergillus nidulans/efeitos dos fármacos , DNA/química , Etoposídeo/antagonistas & inibidores , Mutagênicos/toxicidade , Extratos Vegetais/farmacologia , Administração Oral , Animais , Aspergillus nidulans/crescimento & desenvolvimento , Ensaio Cometa , DNA/genética , Dano ao DNA , Etoposídeo/toxicidade , Masculino , Testes de Sensibilidade Microbiana , Testes de Mutagenicidade , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Ratos , Ratos Wistar , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimentoRESUMO
Production of nitric oxide (NO) by mitochondrial membranes as methemoglobin formation sensitive to N(G)-methyl-l-arginine inhibition and mitochondrial O(2) consumption in metabolic states 3 and 4 and the respiratory control (state 3/state 4) were measured at early stages of rat thymocyte apoptosis. Programmed cell death was induced by addition of methylprednisolone and etoposide to thymocyte suspensions. Increased NO production by mitochondrial membranes was observed after 30 min of methylprednisolone and etoposide addition and was accompanied by mitochondrial respiratory impairment as an early phenomenon in apoptotic thymocytes. The respiratory control in isolated mitochondria from untreated thymocytes was 4.2 +/- 0.2 and decreased to 3.1 +/- 0.2 and 1.9 +/- 0.3 after 1 h of methylprednisolone and etoposide treatment, respectively. The low mitochondrial respiratory control was accompanied by a marked decrease in GSH and cytochrome c content. Moreover, an inhibitory effect in the amount of apoptosis due to thymocyte pretreatment with N(G)-methyl-l-arginine and N(omega)-nitro-(l)-arginine (l-NNA), indicate that nitric oxide production is closely involved in the signaling of rat thymocyte apoptosis.