Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
1.
BMC Plant Biol ; 24(1): 561, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877454

RESUMO

BACKGROUND: Somatic embryogenesis (SE) is recognized as a promising technology for plant vegetative propagation. Although previous studies have identified some key regulators involved in the SE process in plant, our knowledge about the molecular changes in the SE process and key regulators associated with high embryogenic potential is still poor, especially in the important fiber and energy source tree - eucalyptus. RESULTS: In this study, we analyzed the transcriptome and proteome profiles of E. camaldulensis (with high embryogenic potential) and E. grandis x urophylla (with low embryogenic potential) in SE process: callus induction and development. A total of 12,121 differentially expressed genes (DEGs) and 3,922 differentially expressed proteins (DEPs) were identified in the SE of the two eucalyptus species. Integration analysis identified 1,353 (131 to 546) DEGs/DEPs shared by the two eucalyptus species in the SE process, including 142, 13 and 186 DEGs/DEPs commonly upregulated in the callus induction, maturation and development, respectively. Further, we found that the trihelix transcription factor ASR3 isoform X2 was commonly upregulated in the callus induction of the two eucalyptus species. The SOX30 and WRKY40 TFs were specifically upregulated in the callus induction of E. camaldulensis. Three TFs (bHLH62, bHLH35 isoform X2, RAP2-1) were specifically downregulated in the callus induction of E. grandis x urophylla. WGCNA identified 125 and 26 genes/proteins with high correlation (Pearson correlation > 0.8 or < -0.8) with ASR3 TF in the SE of E. camaldulensis and E. grandis x urophylla, respectively. The potential target gene expression patterns of ASR3 TF were then validated using qRT-PCR in the material. CONCLUSIONS: This is the first time to integrate multiple omics technologies to study the SE of eucalyptus. The findings will enhance our understanding of molecular regulation mechanisms of SE in eucalyptus. The output will also benefit the eucalyptus breeding program.


Assuntos
Eucalyptus , Técnicas de Embriogênese Somática de Plantas , Proteoma , Transcriptoma , Eucalyptus/genética , Eucalyptus/metabolismo , Eucalyptus/crescimento & desenvolvimento , Proteoma/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica
2.
PLoS One ; 19(5): e0294839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768148

RESUMO

Rare species are often considered inferior competitors due to occupancy of small ranges, specific habitats, and small local populations. However, the phylogenetic relatedness and rarity level (level 1-7 and common) of interacting species in plant-plant interactions are not often considered when predicting the response of rare plants in a biotic context. We used a common garden of 25 species of Tasmanian Eucalyptus, to differentiate non-additive patterns in the biomass of rare versus common species when grown in mixtures varying in phylogenetic relatedness and rarity. We demonstrate that rare species maintain progressively positive non-additive responses in biomass when interacting with phylogenetically intermediate, less rare and common species. This trend is not reflected in common species that out-performed in monocultures compared to mixtures. These results offer predictability as to how rare species' productivity will respond within various plant-plant interactions. However, species-specific interactions, such as those involving E. globulus, yielded a 97% increase in biomass compared to other species-specific interaction outcomes. These results are important because they suggest that plant rarity may also be shaped by biotic interactions, in addition to the known environmental and population factors normally used to describe rarity. Rare species may utilize potentially facilitative interactions with phylogenetically intermediate and common species to escape the effects of limiting similarity. Biotically mediated increases in rare plant biomass may have subsequent effects on the competitive ability and geographic occurrence of rare species, allowing rare species to persist at low abundance across plant communities. Through the consideration of species rarity and evolutionary history, we can more accurately predict plant-plant interaction dynamics to preserve unique ecosystem functions and fundamentally challenge what it means to be "rare".


Assuntos
Biomassa , Eucalyptus , Filogenia , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/genética , Ecossistema , Evolução Biológica , Especificidade da Espécie , Plantas/classificação
3.
New Phytol ; 243(1): 82-97, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38666344

RESUMO

Contemporary climate change will push many tree species into conditions that are outside their current climate envelopes. Using the Eucalyptus genus as a model, we addressed whether species with narrower geographical distributions show constrained ability to cope with warming relative to species with wider distributions, and whether this ability differs among species from tropical and temperate climates. We grew seedlings of widely and narrowly distributed Eucalyptus species from temperate and tropical Australia in a glasshouse under two temperature regimes: the summer temperature at seed origin and +3.5°C. We measured physical traits and leaf-level gas exchange to assess warming influences on growth rates, allocation patterns, and physiological acclimation capacity. Warming generally stimulated growth, such that higher relative growth rates early in development placed seedlings on a trajectory of greater mass accumulation. The growth enhancement under warming was larger among widely than narrowly distributed species and among temperate rather than tropical provenances. The differential growth enhancement was primarily attributable to leaf area production and adjustments of specific leaf area. Our results suggest that tree species, including those with climate envelopes that will be exceeded by contemporary climate warming, possess capacity to physiologically acclimate but may have varying ability to adjust morphology.


Assuntos
Mudança Climática , Eucalyptus , Folhas de Planta , Especificidade da Espécie , Eucalyptus/fisiologia , Eucalyptus/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Temperatura , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Aclimatação/fisiologia , Austrália , Geografia
4.
Sci Rep ; 12(1): 1797, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110574

RESUMO

Tropical forests are being heavily modified by varying intensities of land use ranging from structural degradation to complete conversion. While ecological responses of vertebrate assemblages to habitat modification are variable, such understanding is critical to appropriate conservation planning of anthropogenic landscapes. We assessed the responses of medium/large-bodied mammal assemblages to the ecological impacts of reduced impact logging, secondary regrowth, and eucalyptus and oil palm plantations in Eastern Brazilian Amazonia. We used within-landscape paired baseline-treatment comparisons to examine the impact of different types of habitat modification in relation to adjacent primary forest. We examined assemblage-wide metrics including the total number of species, number of primary forest species retained in modified habitats, abundance, species composition, and community integrity. We ranked all types of habitat modification along a gradient of assemblage-wide impact intensity, with oil palm and eucalyptus plantations exerting the greatest impact, followed by secondary regrowth, and selectively logging. Selectively-logged and secondary forests did not experience discernible biodiversity loss, except for the total number of primary forest species retained. Secondary forests further experienced pronounced species turnover, with loss of community integrity. Considering the biodiversity retention capacity of anthropogenic habitats, this study reinforces the landscape-scale importance of setting aside large preserved areas.


Assuntos
Adaptação Fisiológica , Arecaceae/crescimento & desenvolvimento , Conservação dos Recursos Naturais , Ecossistema , Eucalyptus/crescimento & desenvolvimento , Agricultura Florestal , Floresta Úmida , Árvores/crescimento & desenvolvimento , Biodiversidade , Monitoramento Ambiental , Clima Tropical
5.
Sci Rep ; 11(1): 20158, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635753

RESUMO

This work aimed to investigate the partial K-replacement by Na supply to alleviate drought-induced stress in Eucalyptus species. Plant growth, leaf gas exchange parameters, water relations, oxidative stress (H2O2 and MDA content), chlorophyll concentration, carbon (C) and nitrogen (N) isotopic leaf composition (δ13C and δ15N) were analyzed. Drought tolerant E. urophylla and E. camaldulensis showed positive responses to the partial K substitution by Na, with similar dry mass yields, stomatal density and total stomatal pore area relative to the well K-supplied plants under both water conditions, suggesting that 50% of the K requirements is pressing for physiological functions that is poorly substituted by Na. Furthermore, E. urophylla and E. camaldulensis up-regulated leaf gas exchanges, leading to enhanced long-term water use efficiency (WUEL). Moreover, the partial K substitution by Na had no effects on plants H2O2, MDA, δ13C and δ15N, confirming that Na, to a certain extent, can effectively replace K in plants metabolism. Otherwise, the drought-sensitive E. saligna species was negatively affected by partial K replacement by Na, decreasing plants dry mass, even with up-regulated leaf gas exchange parameters. The exclusive Na-supplied plants showed K-deficient symptoms and lower growth, WUEL, and δ13C, besides higher Na accumulation, δ15N, H2O2 and MDA content.


Assuntos
Dióxido de Carbono/metabolismo , Radioisótopos de Carbono/análise , Eucalyptus/crescimento & desenvolvimento , Radioisótopos de Nitrogênio/análise , Folhas de Planta/crescimento & desenvolvimento , Potássio/metabolismo , Sódio/metabolismo , Secas , Eucalyptus/metabolismo , Fotossíntese , Folhas de Planta/metabolismo
6.
World J Microbiol Biotechnol ; 37(10): 164, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34458956

RESUMO

Eucalyptus is the main species for the forestry industry in Brazil. Biotechnology and, more recently, gene editing offer significant opportunities for rapid improvements in Eucalyptus breeding programs. However, the recalcitrance of Eucalyptus species to in vitro culture is also a major limitation for commercial deployment of biotechnology techniques in Eucalyptus improvement. We evaluated various clones of Eucalyptus urophylla for their in vitro regeneration potential identified a clone, BRS07-01, with considerably higher regeneration rate (85%) in organogenesis, and significantly higher than most works described in literature. Endophytic bacteria are widely reported to improve in vitro plant growth and development. Hence, we believe that inclusion of endophytic plant growth promoting bacteria enhanced was responsible for the improved plantlets growth and development of this clone under in vitro culture. Metagenomic analysis was performed to isolate and characterize the prominent endophytic bacteria on BRS07-01 leaf tissue in vitro micro-cultures, and evaluate their impact on plant growth promotion. The analysis revealed the presence of the phyla Firmicutes (35%), Proteobacteria (30%) and much smaller quantities of Actinobacteria, Bacteroidetes, Gemmatimonadetes, Crenarchaeota, Euryarchaeota and Acidobacteria. Of the thirty endophytic bacterial strains isolated, eleven produced indole-3-acetic acid. Two of the isolates were identified as Enterobacter sp. and Paenibacillus polymyxa, which are nitrogen-fixing and capable of phosphate and produce ammonium. These isolates also showed similar positive effects on the germination of common beans (Phaseolus spp.). The isolates will now be tested as a growth promoter in Eucalyptus in vitro cultures. Graphical abstract for the methodology using cultivation independent and dependent methodologies to investigate the endophytic bacteria community from in vitro Eucalyptus urophylla BRS07-01.


Assuntos
Bactérias/isolamento & purificação , Endófitos/isolamento & purificação , Eucalyptus/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Brasil , DNA Bacteriano/genética , DNA Ribossômico/genética , Endófitos/classificação , Endófitos/genética , Endófitos/metabolismo , Eucalyptus/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Metagenômica , Filogenia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , RNA Ribossômico 16S/genética
7.
PLoS One ; 16(6): e0253385, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34181687

RESUMO

Effective soil spectral band selection and modeling methods can improve modeling accuracy. To establish a hyperspectral prediction model of soil organic matter (SOM) content, this study investigated a forested Eucalyptus plantation in Huangmian Forest Farm, Guangxi, China. The Ranger and Lasso algorithms were used to screen spectral bands. Subsequently, models were established using four algorithms: partial least squares regression, random forest (RF), a support vector machine, and an artificial neural network (ANN). The optimal model was then selected. The results showed that the modeling accuracy was higher when band selection was based on the Ranger algorithm than when it was based on the Lasso algorithm. ANN modeling had the best goodness of fit, and the model established by RF had the most stable modeling results. Based on the above results, a new method is proposed in this study for band selection in the early phase of soil hyperspectral modeling. The Ranger algorithm can be applied to screen the spectral bands, and ANN or RF can then be selected to construct the prediction model based on different datasets, which is applicable to establish the prediction model of SOM content in red soil plantations. This study provides a reference for the remote sensing of soil fertility in forests of different soil types and a theoretical basis for developing portable equipment for the hyperspectral measurement of SOM content in forest habitats.


Assuntos
Eucalyptus/crescimento & desenvolvimento , Florestas , Modelos Biológicos , Redes Neurais de Computação , Máquina de Vetores de Suporte , China , Fazendas
8.
Mol Genet Genomics ; 296(5): 1071-1083, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34159440

RESUMO

Branching in long-lived plants can cause scarring at the base and affect wood density, which greatly inhibits wood yield and quality. Eucalyptus urophylla is one of the most important commercial forest tree species in South China, with diverse branch number and branch angles under different genetic backgrounds. However, the main elements and regulatory mechanisms associated with different branching traits in E. urophylla remain unclear. To identify the factors that may influence branching, the transcriptome and metabolome were performed on the shoot apex (SA), lateral shoot apex (LSA), and stem segment at the 5th axillary bud from the shoot apex (S1) in lines ZQUC14 (A) and LDUD26 (B), with A exhibiting a smaller Ba than B. A total of 307.3 million high-quality clean reads and nine hormones were identified from six libraries. Several differentially expressed regulatory factors were identified between the two genotypes of E. urophylla. The Kyoto Encyclopedia of Genes and Genomes pathways were enriched in plant hormone signal transduction, plant hormone biosynthesis and their transport pathways. Furthermore, gene expression pattern analysis identified genes that were significantly downregulated or upregulated in S1 relative to the SA and LSA segments, and the plant hormone signal transduction pathway was constructed to explain branching development. This study clarified the main plant hormones and genes underlying branch numbers and angles of E. urophylla, confirmed that ABA and SA could promote a larger branch angle and smaller branch number, while IAA has an opposite function. Numbers of key candidate genes involved in plant hormone signal transduction were found in the positive regulation of branch formation. These novel findings should aid molecular breeding of branching in Eucalyptus.


Assuntos
Eucalyptus/crescimento & desenvolvimento , Eucalyptus/genética , Eucalyptus/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Cromatografia Líquida de Alta Pressão , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Reguladores de Crescimento de Plantas/genética , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Caules de Planta/genética , Caules de Planta/metabolismo , Transdução de Sinais/genética , Espectrometria de Massas em Tandem
9.
Sci Rep ; 11(1): 10768, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031446

RESUMO

Tree plantations have become one of the fastest-growing land uses and their impact on biodiversity was evaluated mainly at the taxonomic level. The aim of this study was to analyze environmental changes after the Eucalyptus plantation in an area originally covered by natural grasslands, taking into account the alpha and beta (taxonomic and functional) diversity of plant communities. We selected nine plantation ages, along a 12 years chronosequence, with three replicates per age and three protected grasslands as the original situation. At each replicate, we established three plots to measure plant species cover, diversity and environmental variables. Results showed that species richness, and all diversity indices, significantly declined with increasing plantation age. Canopy cover, soil pH, and leaf litter were the environmental drivers that drove the decrease in taxonomic and functional diversity of plants through the forest chronosequence. Based on the path analyses results, canopy cover had an indirect effect on plant functional diversity, mediated by leaf litter depth, soil pH, and plant species richness. The high dispersal potential, annual, barochorous, and zoochorous plant species were the functional traits more affected by the eucalypt plantations. We recommend two management practices: reducing forest densities to allow higher light input to the understory and, due to the fact that leaf litter was negatively associated with all diversity facets, we recommend reducing their accumulation or generate heterogeneity in its distribution to enhance biodiversity.


Assuntos
Eucalyptus/classificação , Eucalyptus/crescimento & desenvolvimento , Biodiversidade , Agricultura Florestal , Florestas , Filogenia
10.
Plant Signal Behav ; 16(9): 1927589, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34057038

RESUMO

Plant-plant interactions like competition or facilitation between seedlings can have profound implications on their establishment and posterior development. These interactions are variable and depend upon the presence of neighbouring plants and environmental factors. In this work, we studied the effects of the interaction by the roots of Eucalyptus urophylla seedlings from a population under various environmental stressful conditions: water deficit, nutrient deficit, low light, low temperature, and high temperature. To evaluate it, we measured some growth and morphological parameters. We demonstrated that shoot parameters such as the number of leaves, leaf area, and dry weight of the leaves were the most affected parameters due to the belowground plant-plant interaction under various environmental conditions. We did not find evidence for competition among the plants, especially under restrictive conditions. Therefore, the study corroborates the stress-gradient hypothesis, which states that plants' differences under stressful conditions lead to facilitative interactions. It has implications for plant ecology and forestry techniques.


Assuntos
Adaptação Fisiológica , Eucalyptus/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Estresse Fisiológico , Temperatura Baixa , Desidratação , Temperatura Alta
11.
PLoS One ; 16(4): e0250436, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33886651

RESUMO

Nitrogen deficiency and toxicity, primarily in its ammonium form (NH4+), can suppress plant growth and development. The use of silicon (Si) or salicylic acid (SA) may be an alternative to minimize the harmful effects of nutrient imbalances caused by NH4+, thereby improving the photosynthetic efficiency of plants. The aim of the present study was to assess the action of fertigation-applied Si and SA foliar spraying in mitigating NH4+ toxicity and deficiency in eucalyptus clonal seedlings. Two experiments were performed with eucalyptus clonal seedlings (Eucalyptus urophylla x Eucalyptus grandis), in a greenhouse. Both were carried out using a 4x2 factorial design and four concentrations of NH4+ (5, 15, 30 and 60 mmol L-1), in the absence and presence of Si (2 mmol L-1), in experiment I; or with and without SA foliar application (10-2 mmol L-1), in experiment II, with six repetitions. Nitrogen content rose as a result of increasing N-NH4+ concentration in the nutrient solution, and Si supplied via the nutrient solution was efficient in increasing the Si content in eucalyptus seedlings. The rise in N-NH4+ concentration favored the maintenance of the photosynthetic apparatus, but high N-NH4+ concentration increased energy loss through fluorescence and decreased the efficiency of photosystem II. The addition of Si to the nutrient solution proved to be beneficial to the photosynthetic apparatus by decreasing F0 at 15 and 30 mmol L-1 of NH4+; and Fm at all NH4+ concentrations studied. In addition, the beneficial element also increases Fv/Fm at all NH4+ concentrations studied. SA foliar application was also efficient in reducing photosynthetic energy losses by decreasing F0 and Fm at all NH4+ concentrations studied. However, SA only increased the Fv/Fm at the high concentrations studied (30 and 60 mmol L-1 of NH4+). Nitrogen disorder by deficiency or N-NH4+ toxicity reduced shoot dry mass production. The addition of Si to the nutrient solution and SA foliar application increased shoot dry mass production at all N-NH4+ concentrations studied, and benefitted the photosynthetic apparatus by decreasing fluorescence and improving the quantum efficiency of photosystem II as well as dry mass production.


Assuntos
Compostos de Amônio/metabolismo , Eucalyptus/metabolismo , Nitrogênio/deficiência , Doenças das Plantas , Ácido Salicílico/farmacologia , Plântula/metabolismo , Transdução de Sinais/efeitos dos fármacos , Silício/farmacologia , Eucalyptus/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/crescimento & desenvolvimento
12.
Transgenic Res ; 30(1): 23-34, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33475916

RESUMO

We recently reported that a genetic transformation of the RNA-Binding-Protein (McRBP), an RNA chaperone gene derived from common ice plant (Mesembryanthemum crystallinum), alleviated injury and loss of biomass production by salt stress in Eucalyptus camaldulensis in a semi-confined screen house trial. In this study, we assessed the potential environmental impact of the transgenic Eucalyptus in a manner complying with Japanese biosafety regulatory framework required for getting permission for experimental confined field trials. Two kinds of bioassays for the effects of allelopathic activity on the growth of other plants, i.e., the sandwich assay and the succeeding crop assay, were performed for three transgenic lines and three non-transgenic lines. No significant differences were observed between transgenic and non-transgenic plants. No significant difference in the numbers of cultivable microorganisms analyzed by the spread plate method were observed among the six transgenic and non-transgenic lines. These results suggested that there is no significant difference in the potential impact on biodiversity between the transgenic McRBP-E. camaldulensis lines and their non-transgenic comparators.


Assuntos
Eucalyptus/genética , Mesembryanthemum/genética , Plantas Geneticamente Modificadas/genética , RNA de Plantas/genética , Biodiversidade , Eucalyptus/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteínas de Ligação a RNA/genética , Estresse Salino/genética , Tolerância ao Sal/genética
13.
Sci Rep ; 10(1): 18221, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106567

RESUMO

Eucalyptus grandis is a globally important tree crop. Greenhouse-grown tree seedlings often face water deficit after outplanting to the field, which can affect their survival and establishment severely. This can be alleviated by the application of superabsorbent hydrophilic polymers (SAPs). Growth promoting bacteria can also improve crop abiotic stress tolerance; however, their use in trees is limited, partly due to difficulties in the application and viability loss. In this work, we evaluated the improvement of drought tolerance of E. grandis seedlings by inoculating with two Pseudomonas strains (named M25 and N33), carried by an acrylic-hydrocellulosic SAP. We observed significant bacterial survival in the seedling rhizosphere 50 days after inoculation. Under gradual water deficit conditions, we observed a considerable increase in the water content and wall elasticity of M25-inoculated plants and a trend towards growth promotion with both bacteria. Under rapid water deficit conditions, which caused partial defoliation, both strains significantly enhanced the formation of new leaves, while inoculation with M25 reduced the transpiration rate. Co-inoculation with M25 and N33 substantially increased growth and photosynthetic capacity. We conclude that the selected bacteria can benefit E. grandis early growth and can be easily inoculated at transplant by using an acrylic-hydrocellulosic SAP.


Assuntos
Bactérias/isolamento & purificação , Secas , Eucalyptus/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Polímeros/química , Plântula/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Eucalyptus/microbiologia , Raízes de Plantas/microbiologia , Rizosfera , Plântula/microbiologia , Água
14.
PLoS One ; 15(9): e0238703, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32915871

RESUMO

The stem volume of commercial trees is an important variable that assists in decision making and economic analysis in forest management. Wood from forest plantations can be used for several purposes, which makes estimating multi-volumes for the same tree a necessary task. Defining its exploitation and use potential, such as the total and merchantable volumes (up to a minimum diameter of interest), with or without bark, is a possible work. The goal of this study was to use different strategies to model multi-volumes of the stem of eucalyptus trees. The data came from rigorous scaling of 460 felled trees stems from four eucalyptus clones in high forest and coppice regimes. The diameters were measured at different heights, with the volume of the sections obtained by the Smalian method. Data were randomly separated into fit and validation data. The single multi-volume model, volume-specific models, and the training of artificial neural networks (ANNs) were fitted. The evaluation criteria of the models were: coefficient of determination, root mean square error, mean absolute error, mean bias error, as well as graphical analysis of observed and estimated values and distribution of residuals. Additionally, the t-test (α = 0.05) was performed between the volume obtained in the rigorous scaling and estimated by each strategy with the validation data. Results showed that the strategies used to model different tree stem volumes are efficient. The actual and estimated volumes showed no differences. The multi-volume model had the most considerable advantage in volume estimation practicality, while the volume-specific models were more efficient in the accuracy of estimates. Given the conditions of this study, the ANNs are more suitable than the regression models in the estimation of multi-volumes of eucalyptus trees, revealing greater accuracy and practicality.


Assuntos
Biomassa , Eucalyptus/crescimento & desenvolvimento , Modelos Biológicos , Árvores/crescimento & desenvolvimento , Florestas , Redes Neurais de Computação , Caules de Planta/crescimento & desenvolvimento , Madeira/crescimento & desenvolvimento
15.
Planta ; 252(3): 45, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32880001

RESUMO

MAIN CONCLUSION: EgPHI-1 is a member of PHI-1/EXO/EXL protein family. Its overexpression in tobacco resulted in changes in biomass partitioning, xylem fiber length, secondary cell wall thickening and composition, and lignification. Here, we report the functional characterization of a PHOSPHATE-INDUCED PROTEIN 1 homologue showing differential expression in xylem cells from Eucalyptus species of contrasting phenotypes for wood quality and growth traits. Our results indicated that this gene is a member of the PHI-1/EXO/EXL family. Analysis of the promoter cis-acting regulatory elements and expression responses to different treatments revealed that the Eucalyptus globulus PHI-1 (EgPHI-1) is transcriptionally regulated by auxin, cytokinin, wounding and drought. EgPHI-1 overexpression in transgenic tobacco changed the partitioning of biomass, favoring its allocation to shoots in detriment of roots. The stem of the transgenic plants showed longer xylem fibers and reduced cellulose content, while the leaf xylem had enhanced secondary cell wall thickness. UV microspectrophotometry of individual cell wall layers of fibers and vessels has shown that the transgenic plants exhibit differences in the lignification of S2 layer in both cell types. Taken together, the results suggest that EgPHI-1 mediates the elongation of secondary xylem fibers, secondary cell wall thickening and composition, and lignification, making it an attractive target for biotechnological applications in forestry and biofuel crops.


Assuntos
Eucalyptus/crescimento & desenvolvimento , Eucalyptus/genética , Proteínas de Plantas/genética , Brotos de Planta/crescimento & desenvolvimento , Xilema/fisiologia , Parede Celular/genética , Celulose/metabolismo , Eucalyptus/citologia , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Lignina/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Nicotiana/genética
16.
Chemosphere ; 261: 127720, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32721693

RESUMO

Podisus nigrispinus Dallas (Heteroptera: Pentatomidae) preys on insect pests in eucalyptus plantations where it can be exposed to insecticides used in pest control. The effect of insecticides on non-target natural enemies requires further study. The objective of the present study was to evaluate the side-effects of Bacillus thuringiensis (Bt), permethrin, tebufenozide and thiamethoxam on third instar nymphs of the predator P. nigrispinus in the laboratory. The toxicity of insecticides for this insect was determined by estimating their lethal concentrations. Podisus nigrispinus behavior after exposure to insecticides was analyzed using a video tracking system and the respiratory rate with a respirometer. Prey/nymph consumption was assessed after 24 h of starvation. The preference of P. nigrispinus nymphs, for prey treated or not with the insecticides, was evaluated in free choice tests. The insecticides Bt [LC50 = 1.10(0.83-1.46) mg mL-1], permethrin [LC50 = 0.25(0.17-0.34) mg mL-1], tebufenozide [LC50 = 5.71(4.17-7.57) mg mL-1] and thiamethoxam [LC50 = 0.04(0.02-0.06) mg mL-1] are toxic to P. nigrispinus nymphs. Bt and the insecticides tebufenozide, permethrin and thiamethoxam reduced the respiratory rate of P. nigrispinus. The insecticides permethrin, tebufenozide and thiamethoxam affect the locomotion of this insect's nymphs. Prey treated with Bt, permethrin and thiamethoxam are less preferred by P. nigrispinus. The survival of the nymphs of this predator was 93.3%, 66.7%, 56.6%, 0% and 0% in the control, tebufenozide, Bt, permethrin and thiamethoxam treatments, respectively. In addition, the reduction of prey consumption, treated with neurotoxic insecticides, reduces the predatory potential of this natural enemy. Bt and tefubenozide present low toxicity for P. nigrispinus, but the neurotoxic products have low compatibility with this natural enemy and, therefore, are not recommended, with this predator in the management of forest insect pests.


Assuntos
Comportamento Alimentar/efeitos dos fármacos , Heterópteros/efeitos dos fármacos , Inseticidas/toxicidade , Ninfa/efeitos dos fármacos , Comportamento Predatório/efeitos dos fármacos , Animais , Bacillus thuringiensis/efeitos dos fármacos , Bacillus thuringiensis/crescimento & desenvolvimento , Brasil , Eucalyptus/crescimento & desenvolvimento , Controle de Pragas , Controle Biológico de Vetores
17.
PLoS One ; 15(4): e0231339, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32275738

RESUMO

How species respond to climate change will depend on biological characteristics, species physiological limits, traits (such as dispersal), and interactions with disturbance. We examine multi-decadal shifts in the distribution of trees at the alpine treeline in response to regional warming and repeated disturbance by fire in the Victorian Alps, south-east Australia. Alpine treelines are composed of Eucalyptus pauciflora subsp. niphophila (Snow Gum, Myrtaceae) species. The location and basal girth of all trees and saplings were recorded across treelines at four mountains in 2002 and 2018. We quantify changes in treeline position (sapling recruitment above treeline) over time in relation to warming and disturbance by fire, and examine changes in stand structure below treeline (stand density, size class analyses). Short-distance advance of the treeline occurred between 2002 and 2018, but was largely restricted to areas that were unburned during this period. No saplings were seen above treeline after two fires, despite evidence that saplings were common pre-fire. Below treeline, subalpine woodland stands were largely resilient to fire; trees resprouted from lignotubers. However, small trees were reduced in number in woodlands when burned twice within a decade. Population dynamics at the alpine treeline were responsive to recent climate change, but other factors (e.g. disturbance) are crucial to understand recruitment trends. Establishment of saplings above treeline was largely restricted to unburned areas. These results indicate fire is a strong demographic filter on treeline dynamics; there is a clear need to frame alpine treeline establishment processes beyond just being a response to climate warming. Long lag periods in treeline change may be expected where recurrent disturbance is a feature of the landscape.


Assuntos
Mudança Climática , Eucalyptus/fisiologia , Incêndios , Florestas , Altitude , Biodiversidade , Biomassa , Eucalyptus/crescimento & desenvolvimento
18.
Nature ; 580(7802): 227-231, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269351

RESUMO

Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1-5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3-5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7-10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7-11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Sequestro de Carbono , Florestas , Árvores/metabolismo , Biomassa , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/metabolismo , Aquecimento Global/prevenção & controle , Modelos Biológicos , New South Wales , Fotossíntese , Solo/química , Árvores/crescimento & desenvolvimento
19.
An Acad Bras Cienc ; 92(suppl 1): e20180425, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32159584

RESUMO

The aim of the present study was to assess the effect of Eucalyptus trees in a silvopastoral system on the microclimate and the capacity of that to mitigate the effects of climate change on pasturelands. This study included an open pasture of Piatã palisadegrass and an adjacent pasture that contained both palisadegrass and East-to-West rows of Eucalyptus trees, with 15 m between rows, 2 m between trees within rows. The micrometeorological measurements were collected at several distances from the tree rows and in the open pasture. The silvopastoral system was associated with greater between-row shading when solar declination was high and greater near-tree shading when solar declination was around -22°. Both soil heat flux and temperature were influenced by solar radiation, wind speed, and the ability of tree canopies to reduce radiation losses. Wind speed was consistently lower in the silvopastoral system, owing to the windbreak effect of the Eucalyptus trees. The present study demonstrated that silvopastoral systems can be used to attenuate the effects of climate change, as trees can protect pastureland from intense solar radiation and wind, thereby reducing evapotranspiration and, consequently, improving soil water availability for the understory crop.


Assuntos
Mudança Climática , Eucalyptus , Agricultura Florestal , Pradaria , Brasil , Eucalyptus/crescimento & desenvolvimento , Umidade , Microclima , Estações do Ano , Solo , Luz Solar , Vento
20.
Arch Microbiol ; 202(6): 1381-1396, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32179939

RESUMO

Plant growth-promoting rhizobacteria (PGPR) are widely used to improve plant nutrient uptake and assimilation and soil physicochemical properties. We investigated the effects of bacterial (Bacillus megaterium strain DU07) fertilizer applications in a eucalyptus (clone DH32-29) plantation in Guangxi, China in February 2011. We used two types of organic matter, i.e., fermented tapioca residue ("FTR") and filtered sludge from a sugar factory ("FS"). The following treatments were evaluated: (1) no PGPR and no organic matter applied (control), (2) 3 × 109 CFU/g (colony forming unit per gram) PGPR plus FS (bacterial fertilizer 1, hereafter referred to as BF1), (3) 4 × 109 CFU/g plus FS (BF2), (4) 9 × 109 CFU/g plus FS (BF3), (5) 9 × 109 CFU/g broth plus FTR (BF4). Soil and plant samples were collected 3 months (M3) and 6 months (M6) after the seedlings were planted. In general, bacterial fertilizer amendments significantly increased plant foliar total nitrogen (TN) and soil catalase activity in the short term (month 3, M3); whereas, it significantly increased foliar TN, chlorophyll concentration (Chl-ab), proline; plant height, diameter, and volume of timber; and soil urease activity, STN, and available N (Avail N) concentrations in the long term (month 6, M6). Redundancy analysis showed that soil available phosphorus was significantly positively correlated with plant growth in M3, and soil Avail N was negatively correlated with plant growth in M6. In M3, soil catalase was more closely correlated with plant parameters than other enzyme activities and soil nutrients, and in M6, soil urease, polyphenol oxidase, and peroxidase were more closely correlated with plant parameters than other environmental factors and soil enzyme activities. PCA results showed that soil enzyme activities were significantly improved under all treatments relative to the control. Hence, photosynthesis, plant growth, and soil N retention were positively affected by bacterial fertilizer in M6, and bacterial fertilizer applications had positive and significant influence on soil enzyme activities during the trial period. Thus, bacterial fertilizer is attractive for use as an environmentally friendly fertilizer in Eucalyptus plantations following proper field evaluation.


Assuntos
Bacillus megaterium/metabolismo , Eucalyptus/crescimento & desenvolvimento , Fertilizantes/microbiologia , Plântula/crescimento & desenvolvimento , Solo/química , Catalase/metabolismo , China , Clorofila/análise , Fertilizantes/análise , Manihot/microbiologia , Nitrogênio/análise , Nutrientes , Fósforo/análise , Desenvolvimento Vegetal , Esgotos/microbiologia , Microbiologia do Solo , Urease/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...