Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(33): e202400680, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38593232

RESUMO

Supramolecular metallogels combine the rheological properties of gels with the color, magnetism, and other properties of metal ions. Lanthanide ions such as Eu(III) can be valuable components of metallogels due to their fascinating luminescence. In this work, we combine Eu(III) and iminodiacetic acid (IDA) into luminescent hydrogels. We investigate the tailoring of the rheological properties of these gels by changes in their metal:ligand ratio. Further, we use the highly sensitive Eu(III) luminescence to obtain information about the chemical structure of the materials. In special, we take advantage of computational calculations to employ an indirect method for structural elucidation, in which the simulated luminescent properties of candidate structures are matched to the experimental data. With this strategy, we can propose molecular structures for different EuIDA gels. We also explore the usage of these gels for the loading of bioactive molecules such as OXA, observing that its aldose reductase activity remains present in the gel. We envision that the findings from this work could inspire the development of luminescent hydrogels with tunable rheology for applications such as 3D printing and imaging-guided drug delivery platforms. Finally, Eu(III) emission-based structural elucidation could be a powerful tool in the characterization of advanced materials.


Assuntos
Európio , Hidrogéis , Európio/química , Hidrogéis/química , Luminescência , Iminoácidos/química , Reologia , Substâncias Luminescentes/química , Ligantes , Géis/química
2.
Adv Healthc Mater ; 13(20): e2400372, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38630101

RESUMO

Successful implementation of X-ray-activated photodynamic therapy (X-PDT) is challenging because most photosensitizers (PSs) absorb light in the blue region, but few nanoscintillators produce efficient blue scintillation. Here, efficient blue-emitting SrF2:Eu scintillating nanoparticles (ScNPs) are developed. The optimized synthesis conditions result in cubic nanoparticles with ≈32 nm diameter and blue emission at 416 nm. Coating them with the meso-tetra(n-methyl-4-pyridyl) porphyrin (TMPyP) in a core-shell structure (SrF@TMPyP) results in maximum singlet oxygen (1O2) generation upon X-ray irradiation for nanoparticles with 6TMPyP depositions (SrF@6TMPyP). The 1O2 generation is directly proportional to the dose, does not vary in the low-energy X-ray range (48-160 kVp), but is 21% higher when irradiated with low-energy X-rays than irradiations with higher energy gamma rays. In the clonogenic assay, cancer cells treated with SrF@6TMPyP and exposed to X-rays present a significantly reduced survival fraction compared to the controls. The SrF2:Eu ScNPs and their conjugates stand out as tunable nanoplatforms for X-PDT due to the efficient blue emission from the SrF2:Eu cores; the ability to adjust the scintillation emission in terms of color and intensity by controlling the nanoparticle size; the efficient 1O2 production when conjugated to a PS and the efficacy of killing cancer cells.


Assuntos
Európio , Fluoretos , Nanopartículas , Fotoquimioterapia , Estrôncio , Fotoquimioterapia/métodos , Humanos , Fluoretos/química , Raios X , Nanopartículas/química , Európio/química , Estrôncio/química , Estrôncio/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Linhagem Celular Tumoral , Oxigênio Singlete/metabolismo , Porfirinas/química , Porfirinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 284: 121756, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36088740

RESUMO

The growing appearance of antibiotic-resistant strains of microorganisms originated from the widespread use and ubiquitous presence of such drugs is a major concern in the world. The development of methodologies able to detect such substances at low concentration in real water samples is mandatory to overcome this problem. Europium(III) is known to form complexes with tetracycline (TC) with photoluminescent characteristics useful for TC determination. In the present work, we synthesized for the first time carbon nanoparticles (CN) showing delayed photoluminescence using a Europium(III) doping synthesis. The new material (PCNEu) was characterized both morphologically and spectroscopically, showing an analytical photoluminescent signal in presence of TC, arising from the 5D0→7F2 transition of europium, one hundred times higher than that of the europium salt alone in presence of the antibiotic. This enhancement is a consequence of the amplifying effect exerted by nanoparticle structure itself, leading to an efficient synergistic "antenna effect" in the system PCNEu - TC. The analytical signal is affected both by pH and the nature of the buffer used, and it allows the detection of tetracycline in waters with a limit of detection of 2.18 nM and recoveries between 90 and 110%. The analytical performance of the developed methodology enables having lower limits of detection than other luminescent and chemiluminescent reported methodologies.


Assuntos
Compostos Heterocíclicos , Nanopartículas , Antibacterianos/química , Carbono/química , Európio/química , Indicadores e Reagentes , Nanopartículas/química , Tetraciclina/química , Água
4.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498852

RESUMO

In this work, we synthesized a polydimethylsiloxane membrane containing two emitter groups chemically attached to the membrane structure. For this, we attached the anthracene group and the [Eu(bzac)3] complex as blue and red emitters, respectively, in the matrix via hydrosilylation reactions. The synthesized membrane can be used as a bifunctional temperature and oxygen ratiometric optical probe by analyzing the effects that temperature changes and oxygen levels produce on the ratio of anthracene and europium(III) emission components. As a temperature probe, the system is operational in the 203-323 K range, with an observed maximum relative sensitivity of 2.06% K-1 at 290 K and temperature uncertainties below 0.1 K over all the operational range. As an oxygen probe, we evaluated the ratiometric response at 25, 30, 35, and 40 °C. These results show an interesting approach to obtaining bifunctional ratiometric optical probes and also suggest the presence of an anthracene → europium(III) energy transfer, even though there is no chemical bonding between species.


Assuntos
Európio , Oxigênio , Európio/química , Luminescência , Antracenos
5.
Dalton Trans ; 51(46): 17869-17882, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36354376

RESUMO

We have evaluated the structural and luminescence properties of Eu3+- or Nd3+-doped lanthanum niobate systems synthesized via a sol-gel route and containing different dopant contents. XRD analysis revealed that the orthorhombic La3NbO7 and monoclinic LaNbO4 crystalline phases were present in all the samples, regardless of the dopant concentration. The excitation spectra of the samples displayed a broad band due to Nb5+→O2- charge transfer; this band was quite sensitive to the increasing Eu3+ content. The photoluminescence emission spectra of the samples with a lower Eu3+ content showed that Eu3+ occupied both crystalline phases. However, when the Eu3+ content increased, these ions preferentially occupied the C2 symmetry sites in the LaNbO4 host lattice. There was no emission quenching for the Eu3+-doped samples with a Eu3+ content as high as 20 mol%. The emission spectra of the Nd3+-doped samples displayed an intense emission band in the NIR-II biological window under NIR-I excitation, at 808 nm. In the case of the samples with a lower Nd3+ content, Nd3+ occupied distinct symmetry sites in La3NbO7. In contrast, in the samples with a higher Nd3+ content, these ions preferentially occupied LaNbO4 sites. The Nd3+ concentration that quenched emission in the Nd3+-doped samples was about 2.6 mol%, due to Nd3+-Nd3+ cross-relaxation processes. On the basis of these findings, the Eu3+-doped samples explored herein have promising applications in the lighting field, whereas the Nd3+-doped samples have potential use as solid-state lasers and biomarkers.


Assuntos
Európio , Lantânio , Európio/química , Lantânio/química , Luminescência , Iluminação
6.
J Mater Chem B ; 10(2): 247-261, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34878486

RESUMO

The development of QDs-based fluorescent bionanoprobe for cellular imaging fundamentally relies upon the precise knowledge of particle-cell interaction, optical properties of QDs inside and outside of the cell, movement of a particle in and out of the cell, and the fate of particle. We reported engineering and physicochemical characterization of water-dispersible Eu3+/Mn2+ co-doped ZnSe@ZnS core/shell QDs and studied their potential as a bionanoprobe for biomedical applications, evaluating their biocompatibility, fluorescence behaviour by CytoViva dual mode fluorescence imaging, time-dependent uptake, endocytosis and exocytosis in RAW 264.7 macrophages. The oxidation state and local atomic structure of the Eu dopant studied by X-ray absorption fine structure (XAFS) analysis manifested that the Eu3+ ions occupied sites in both ZnSe and ZnS lattices for the core/shell QDs. A novel approach was developed to relieve the excitation constraint of wide bandgap ZnSe by co-incorporation of Eu3+/Mn2+ codopants, enabling the QDs to be excited at a wide UV-visible range. The QDs displayed tunable emission colors by a gradual increase in Eu3+ concentration at a fixed amount of Mn2+, systematically enhancing the Mn2+ emission intensity via energy transfer from the Eu3+ to Mn2+ ion. The ZnSe:Eu3+/Mn2+@ZnS QDs presented high cell viability above 85% and induced no cell activation. The detailed analyses of QDs-treated cells by dual mode fluorescence CytoViva microscopy confirmed the systematic color-tunable fluorescence and its intensity enhances as a function of incubation time. The QDs were internalized by the cells predominantly via macropinocytosis and other lipid raft-mediated endocytic pathways, retaining an efficient amount for 24 h. The unique color tunability and consistent high intensity emission make these QDs useful for developing a multiplex fluorescent bionanoprobe, activatable in wide-visible region.


Assuntos
Corantes Fluorescentes/química , Pontos Quânticos/química , Animais , Európio/química , Európio/metabolismo , Európio/toxicidade , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Corantes Fluorescentes/toxicidade , Manganês/química , Manganês/metabolismo , Manganês/toxicidade , Camundongos , Microscopia de Fluorescência , Pontos Quânticos/metabolismo , Pontos Quânticos/toxicidade , Células RAW 264.7 , Compostos de Selênio/química , Compostos de Selênio/metabolismo , Compostos de Selênio/toxicidade , Sulfetos/química , Sulfetos/metabolismo , Sulfetos/toxicidade , Compostos de Zinco/química , Compostos de Zinco/metabolismo , Compostos de Zinco/toxicidade
7.
J Mater Chem B ; 9(2): 428-439, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33367419

RESUMO

The use of hybrid nanostructures based on magneto-luminescent properties is a promising strategy for nano-bio applications and theranostics platforms. In this work, we carried out the synthesis and functionalization of iron oxide nanocubes (IONCs) to obtain multifunctional hybrid nanostructures towards biomedical applications. The IONCs were functionalized with tetraethylorthosilicate, thenoyltrifluoroacetone-propyl-triethoxysilane and europium(iii)-dibenzoylmethane complexes to obtain the materials termed as IOCNCs@SiO2, IONCs@SiO2TTA, IONCs@SiO2TTA-Eu and IONCs@SiO2-TTA-Eu-DBM, respectively. Then, the biological interactions of these nanostructures with red blood cells - RBCs (hemolysis) and human blood plasma (protein corona formation) were evaluated. The XPS spectrocopy and EDS chemical mapping analysis showed that each domain is homogeneously occupied in the hybrid material, with the magnetic core at the center and the luminescent domain on the surface of the hybrid nanomaterial with a core@shell like structure. Futhermore, after each functionalization step, the nanomaterial surface charge drastically changed, with critical impact on RBC lysis and corona formation. While IONCs@SiO2 and IONCs@SiO2-TTA-Eu-DBM showed hemolytic properties in a dose-dependent manner, the IONCs@SiO2TTA-Eu did not present any hemolytic effect up to 300 µg mL-1. Protein corona results showed a pattern of selective adsorption of proteins with each surface of the synthesized hybrid materials. However, as a general result, a suppression of hemolysis after protein corona formation in all tests was verified. Finally, this study provides a solid background for further applications of these hybrid magneto-luminescent materials containing new surface functionalities in the emerging field of medical nanobiotechnology.


Assuntos
Európio/química , Compostos Férricos/química , Nanotecnologia/métodos , Coroa de Proteína/química , Humanos
8.
J Agric Food Chem ; 68(36): 9664-9672, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786836

RESUMO

Designing an effective and simple detection method to quantify glyphosate (GLY) herbicide is desirable. Current chromatography-mass spectrometry and electrochemical methods can be used for this purpose, but these methods are difficult to be made portable and need high-cost equipment. Here, we evaluate a luminescent ß-diketonate-Eu-ethylenediaminetetraacetic acid complex for GLY quantification in aqueous media on the basis of the luminescent quenching process. This complex successfully measured GLY at concentrations ranging from 5 × 10-7 to 10-5 mol L-1. Theoretical methods (LUMPAC) are also performed to identify the complex most probable structure in solution. We also demonstrate that the metal-organic frameworks HKUST-1 and IRMOF-3, easily synthesized, effectively adsorb GLY in water in about 30 min of contact.


Assuntos
Európio/metabolismo , Glicina/análogos & derivados , Herbicidas/metabolismo , Estruturas Metalorgânicas/química , Compostos Organometálicos/química , Adsorção , Európio/química , Glicina/química , Glicina/metabolismo , Herbicidas/química , Luminescência , Espectrometria de Massas , Poluentes da Água/química , Poluentes da Água/metabolismo , Glifosato
9.
J Biomed Mater Res B Appl Biomater ; 108(6): 2396-2406, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32017405

RESUMO

Luminescent lanthanide downconversion nanoparticles (DCNPs) provide a combination of high luminescence intensity, sharp emission peaks with narrow bandwidth and a large Stokes' shift, leading to high-performance biomedical applications mainly for imaging. The purpose of this study is to present a nanotoxicological study of DCNPs Y2 O3 codoped with Eu3+ and functionalized with folic acid (FA). These assessments include cytotoxicity, genotoxicity, hemocompatibility, and in vitro inflammatory studies. We demonstrated by flow cytometry and confocal microscope the internalization of FA-DCNPs in breast cancer and melanoma cells. They were synthesized by sol-gel method and coated with a thin silica shell to make them biocompatible; also they were functionalized with amino groups and FA ligands that bind to the folate receptors (FR) located on the surface of the cancer cells studied. This functionalization enables the DCNPs to be internalized into the cancer cells via endocytosis by the conjugation FA-FR. The DCNPs were characterized with transmission electron microscope, Fourier transform infrared spectroscopy and photoluminescence. The nanotoxicological assessments demonstrated that both nanoparticles (bare and functionalized) are no cytotoxic and no genotoxic at the tested concentrations (0.01-20 µg/mL) in three cell lines (breast, skin cancer, and osteoblasts). Also they are hemocompatible and do not exert nitric oxide production in vitro by macrophages. The FA-DCNPs were clearly localized into the cell cytoplasm with bright red luminescence. Thus, herein we present a complete nanotoxicological study of FA-DCNPs Y2 O3 codoped with Eu3+ and we conclude that these nanoparticles are biocompatible and can be further used for cancer cells bioimaging.


Assuntos
Óxido de Alumínio/toxicidade , Diagnóstico por Imagem/métodos , Európio/química , Ácido Fólico/química , Substâncias Luminescentes/química , Nanopartículas/toxicidade , Nanoestruturas/toxicidade , Neoplasias/patologia , Animais , Materiais Biocompatíveis , Testes de Carcinogenicidade , Linhagem Celular Tumoral , Sobrevivência Celular , Receptor 1 de Folato/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Testes de Mutagenicidade , Óxido Nítrico/metabolismo , Células RAW 264.7 , Dióxido de Silício/toxicidade , Radioisótopos de Ítrio/toxicidade
10.
Luminescence ; 35(4): 456-465, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31851421

RESUMO

Luminescent nanoparticles of Y2 O3 doped with europium (Eu) and/or titanium (Ti) were synthesized using modified sol-gel routes. The crystalline cubic phase was confirmed using X-ray powder diffraction (XRD). Particle morphology and size were evaluated using scanning and transmission electron microscopy. High-resolution transmission electron microscopy showed that the synthesis method affected the average particle size and the Fourier transform of the images showed the lattice plane distances, indicating that the samples presented high crystallinity degree in accordance with the XRD pattern. The Ti valence was investigated using X-ray absorption near edge spectroscopy and the tetravalent form was the dominant oxidizing state in the samples, mainly in Eu and Ti co-doped Y2 O3 . Optical behaviour was investigated through X-ray excited optical luminescence and photoluminescence under ultraviolet-visible (UV-vis) and vacuum ultraviolet (VUV) excitation. Results indicated that Eu3+ is the emitting centre in samples doped with only Eu and with both Eu and Ti with the 5 D0 →7 F2 transition as the most intense, indicating Eu3+ in a noncentrosymmetric site. Finally, in the Eu,Ti-doped Y2 O3 system, Ti3+ (or TiIV ) excitation was observed but no Ti emission was present, indicating a very efficient energy transfer process from Ti to Eu3+ . These results can aid the development of efficient nanomaterials, activated using UV, VUV, or X-rays.


Assuntos
Európio/química , Substâncias Luminescentes/química , Nanopartículas/química , Titânio/química , Ítrio/química , Medições Luminescentes , Estrutura Molecular , Fenômenos Ópticos , Tamanho da Partícula , Difração de Pó , Propriedades de Superfície
11.
Luminescence ; 34(8): 877-886, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31347269

RESUMO

Eu3+ -ß-diketonate complexes are used, for example, in solid-state lighting (SSL) or light-converting molecular devices. However, their low emission quantum efficiency due to water molecules coordinated to Eu3+ and low photostability are still problems to be addressed. To overcome such challenges, we synthesized Eu3+ tetrakis complexes based on [Q][Eu(tfaa)4 ] and [Q][Eu(dbm)4 ] (Q1 = C26 H56 N+ , Q2 = C19 H42 N+ , and Q3 = C17 H38 N+ ), replacing the water molecules in the tris stoichiometry. The tetrakis ß-diketonates showed desirable thermal stability for SSL and, under excitation at 390 nm, they displayed the characteristic Eu3+ emission in the red spectral region. The quantum efficiencies of the dbm complexes achieved values as high as 51%, while the tfaa complexes exhibited lower quantum efficiencies (28-33%), but which were superior to those reported for the tris complexes. The structures were evaluated using the Sparkle/PM7 model and comparing the theoretical and the experimental Judd-Ofelt parameters. [Q1][Eu(dbm)4 ] was used to coat a near-UV light-emitting diode (LED), producing a red-emitting LED prototype that featured the characteristic emission spectrum of [Q1][Eu(dbm)4 ]. The emission intensity of this prototype decreased only 7% after 30 h, confirming its high photostability, which is a notable result considering Eu3+ complexes, making it a potential candidate for SSL.


Assuntos
Complexos de Coordenação/química , Európio/química , Cetonas/química , Luz , Complexos de Coordenação/síntese química , Medições Luminescentes , Estrutura Molecular
12.
Environ Sci Pollut Res Int ; 26(5): 4202-4214, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30259322

RESUMO

The aim of the present research was to study the photocatalytic activity under UV/visible irradiation of the ceramic compound Sr0.97Eu0.02Zr0.1Ti0.9O3 (SEZT1) using ethylenediaminetetraacetic acid (EDTA) as a sacrificial agent to produce H2. The effects of the reaction parameters such as pH, the initial concentration of the sacrificial agent, and the amount of photocatalyst were systematically investigated through response surface methodology. The results showed that the photocatalytic performance was strongly affected by higher levels of sacrificial agent concentration (70.0 mM EDTA) and by low amounts of photocatalyst SEZT1 (0.01 g/L as catalyst loading) at alkaline conditions (pH 9.0) after 5 h of UV irradiation (6140.04 µmol), using Eu-doped strontium zirconate titanate as semiconductor.


Assuntos
Compostos de Cálcio/química , Európio/química , Hidrogênio/análise , Luz , Óxidos/química , Estrôncio/química , Titânio/química , Zircônio/química , Catálise , Ácido Edético/química , Semicondutores , Raios Ultravioleta
13.
J Nanobiotechnology ; 16(1): 26, 2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29566719

RESUMO

BACKGROUND: Breast cancer is the second leading cause of cancer death among women and represents 14% of death in women around the world. The standard diagnosis method for breast tumor is mammography, which is often related with false-negative results leading to therapeutic delays and contributing indirectly to the development of metastasis. Therefore, the development of new tools that can detect breast cancer is an urgent need to reduce mortality in women. Here, we have developed Gd2O3:Eu3+ nanoparticles functionalized with folic acid (FA), for breast cancer detection. RESULTS: Gd2O3:Eu3+ nanoparticles were synthesized by sucrose assisted combustion synthesis and functionalized with FA using EDC-NHS coupling. The FA-conjugated Gd2O3:Eu3+ nanoparticles exhibit strong red emission at 613 nm with a quantum yield of ~ 35%. In vitro cytotoxicity studies demonstrated that the nanoparticles had a negligible cytotoxic effect on normal 293T and T-47D breast cancer cells. Cellular uptake analysis showed significantly higher internalization of FA-conjugated RE nanoparticles into T-47D cells (Folr hi ) compared to MDA-MB-231 breast cancer cells (Folr lo ). In vivo confocal and CT imaging studies indicated that FA-conjugated Gd2O3:Eu3+ nanoparticles accumulated more efficiently in T-47D tumor xenograft compared to the MDA-MB-231 tumor. Moreover, we found that FA-conjugated Gd2O3:Eu3+ nanoparticles were well tolerated at high doses (300 mg/kg) in CD1 mice after an intravenous injection. Thus, FA-conjugated Gd2O3:Eu3+ nanoparticles have great potential to detect breast cancer. CONCLUSIONS: Our findings provide significant evidence that could permit the future clinical application of FA-conjugated Gd2O3:Eu3+ nanoparticles alone or in combination with the current detection methods to increase its sensitivity and precision.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Európio/química , Ácido Fólico/química , Gadolínio/química , Medições Luminescentes/métodos , Nanopartículas/química , Tomografia Computadorizada por Raios X/métodos , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Ácido Fólico/metabolismo , Células HEK293 , Xenoenxertos , Humanos , Injeções Intravenosas , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Tamanho da Partícula
14.
J Inorg Biochem ; 182: 9-17, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29407869

RESUMO

The aim of this study was to evaluate the antitumor efficiency of chemotherapy with cisplatin alone and incorporated into europium(III)-doped yttrium vanadate nanoparticles functionalized with 3­chloropropyltrimethoxysilane with folic acid and without folic acid in a syngeneic mouse melanoma model. Histopathological, biochemical and genotoxic analyses of treated animals were performed to assess the toxicity of treatments. The treatment of the animals with cisplatin alone and the nanoparticles functionalized with cisplatin at a dose of 5 mg/kg b.w. for 5 days reduced tumor weight about 86% and 65%, respectively. Histopathological analysis showed lower mean frequency of mitoses in tumor tissue of the groups receiving cisplatin alone (90% reduction) and the nanoparticles functionalized with cisplatin (70% reduction) compared to the tumor control group. A reduction in body and liver weight and an increase in serum creatinine and urea levels were observed in animals treated with CDDP, but not in those receiving the nanoparticles functionalized with cisplatin. Genotoxicity assessment by the comet assay revealed lower frequencies of DNA damage in animals treated with the nanoparticles functionalized with cisplatin (mean score = 140.80) compared to those treated with cisplatin alone (mean score = 231.80). Marked toxic effects were observed in animals treated with cisplatin alone, while treatment with the nanoparticles functionalized with cisplatin showed no toxicity. Moreover, folic acid in the inorganic nanoparticles reduced the genotoxicity of cisplatin in the bone marrow micronucleus test (10 ±â€¯1.4 and 40 ±â€¯0.0 micronucleus, respectively). These results demonstrate the antitumor efficiency and significantly reduced systemic toxicity of the nanoparticles compared to CDDP.


Assuntos
Cisplatino/toxicidade , Európio/farmacologia , Nanopartículas/química , Ítrio/farmacologia , Animais , Linhagem Celular Tumoral , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Európio/química , Ácido Fólico/química , Coração/efeitos dos fármacos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes para Micronúcleos , Baço/efeitos dos fármacos , Ítrio/química
15.
J Biophotonics ; 11(6): e201700301, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29316331

RESUMO

Light sheet optical microscopy on strontium aluminate nanoparticles (SrAl2 O4 NPs)1 codoped with Eu2+ and Dy3+ was used for cancer cell tagging and tracking. The nanoparticles were synthesized by urea-assisted combustion with optimized percentage values of the 2 codoping rare-earth ions for cell viability and for lower cytotoxic effects. The optical properties of these materials showed an excitation wide range of wavelengths (λexc = 254-460 nm), a broad emission band (λem = 475-575 nm) with the maximum centered wavelength at 525 nm and a half lifetime within the seconds regime. The feasibility to measure the nanoparticle luminescence under the selective plane illumination configuration was studied by immersing the nanoparticles in 1% Agarose. The potential applicability of the synthesized nanophosphors for cancer cell tagging was demonstrated by using in vitro experiments with human breast adenocarcinoma MCF-7 cells. A single MCF-7 cell observed by the use of light sheet microscopy with UV excitation. The cell has been bio-labeled with FA-SrAl2 04 : Eu2+ , Dy3+ NPs and 4',6-diamidino-2-phenylindole, dihydrochloride for nucleus identification.


Assuntos
Alumínio/química , Disprósio/química , Európio/química , Luz , Microscopia/métodos , Nanopartículas/química , Estrôncio/química , Humanos , Imageamento Tridimensional , Células MCF-7
16.
Chem Commun (Camb) ; 53(86): 11818-11821, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-29038814

RESUMO

Four new species [Ln(dipicNH2)3]3- (Ln = LaIII, EuIII, GdIII, TbIII), with the ligand dipicNH22- (dipic = dipicolinato), were synthesized. Incubation of the EuIII complex with glioma NG97 and pancreatic cancer PANC1 cells showed that it penetrates the cell membrane and can be used to image the cells, while also being moderately cytotoxic.


Assuntos
Complexos de Coordenação/análise , Complexos de Coordenação/química , Európio/química , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Glioma/diagnóstico por imagem , Imagem Óptica , Neoplasias Pancreáticas/diagnóstico por imagem , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Humanos , Medições Luminescentes , Camundongos , Células NIH 3T3
17.
Appl Spectrosc ; 71(7): 1560-1567, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27956595

RESUMO

Standard lipoprotein measurements of triglycerides, total cholesterol, low-density lipoproteins (LDL), and high-density lipoproteins (HDL) fail to identify many lipoprotein abnormalities that contribute to cardiovascular heart diseases (CHD). Studies suggested that the presence of CHD is more strongly associated with the HDL subspecies than with total HDL cholesterol levels. The HDL particles can be collected in at least three subfractions, the HDL2b, HDL2a, and HDL3. More specifically, atherosclerosis is associated with low levels of HDL2. In this work, the optical spectroscopic properties of europium tetracycline (EuTc) complex in the presence of different HDL subspecies was studied. The results show that the europium spectroscopic properties in the EuTc complex are influenced by sizes and concentrations of subclasses. Eu3+ emission intensity and lifetime can discriminate the subfractions HDL3 and HDL2b.


Assuntos
Európio/química , Lipoproteínas HDL/sangue , Lipoproteínas HDL/química , Espectrometria de Fluorescência/métodos , Tetraciclinas/química , Humanos , Lipoproteínas HDL/classificação
18.
Mater Sci Eng C Mater Biol Appl ; 69: 850-5, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27612779

RESUMO

This paper presents the synthesis of pure and europium-doped lutetium oxide (Lu2O3) powders prepared by sol-gel method. The influence of europium ion concentration into Lu2O3 nanocrystallites was investigated for first time in an in vitro system using a modified ABTS radical cation decolorization assay to determine the antioxidant activity. The crystalline structure of Lu2O3 and Eu:Lu2O3 powders was elucidated by XRD obtaining cubic phase in all system without secondary products in accordance with FT-IR results. By TEM and Scherrer equation, it was determined that Lu2O3 and Eu:Lu2O3 powders presented nearly spherical particle morphology with crystallites sizes in the range of 8 to 13nm. The antioxidant assays results revealed that europium ion enhance Lu2O3 powders antioxidant properties, showing that 12.5mol% of europium is sufficient to reach its maximum capacity.


Assuntos
Antioxidantes/farmacologia , Európio/química , Lutécio/farmacologia , Nanopartículas/química , Óxidos/farmacologia , Transição de Fase , Nanopartículas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
19.
Int J Cardiovasc Imaging ; 32(10): 1595-604, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27412686

RESUMO

The objective of this study is to characterize arterial tissue with and without atherosclerosis by fluorescence lifetime imaging microscopy (FLIM) using Europium Chlortetracycline complex (EuCTc) as fluorescent marker. For this study, twelve rabbits were randomly divided into a control group (CG) and an experimental group (EG), where they were fed a normal and hypercholesterolemic diet, respectively, and were treated for 60 days. Cryosections of the aortic arch specimens were cut in a vertical plane, mounted on glass slides, and stained with Europium (Eu), Chlortetracycline (CTc), Europium Chlortetracycline (EuCTc), and Europium Chlortetracycline Magnesium (EuCTcMg) solutions. FLIM images were obtained with excitation at 405 nm. The average autofluorescence lifetime within plaque depositions was ~1.36 ns. Reduced plaque autofluorescence lifetimes of 0.23 and 0.31 ns were observed on incubation with EuCTc and EuCTcMg respectively. It was observed a quenching of collagen, cholesterol and TG emission spectra increasing EuCTc concentration. The drastic reduction in fluorescence lifetimes is due to a resonant energy transfer between collagen, triglycerides, cholesterol and europium complexes, quenching fluorescence.


Assuntos
Aorta Torácica/patologia , Doenças da Aorta/patologia , Aterosclerose/patologia , Clortetraciclina/química , Európio/química , Corantes Fluorescentes/química , Microscopia de Fluorescência , Placa Aterosclerótica , Animais , Aorta Torácica/metabolismo , Doenças da Aorta/etiologia , Doenças da Aorta/metabolismo , Aterosclerose/etiologia , Aterosclerose/metabolismo , Clortetraciclina/análogos & derivados , Colesterol na Dieta/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Transferência de Energia , Coelhos , Fatores de Tempo , Triglicerídeos/metabolismo
20.
Nanoscale ; 8(5): 3057-66, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26786666

RESUMO

The continuous development of nanotechnology has resulted in the actual possibility of the design and synthesis of nanostructured materials with pre-tailored functionabilities. Nanostructures capable of simultaneous heating and local thermal sensing are in strong demand as they would constitute a revolutionary solution to several challenging problems in bio-medicine, including the achievement of real time control during photothermal therapies. Several approaches have been demonstrated to achieve simultaneous heating and thermal sensing at the nanoscale. Some of them lack of sufficient thermal sensitivity and others require complicated synthesis procedures for heterostructure fabrication. In this study, we demonstrate how single core/shell dielectric nanoparticles with a highly Nd(3+) ion doped shell and an Yb(3+),Er(3+) codoped core are capable of simultaneous thermal sensing and heating under an 808 nm single beam excitation. The spatial separation between the heating shell and sensing core provides remarkable values of the heating efficiency and thermal sensitivity, enabling their application in single beam-controlled heating experiments in both aqueous and tissue environments.


Assuntos
Európio/química , Neodímio/química , Itérbio/química , Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Espectrometria por Raios X , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA