Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 6(1): 36, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29724241

RESUMO

The complement system is a key driver of neuroinflammation. Activation of complement by all pathways, results in the formation of the anaphylatoxin C5a and the membrane attack complex (MAC). Both initiate pro-inflammatory responses which can contribute to neurological disease. In this study, we delineate the specific roles of C5a receptor signaling and MAC formation during the progression of experimental autoimmune encephalomyelitis (EAE)-mediated neuroinflammation. MAC inhibition was achieved by subcutaneous administration of an antisense oligonucleotide specifically targeting murine C6 mRNA (5 mg/kg). The C5a receptor 1 (C5aR1) was inhibited with the C5a receptor antagonist PMX205 (1.5 mg/kg). Both treatments were administered systemically and started after disease onset, at the symptomatic phase when lymphocytes are activated. We found that antisense-mediated knockdown of C6 expression outside the central nervous system prevented relapse of disease by impeding the activation of parenchymal neuroinflammatory responses, including the Nod-like receptor protein 3 (NLRP3) inflammasome. Furthermore, C6 antisense-mediated MAC inhibition protected from relapse-induced axonal and synaptic damage. In contrast, inhibition of C5aR1-mediated inflammation diminished expression of major pro-inflammatory mediators, but unlike C6 inhibition, it did not stop progression of neurological disability completely. Our study suggests that MAC is a key driver of neuroinflammation in this model, thereby MAC inhibition might be a relevant treatment for chronic neuroinflammatory diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Complexo de Ataque à Membrana do Sistema Complemento/antagonistas & inibidores , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Encefalite/tratamento farmacológico , Encefalite/etiologia , Encefalomielite Autoimune Experimental/complicações , Animais , Anti-Inflamatórios/química , Axônios/efeitos dos fármacos , Axônios/patologia , Axônios/ultraestrutura , Ativação do Complemento , Complexo de Ataque à Membrana do Sistema Complemento/química , Modelos Animais de Doenças , Exorribonucleases/uso terapêutico , Masculino , Camundongos , Microscopia Eletrônica , Modelos Biológicos , Peptídeos Cíclicos/uso terapêutico , RNA Mensageiro/metabolismo , Receptor da Anafilatoxina C5a/antagonistas & inibidores , Receptor da Anafilatoxina C5a/química , Receptor da Anafilatoxina C5a/metabolismo , Sinaptofisina/metabolismo , Sinaptofisina/ultraestrutura
2.
J Cell Physiol ; 219(3): 707-15, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19202553

RESUMO

Current treatment options for neuroblastoma fail to eradicate the disease in the majority of high-risk patients, clearly mandating development of innovative therapeutic strategies. Gene therapy represents a promising approach for reversing the neoplastic phenotype or driving tumor cells to self-destruction. We presently studied the effects of adenovirus-mediated gene transfer of human polynucleotide phosphorylase (hPNPase(old-35)), a 3',5'-exoribonuclease with growth-inhibitory properties, in neuroblastoma cells. Transgene expression was driven by either the cytomegalovirus (CMV) promoter or by a tumor-selective promoter derived from progression elevated gene-3 (PEG-3). Our data demonstrate that efficient adenoviral transduction of neuroblastoma cells and robust transgene expression are feasible objectives, that the PEG-3 promoter is capable of selectively targeting gene expression in the majority of neuroblastoma cells, and that hPNPase(old-35) induces profound growth suppression and apoptosis of malignant neuroblastoma cells, while exerting limited effects on normal neural crest-derived melanocytes. These findings support future applications of hPNPase(old-35) for targeted gene-based therapy of neuroblastoma and suggest that combination with the PEG-3 promoter holds promise for creating a potent and selective neuroblastoma therapeutic. J. Cell. Physiol. 219: 707-715, 2009. (c) 2009 Wiley-Liss, Inc.


Assuntos
Exorribonucleases/genética , Exorribonucleases/uso terapêutico , Terapia Genética/métodos , Neuroblastoma/terapia , Adenoviridae/genética , Apoptose , Divisão Celular , Linhagem Celular Transformada , Linhagem Celular Tumoral , Proliferação de Células , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Expressão Gênica , Vetores Genéticos , Humanos , Fatores de Transcrição Kruppel-Like/genética , Masculino , Melanócitos/citologia , Melanócitos/enzimologia , Neuroblastoma/enzimologia , Neuroblastoma/genética , Neuroblastoma/patologia , Regiões Promotoras Genéticas , Neoplasias da Próstata/terapia , Receptores Virais/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico
3.
Pharmacol Ther ; 91(2): 105-14, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11728604

RESUMO

Gene therapy is emerging as a potential strategy for the treatment of cardiovascular diseases, such as restenosis after angioplasty, vascular bypass graft occlusion, and transplant coronary vasculopathy, for which no known effective therapy exists. The first human trial in cardiovascular disease was started in 1994 to treat peripheral vascular disease using vascular endothelial growth factor. In addition, therapeutic angiogenesis using the vascular endothelial growth factor gene was applied in the treatment of ischemic heart disease. The results from these clinical trials seem to exceed expectation. Improvement of clinical symptoms in peripheral arterial disease and ischemic heart disease has been reported. At least five different potent angiogenic growth factors have been tested in clinical trials to treat peripheral arterial disease or ischemic heart disease. In addition, another strategy for combating disease processes, to target the transcriptional process, has been tested in a human trial. Transfection of cis-element double-stranded oligodeoxynucleotides is an especially powerful tool in a new class of antigen strategies for gene therapy. Transfection of double-stranded oligodeoxynucleotides corresponding to the cis sequence will result in the attenuation of the authentic cis-trans interaction, leading to the removal of trans-factors from the endogenous cis-elements, with subsequent modulation of gene expression. Genetically modified vein grafts transfected with a decoy against E2F, an essential transcription factor in cell cycle progression, revealed apparent long-term potency in human patients. This review focuses on the future potential of gene therapy for the treatment of cardiovascular disease.


Assuntos
Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Exorribonucleases/uso terapêutico , Terapia Genética/tendências , Neovascularização Fisiológica , Doenças Vasculares Periféricas/genética , Angioplastia , Ensaios Clínicos como Assunto , Reestenose Coronária/genética , Reestenose Coronária/terapia , Fatores de Crescimento Endotelial/uso terapêutico , Humanos , Linfocinas/uso terapêutico , Doenças Vasculares Periféricas/terapia , Transcrição Gênica , Transfecção , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular , Veias/transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA