RESUMO
PURPOSE: Clinically, hypoxia is associated with increased distant metastasis and poor survival in gastric cancer (GC). In this study, we set out from the cellular interaction to further explain the molecular mechanism of invasion in GC cells under hypoxic conditions. METHODS: Gastric cancer cells were cultured under 1% O2 (hypoxia-cultured gastric cancer cells, HGC) and 20% O2 condition (normoxic-cultured gastric cancer cells, NGC). NGC was co-cultured with HGC-medium. Scrape and Transwell were used to evaluate invasion and migration. Exosomes from GC were extracted by ultracentrifugation. Electron microscopy images, western-blot used to analyze the size distributions and the number of exosomes. RESULTS: HGC-medium induced NGC dissociated. Long non-coding RNA (lncRNA) prostate cancer gene expression marker 1 (PCGEM1) was specifically expressed in HGC exosomes. HGC-derived PCGEM1-riched exosomes could promote the invasion and migration of NGC. On the mechanism, PCGEM1 maintained stability and reduced the degradation of SNAI1, which could induce the epithelial-mesenchymal transition of GC. CONCLUSION: LncRNA PCGEM1 was overexpressed in GC cells. And part of the PCGEM1 can be encapsulated into exosomes. These exosomes promoted invasion and migration of other GC cells. We considered PCGEM1 might act as a "scaffold" combined with SNAI1 and prompt the invasion and migration of GC.
Assuntos
Exossomos/metabolismo , RNA Longo não Codificante/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Hipóxia Tumoral , Comunicação Celular , Movimento Celular/genética , Técnicas de Cocultura/métodos , Meios de Cultura/farmacologia , Transição Epitelial-Mesenquimal/fisiologia , Exossomos/ultraestrutura , Humanos , Invasividade Neoplásica , Metástase Neoplásica , RNA Mensageiro/metabolismo , Fatores de Transcrição da Família Snail/genética , Microambiente Tumoral , Regulação para CimaRESUMO
Exosomes are extracellular microvesicles of endosomal origin (multivesicular bodies, MVBs) constitutively released by eukaryotic cells by fusion of MVBs to the plasma membrane. The exosomes from Leishmania parasites contain an array of parasite molecules such as virulence factors and survival messengers, capable of modulating the host immune response and thereby favoring the infection of the host. We here show that exosomes of L. mexicana amastigotes (aExo) contain the virulence proteins gp63 and PP2C. The incubation of aExo with bone marrow-derived macrophages (BMMs) infected with L. mexicana led to their internalization and were found to colocalize with the cellular tetraspanin CD63. Furthermore, aExo inhibited nitric oxide production of infected BMMs, permitting enhanced intracellular parasite survival. Expressions of antigen-presenting (major histocompatibility complex class I, MHC-I, and CD1d) and costimulatory (CD86 and PD-L1) molecules were modulated in a dose-dependent fashion. Whereas MHC-I, CD86 and PD-L1 expressions were diminished by exosomes, CD1d was enhanced. We conclude that aExo of L. mexicana are capable of decreasing microbicidal mechanisms of infected macrophages by inhibiting nitric oxide production, thereby enabling parasite survival. They also hamper the cellular immune response by diminishing MHC-I and CD86 on an important antigen-presenting cell, which potentially interferes with CD8 T cell activation. The enhanced CD1d expression in combination with reduction of PD-L1 on BMMs point to a potential shift of the activation route towards lipid presentations, yet the effectivity of this immune activation is not evident, since in the absence of costimulatory molecules, cellular anergy and tolerance would be expected.
Assuntos
Exossomos/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Leishmania mexicana/imunologia , Leishmania mexicana/metabolismo , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Animais , Biomarcadores , Células Cultivadas , Modelos Animais de Doenças , Exossomos/ultraestrutura , Leishmania mexicana/crescimento & desenvolvimento , CamundongosRESUMO
: Extracellular vesicles (EVs) facilitate intercellular communication and are considered a promising therapeutic tool for the treatment of infectious diseases. These vesicles involve microvesicles (MVs) and exosomes and selectively transfer proteins, lipids, mRNAs, and microRNAs from one cell to another. While MVs are formed by extrusion of the plasma membrane, exosomes are a population of vesicles of endosomal origin that are stored inside the multivesicular bodies (MVBs) as intraluminal vesicles (ILVs) and are released when the MVBs fuse with the plasma membrane. Biogenesis of exosomes may be driven by the endosomal sorting complex required for transport (ESCRT) machinery or may be ESCRT independent, and it is still debated whether these are entirely separate pathways. In this manuscript, we report that the protozoan parasite, Giardia lamblia, although lacking a classical endo-lysosomal pathway, is able to produce and release exosome-like vesicles (ElV). By using a combination of biochemical and cell biology analyses, we found that the ElVs have the same size, shape, and protein and lipid composition as exosomes described for other eukaryotic cells. Moreover, we established that some endosome/lysosome peripheral vacuoles (PVs) contain ILV during the stationary phase. Our results indicate that ILV formation and ElV release depend on the ESCRT-associated AAA+-ATPase Vps4a, Rab11, and ceramide in this parasite. Interestingly, EIV biogenesis and release seems to occur in Giardia despite the fact that this parasite has lost most of the ESCRT machinery components during evolution and is unable to produce ceramide de novo. The differences in protozoa parasite EV composition, origin, and release may reveal functional and structural properties of EVs and, thus, may provide information on cell-to-cell communication and on survival mechanisms.
Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Exossomos/metabolismo , Giardia lamblia/metabolismo , Animais , Western Blotting , Difusão Dinâmica da Luz , Exossomos/ultraestrutura , Giardia lamblia/ultraestrutura , Microscopia EletrônicaRESUMO
BACKGROUND: The "nonclassic" apparent mineralocorticoid excess (NC-AME) has been identified in approximately 7% of general population. This phenotype is characterized by low plasma renin activity (PRA), high serum cortisol (F) to cortisone (E) ratio, low cortisone, high Fractional Excretion of potassium (FEK) and normal-elevated systolic blood pressure (SBP). An early detection and/or identification of novel biomarkers of this phenotype could avoid the progression or future complications leading to arterial hypertension. Isolation of extracellular vesicles, such as exosomes, in specific biofluids support the identification of tissue-specific RNA and miRNA, which may be useful as novel biomarkers. Our aim was to identify miRNAs within urinary exosomes associated to the NC-AME phenotype. METHODS: We perform a cross-sectional study in a primary care cohort of 127 Chilean subjects. We measured BP, serum cortisol, cortisone, aldosterone, PRA. According to the previous reported, a subgroup of subjects was classified as NC-AME (n = 10). Urinary exosomes were isolated and miRNA cargo was sequenced by Illumina-NextSeq-500. RESULTS: We found that NC-AME subjects had lower cortisone (p < 0.0001), higher F/E ratio (p < 0.0001), lower serum potassium (p = 0.009) and higher FEK 24 h (p = 0.03) than controls. We found miR-204-5p (fold-change = 0.115; p 0.001) and miR-192-5p (fold-change = 0.246; p 0.03) are both significantly downregulated in NC-AME. miR-192-5p expression was correlated with PRA (r = 0.45; p 0.028) and miR-204-5p expression with SBP (r = - 0.48, p 0.027) and F/E ratio (r = - 0.48; p 0.026). CONCLUSIONS: These findings could support a potential role of these miRNAs as regulators and novel biomarkers of the NC-AME phenotype.
Assuntos
Regulação para Baixo/genética , Exossomos/genética , MicroRNAs/genética , Síndrome de Excesso Aparente de Minerolocorticoides/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Exossomos/ultraestrutura , Feminino , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Síndrome de Excesso Aparente de Minerolocorticoides/urina , Reprodutibilidade dos Testes , Adulto Jovem , Síndrome de Excesso Aparente de MinerolocorticoidesRESUMO
BACKGROUND: Mesenchymal stem cells (MSCs) have been explored as promising tools for treatment of several neurological and neurodegenerative diseases. MSCs release abundant extracellular vesicles (EVs) containing a variety of biomolecules, including mRNAs, miRNAs, and proteins. We hypothesized that EVs derived from human Wharton's jelly would act as mediators of the communication between hMSCs and neurons and could protect hippocampal neurons from damage induced by Alzheimer's disease-linked amyloid beta oligomers (AßOs). METHODS: We isolated and characterized EVs released by human Wharton's jelly mesenchymal stem cells (hMSC-EVs). The neuroprotective action of hMSC-EVs was investigated in primary hippocampal cultures exposed to AßOs. RESULTS: hMSC-EVs were internalized by hippocampal cells in culture, and this was enhanced in the presence of AßOs in the medium. hMSC-EVs protected hippocampal neurons from oxidative stress and synapse damage induced by AßOs. Neuroprotection by hMSC-EVs was mediated by catalase and was abolished in the presence of the catalase inhibitor, aminotriazole. CONCLUSIONS: hMSC-EVs protected hippocampal neurons from damage induced by AßOs, and this was related to the transfer of enzymatically active catalase contained in EVs. Results suggest that hMSC-EVs should be further explored as a cell-free therapeutic approach to prevent neuronal damage in Alzheimer's disease.
Assuntos
Peptídeos beta-Amiloides/toxicidade , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/citologia , Neurônios/patologia , Neuroproteção , Estresse Oxidativo , Sinapses/patologia , Geleia de Wharton/citologia , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Exossomos/metabolismo , Exossomos/ultraestrutura , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/ultraestrutura , Hipocampo/patologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Multimerização Proteica , Ratos , Espécies Reativas de Oxigênio/metabolismo , Sinapses/efeitos dos fármacosRESUMO
Despite the different strategies used to treat ovarian cancer, around 70% of women/patients eventually fail to respond to the therapy. Cancer stem cells (CSCs) play a role in the treatment failure due to their chemoresistant properties. This capacity to resist chemotherapy allows CSCs to interact with different components of the tumor microenvironment, such as mesenchymal stem cells (MSCs), and thus contribute to tumorigenic processes. Although the participation of MSCs in tumor progression is well understood, it remains unclear how CSCs induce the pro-tumorigenic activity of MSCs in response to chemotherapy. Small extracellular vesicles, including exosomes, represent one possible way to modulate any type of cell. Therefore, in this study, we evaluate if small extracellular vesicle (sEV) derived from ovarian cancer spheroids (OCS), which are enriched in CSCs, can modify the activity of MSCs to a pro-tumorigenic phenotype. We show that sEV released by OCS in response to cisplatin induce an increase in the migration pattern of bone marrow MSCs (BM-MSCs) and the secretion interleukin-6 (IL-6), interleukin-8 (IL-8), and vascular endothelial growth factor A (VEGFA). Moreover, the factors secreted by BM-MSCs induce angiogenesis in endothelial cells and the migration of low-invasive ovarian cancer cells. These findings suggest that cisplatin could modulate the cargo of sEV released by CSCs, and these exosomes can further induce the pro-tumorigenic activity of MSCs.
Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Cisplatino/farmacologia , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Neoplasias Ovarianas/etiologia , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Exossomos/metabolismo , Exossomos/ultraestrutura , Vesículas Extracelulares/ultraestrutura , Feminino , Expressão Gênica , Humanos , Metaloproteases/genética , Metaloproteases/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neoplasias Ovarianas/patologia , Esferoides Celulares , Microambiente TumoralRESUMO
miR-145, miR-155, and miR-382 have been proposed as noninvasive biomarkers to distinguish breast cancer patients from healthy individuals. However, it is unknown if these three miRNAs are secreted by exosomes. Thus, we hypothesized that miR-145, miR-155, and miR-382 in breast cancer patients are present in exosomes. We isolated exosomes from serum of breast cancer patients and healthy donors, then we characterized them according to their shape, size, and exosome markers by scanning electron microscopy, atomic force microscopy, nanoparticle tracking analysis (NTA), and Western blot and determined the exosome concentration in all samples by NTA. Later, exosomal small RNA extraction was done to determine the expression levels of miR-145, miR-155, and miR-382 by qRT-PCR. We observed a round shape of exosomes with a mean size of 119.84 nm in breast cancer patients and 115.4 nm in healthy donors. All exosomes present the proteins CD63, Alix, Tsg, CD9, and CD81 commonly used as markers. Moreover, we found a significantly high concentration of exosomes in breast cancer patients with stages I, III, and IV compared to healthy donors. We detected miR-145, miR-155, and miR-382 in the exosomes isolated from serum of breast cancer patients and healthy donors. Our results show that the exosomes isolated from the serum of breast cancer patients and healthy donors contains miR-145, miR-155, and miR-382 but not in a selective manner in breast cancer patients. Moreover, our data support the association between exosome concentration and the presence of breast cancer, opening the possibility to study how miRNAs packaged into exosomes play a role in BC progression.
Assuntos
Biomarcadores Tumorais/sangue , Neoplasias da Mama/sangue , Ácidos Nucleicos Livres/sangue , Exossomos/genética , MicroRNAs/sangue , Adulto , Idoso , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ácidos Nucleicos Livres/genética , Exossomos/ultraestrutura , Feminino , Humanos , MicroRNAs/genética , Pessoa de Meia-IdadeRESUMO
Several studies have suggested that extracellular vesicles (EVs) released from mesenchymal stem cells (MSCs) may mediate MSC paracrine action on kidney regeneration. This activity has been, at least in part, ascribed to the transfer of proteins/transcription factors and different RNA species. Information on the RNA/protein content of different MSC EV subpopulations and the correlation with their biological activity is currently incomplete. The aim of this study was to evaluate the molecular composition and the functional properties on renal target cells of MSC EV sub-populations separated by gradient floatation. The results demonstrated heterogeneity in quantity and composition of MSC EVs. Two peaks of diameter were observed (90-110 and 170-190 nm). The distribution of exosomal markers and miRNAs evaluated in the twelve gradient fractions showed an enrichment in fractions with a flotation density of 1.08-1.14 g/mL. Based on this observation, we evaluated the biological activity on renal cell proliferation and apoptosis resistance of low (CF1), medium (CF2) and high (CF3) floatation density fractions. EVs derived from all fractions, were internalized by renal cells, CF1 and CF2 but not CF3 fraction stimulated significant cell proliferation. CF2 also inhibited apoptosis on renal tubular cells submitted to ischemia-reperfusion injury. Comparative miRNomic and proteomic profiles reveal a cluster of miRNAs and proteins common to all three fractions and an enrichment of selected molecules related to renal regeneration in CF2 fraction. In conclusion, the CF2 fraction enriched in exosomal markers was the most active on renal tubular cell proliferation and protection from apoptosis.
Assuntos
Micropartículas Derivadas de Células/metabolismo , Células Epiteliais/metabolismo , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Apoptose , Western Blotting , Linhagem Celular , Proliferação de Células , Separação Celular/métodos , Micropartículas Derivadas de Células/ultraestrutura , Células Cultivadas , Centrifugação com Gradiente de Concentração/métodos , Células Epiteliais/citologia , Exossomos/ultraestrutura , Túbulos Renais/citologia , Células-Tronco Mesenquimais/citologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Microscopia Eletrônica , Proteoma/metabolismo , Proteômica/métodos , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Adult stem cells have beneficial effects when exposed to damaged tissue due, at least in part, to their paracrine activity, which includes soluble factors and extracellular vesicles (EVs). Given the multiplicity of signals carried by these vesicles through the horizontal transfer of functional molecules, human mesenchymal stem cell (hMSCs) and CD133+ cell-derived EVs have been tested in various disease models and shown to recover damaged tissues. In this study, we profiled the protein content of EVs derived from expanded human CD133+ cells and bone marrow-derived hMSCs with the intention of better understanding the functions performed by these vesicles/cells and delineating the most appropriate use of each EV in future therapeutic procedures. Using LC-MS/MS analysis, we identified 623 proteins for expanded CD133+-EVs and 797 proteins for hMSCs-EVs. Although the EVs from both origins were qualitatively similar, when protein abundance was considered, hMSCs-EVs and CD133+-EVs were different. Gene Ontology (GO) enrichment analysis in CD133+-EVs revealed proteins involved in a variety of angiogenesis-related functions as well proteins related to the cytoskeleton and highly implicated in cell motility and cellular activation. In contrast, when overrepresented proteins in hMSCs-EVs were analyzed, a GO cluster of immune response-related genes involved with immune response-regulating factors acting on phagocytosis and innate immunity was identified. Together our data demonstrate that from the point of view of protein content, expanded CD133+-EVs and hMSCs-EVs are in part similar but also sufficiently different to reflect the main beneficial paracrine effects widely reported in pre-clinical studies using expanded CD133+ cells and/or hBM-MSCs.
Assuntos
Vesículas Extracelulares/metabolismo , Sangue Fetal/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteoma/metabolismo , Medicina Regenerativa/métodos , Antígeno AC133/sangue , Apoptose , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Proliferação de Células , Células Cultivadas , Cromatografia Líquida , Exossomos/metabolismo , Exossomos/ultraestrutura , Vesículas Extracelulares/ultraestrutura , Sangue Fetal/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Microscopia Eletrônica de Transmissão , Necrose , Proteômica/métodos , Espectrometria de Massas em TandemRESUMO
Extracellular vesicles (EVs) are membrane-limited vesicles secreted by normal and malignant cells and their function is dependent on the cargo they carry and the cell type from which they originate. Moreover, EVs mediate many stages of tumor progression including angiogenesis, escape from immune surveillance and extracellular matrix degradation. Linoleic acid (LA) is an essential polyunsaturated fatty acid that induces expression of plasminogen activator inhibitor-1, proliferation, migration and invasion in breast cancer cells. However the role of secreted EVs from MDA-MB-231 cells stimulated with LA like mediator of the epithelial-mesenchymal-transition (EMT) process in mammary non-tumorigenic epithelial cells MCF10A remains to be studied. In the present study, we demonstrate that treatment of MDA-MB-231 cells for 48 h with 90 µM LA does not induce an increase in the number of secreted EVs. In addition, EVs isolated from supernatants of MDA-MB-231 stimulated for 48 h with 90 µM LA induce a transient down-regulation of E-cadherin expression, and an increase of Snail1 and 2, Twist1 and 2, Sip1, vimentin and N-cadherin expression in MCF10A cells. EVs also promote an increase of MMP-2 and -9 secretions, an increase of NFκB-DNA binding activity, migration and invasion in MCF10A cells. In summary, our findings demonstrate, for the first time, that EVs isolated from supernatants of MDA-MB-231 stimulated for 48 h with 90 µM LA induce an EMT-like process in MCF10A cells.
Assuntos
Neoplasias da Mama/ultraestrutura , Transição Epitelial-Mesenquimal/fisiologia , Exossomos/fisiologia , Ácido Linoleico/farmacologia , Neoplasias da Mama/fisiopatologia , Caderinas/análise , Caderinas/genética , Linhagem Celular Tumoral , Meios de Cultivo Condicionados , Exossomos/efeitos dos fármacos , Exossomos/ultraestrutura , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Metaloproteinases da Matriz/metabolismoRESUMO
This study evaluated the effects of bone marrow-derived mesenchymal stem cells (BMSCs) or their conditioned medium (CM) on the repair and prevention of Acute Kidney Injury (AKI) induced by gentamicin (G). Animals received daily injections of G up to 20 days. On the 10(th) day, injections of BMSCs, CM, CM+trypsin, CM+RNase or exosome-like microvesicles extracted from the CM were administered. In the prevention groups, the animals received the BMSCs 24 h before or on the 5(th) day of G treatment. Creatinine (Cr), urea (U), FENa and cytokines were quantified. The kidneys were evaluated using hematoxylin/eosin staining and immunohystochemistry. The levels of Cr, U and FENa increased during all the periods of G treatment. The BMSC transplantation, its CM or exosome injections inhibited the increase in Cr, U, FENa, necrosis, apoptosis and also increased cell proliferation. The pro-inflammatory cytokines decreased while the anti-inflammatory cytokines increased compared to G. When the CM or its exosomes were incubated with RNase (but not trypsin), these effects were blunted. The Y chromosome was not observed in the 24-h prevention group, but it persisted in the kidney for all of the periods analyzed, suggesting that the injury is necessary for the docking and maintenance of BMSCs in the kidney. In conclusion, the BMSCs and CM minimized the G-induced renal damage through paracrine effects, most likely through the RNA carried by the exosome-like microvesicles. The use of the CM from BMSCs can be a potential therapeutic tool for this type of nephrotoxicity, allowing for the avoidance of cell transplantations.