Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.672
Filtrar
1.
Exp Biol Med (Maywood) ; 249: 10135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711460

RESUMO

Environmental air pollution is a global health concern, associated with multiple respiratory and systemic diseases. Epidemiological supports continued urbanization and industrialization increasing the prevalence of inhalation exposures. Exposure to these inhaled pollutants induces toxicity via activation of numerous cellular mechanisms including oxidative stress, autophagy, disrupted cellular metabolism, inflammation, tumorigenesis, and others contributing to disease development. The mechanistic target of rapamycin (mTOR) is a key regulator involved in various cellular processes related to the modulation of metabolism and maintenance of homeostasis. Dysregulation of mTOR occurs following inhalation exposures and has also been implicated in many diseases such as cancer, obesity, cardiovascular disease, diabetes, asthma, and neurodegeneration. Moreover, mTOR plays a fundamental role in protein transcription and translation involved in many inflammatory and autoimmune diseases. It is necessary to understand inhalation exposure-induced dysregulation of mTOR since it is key regulator which may contribute to numerous disease processes. This mini review evaluates the available literature regarding several types of inhalation exposure and their impacts on mTOR signaling. Particularly we focus on the mTOR signaling pathway related outcomes of autophagy, lipid metabolism, and inflammation. Furthermore, we will examine the implications of dysregulated mTOR pathway in exposure-induced diseases. Throughout this mini review, current gaps will be identified related to exposure-induced mTOR dysregulation which may enable the targeting of mTOR signaling for the development of therapeutics.


Assuntos
Exposição por Inalação , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/metabolismo , Exposição por Inalação/efeitos adversos , Animais , Transdução de Sinais/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Inflamação/metabolismo
2.
Environ Sci Technol ; 58(19): 8417-8431, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38701378

RESUMO

This study evaluated workers' exposures to flame retardants, including polybrominated diphenyl ethers (PBDEs), organophosphate esters (OPEs), and other brominated flame retardants (BFRs), in various industries. The study aimed to characterize OPE metabolite urinary concentrations and PBDE serum concentrations among workers from different industries, compare these concentrations between industries and the general population, and evaluate the likely route of exposure (dermal or inhalation). The results showed that workers from chemical manufacturing had significantly higher (p <0.05) urinary concentrations of OPE metabolites compared to other industries. Spray polyurethane foam workers had significantly higher (p <0.05) urinary concentrations of bis(1-chloro-2-propyl) phosphate (BCPP) compared to other industries. Electronic scrap workers had higher serum concentrations of certain PBDE congeners compared to the general population. Correlations were observed between hand wipe samples and air samples containing specific flame-retardant parent chemicals and urinary metabolite concentrations for some industries, suggesting both dermal absorption and inhalation as primary routes of exposure for OPEs. Overall, this study provides insights into occupational exposure to flame retardants in different industries and highlights the need for further research on emerging flame retardants and exposure reduction interventions.


Assuntos
Biomarcadores , Retardadores de Chama , Éteres Difenil Halogenados , Exposição Ocupacional , Organofosfatos , Retardadores de Chama/metabolismo , Humanos , Exposição por Inalação , Adulto , Masculino , Pele/metabolismo , Estados Unidos , Feminino
3.
Environ Sci Technol ; 58(19): 8278-8288, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38697947

RESUMO

Chemicals assessment and management frameworks rely on regulatory toxicity values, which are based on points of departure (POD) identified following rigorous dose-response assessments. Yet, regulatory PODs and toxicity values for inhalation exposure (i.e., reference concentrations [RfCs]) are available for only ∼200 chemicals. To address this gap, we applied a workflow to determine surrogate inhalation route PODs and corresponding toxicity values, where regulatory assessments are lacking. We curated and selected inhalation in vivo data from the U.S. EPA's ToxValDB and adjusted reported effect values to chronic human equivalent benchmark concentrations (BMCh) following the WHO/IPCS framework. Using ToxValDB chemicals with existing PODs associated with regulatory toxicity values, we found that the 25th %-ile of a chemical's BMCh distribution (PODp25BMCh) could serve as a suitable surrogate for regulatory PODs (Q2 ≥ 0.76, RSE ≤ 0.82 log10 units). We applied this approach to derive PODp25BMCh for 2,095 substances with general non-cancer toxicity effects and 638 substances with reproductive/developmental toxicity effects, yielding a total coverage of 2,160 substances. From these PODp25BMCh, we derived probabilistic RfCs and human population effect concentrations. With this work, we have expanded the number of chemicals with toxicity values available, thereby enabling a much broader coverage for inhalation risk and impact assessment.


Assuntos
Exposição por Inalação , Reprodução , Humanos , Reprodução/efeitos dos fármacos , Medição de Risco
4.
J Hazard Mater ; 471: 134307, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678702

RESUMO

This systematic review and meta-analysis investigated studies on formaldehyde (FA) inhalation exposure in indoor environments and related carcinogenic (CR) and non-carcinogenic (HQ) risk. Studies were obtained from Scopus, PubMed, Web of Science, Medline, and Embase databases without time limitation until November 21, 2023. Studies not meeting the criteria of Population, Exposure, Comparator, and Outcomes (PECO) were excluded. The 45 articles included belonged to the 5 types of sites: dwelling environments, educational centers, kindergartens, vehicle cabins, and other indoor environments. A meta-analysis determined the average effect size (ES) between indoor FA concentrations, CR, and HQ values in each type of indoor environment. FA concentrations ranged from 0.01 to 1620 µg/m3. The highest FA concentrations were stated in water pipe cafés and the lowest in residential environments. In more than 90% of the studies uncertain (1.00 ×10-6 1.00 ×10-4) due to FA inhalation exposure was reported and non-carcinogenic risk was stated acceptable. The meta-analysis revealed the highest CR values due to inhalation of indoor FA in high-income countries. As 90% of the time is spent indoors, it is crucial to adopt effective strategies to reduce FA concentrations, especially in kindergartens and schools, with regular monitoring of indoor air quality.


Assuntos
Poluição do Ar em Ambientes Fechados , Formaldeído , Exposição por Inalação , Formaldeído/análise , Formaldeído/toxicidade , Poluição do Ar em Ambientes Fechados/análise , Exposição por Inalação/análise , Medição de Risco , Humanos
5.
Sci Total Environ ; 929: 172488, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631625

RESUMO

Quarantine work is widely recognized as an indispensable endeavor in curbing the propagation of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Furthermore, the heavy workload places workers at a heightened risk of chemical exposure and respiratory damage. Consequently, it is paramount to systematically perform health risk assessments and meticulously oversee the work by wearing personal protective equipment to minimize these risks. To assess the inhalation exposure, this study examined data on disinfectant exposure from quarantine professional users who utilized disinfectants containing quaternary ammonium compounds. Through a survey of 6,199 cases conducted by 300 quarantine professional users who actively engaged in quarantine work, we assembled a database of exposure factors derived from their utilization of spray-type disinfectants for quarantine purposes. Based on these data, we formulated an inhalation exposure algorithm, which considers the time-weighted average (TWA) air concentrations. The test results demonstrated that the industrial-grade respirator mask could prevent a minimum of 68.3 % of particles, reducing respiratory exposure. Consequently, the hazard quotient (HQ) due to disinfectant exposure also decreased. This research is essential in safeguarding the safety and health of professional users engaged in quarantine-related tasks. By implementing strict measures like health risk assessments and personal protective equipment, individuals with quarantine experience can safely carry out their quarantine work. The results of this study are expected to serve as a framework for improving policies and regulations concerning quarantine work and safeguarding the health of professional users.


Assuntos
COVID-19 , Desinfetantes , Exposição por Inalação , Exposição Ocupacional , Quarentena , Compostos de Amônio Quaternário , Desinfetantes/análise , Humanos , Exposição por Inalação/estatística & dados numéricos , COVID-19/prevenção & controle , Medição de Risco , SARS-CoV-2 , Equipamento de Proteção Individual
6.
Chemosphere ; 357: 141975, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615960

RESUMO

This study investigated the determinants of personal exposures (PE) to coarse (PM2.5-10) and fine particulate matter (PM2.5) for elderly communities in Hong Kong. The mean PE PM2.5 and PM2.5-10 were 23.6 ± 10.8 and 13.5 ± 22.1 µg/m3, respectively during the sampling period. Approximately 76% of study subjects presented statistically significant differences between PE and ambient origin for PM2.5 compared to approximately 56% for PM2.5-10, possibly due to the coarse-size particles being more influenced by similar sources (road dust and construction dust emissions) compared to the PM2.5 particles. Individual PE to ambient (P/A) ratios for PM2.5 all exceeded unity (≥1), suggesting the dominant influences of non-ambient particles contributed towards total PE values. There were about 80% individual P/A ratios (≤1) for PM2.5-10, implying possible effective infiltration prevention of larger size particulate matter particles leading to dominant influences from the outdoor sources. The higher concentration of NO3- and SO42- in PM2.5-10 compared to PM2.5 suggests possible heterogeneous reactions of alkaline minerals leading to the formation of NO3- and SO42- in PM2.5-10 particles. The PE and ambient OC/EC ratios in PM2.5 (8.8 ± 3.3 and 10.4 ± 22.4, respectively) and in PM2.5-10 (6.0 ± 1.9 and 3.0 ± 1.1, respectively) suggest possible secondary formed OC from surrounding rural areas. Heterogeneous distributions (COD >0.2) between the PE and ambient concentrations were found for both the PM2.5 and PM2.5-10 samples. The calibration coefficient as the association between personal and surrogate exposure measure of PE to PM2.5 (0.84) was higher than PM2.5-10 (0.52). The findings further confirm that local sources were the dominant contributor to the coarse particles and these coefficients can potentially be used to estimate different PE to PM2.5 and PM2.5-10 conditions. A comprehensive understanding of the PE to determinants in coarse particles is essential to further reduce potential exposure misclassification.


Assuntos
Poluição do Ar , Exposição por Inalação , Material Particulado , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Masculino , Feminino , Material Particulado/análise , Exposição por Inalação/estatística & dados numéricos , Poluição do Ar/estatística & dados numéricos , Hong Kong , Tamanho da Partícula , Monitoramento Ambiental , Nitratos/análise , Sulfatos/análise
7.
Circ Res ; 134(9): 1061-1082, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662865

RESUMO

Wildfire smoke (WFS) is a mixture of respirable particulate matter, environmental gases, and other hazardous pollutants that originate from the unplanned burning of arid vegetation during wildfires. The increasing size and frequency of recent wildfires has escalated public and occupational health concerns regarding WFS inhalation, by either individuals living nearby and downstream an active fire or wildland firefighters and other workers that face unavoidable exposure because of their profession. In this review, we first synthesize current evidence from environmental, controlled, and interventional human exposure studies, to highlight positive associations between WFS inhalation and cardiovascular morbidity and mortality. Motivated by these findings, we discuss preventative measures and suggest interventions to mitigate the cardiovascular impact of wildfires. We then review animal and cell exposure studies to call attention on the pathophysiological processes that support the deterioration of cardiovascular tissues and organs in response to WFS inhalation. Acknowledging the challenges of integrating evidence across independent sources, we contextualize laboratory-scale exposure approaches according to the biological processes that they model and offer suggestions for ensuring relevance to the human condition. Noting that wildfires are significant contributors to ambient air pollution, we compare the biological responses triggered by WFS to those of other harmful pollutants. We also review evidence for how WFS inhalation may trigger mechanisms that have been proposed as mediators of adverse cardiovascular effects upon exposure to air pollution. We finally conclude by highlighting research areas that demand further consideration. Overall, we aspire for this work to serve as a catalyst for regulatory initiatives to mitigate the adverse cardiovascular effects of WFS inhalation in the community and alleviate the occupational risk in wildland firefighters.


Assuntos
Doenças Cardiovasculares , Fumaça , Incêndios Florestais , Humanos , Animais , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Fumaça/efeitos adversos , Exposição por Inalação/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Material Particulado/efeitos adversos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/prevenção & controle , Exposição Ambiental/efeitos adversos
8.
Arch Prev Riesgos Labor ; 27(1): 41-53, 2024 Jan 18.
Artigo em Espanhol | MEDLINE | ID: mdl-38655606

RESUMO

OBJECTIVE: To evaluate silica exposure among Chilean miners at high altitude, using different methodological approaches, for the purpose of determining the safest method to control exposures.  Methods: The 46 miners in the sample worked at 3000 meters above sea level in nonstandard work shifts, consisting of four consecutive 12-hour days, followed by four consecutive days off. Silica samples were obtained in each of the jobs positions of these 46 high-altitude miners. The results of the concentrations are presented in mg/m3. Exposures were evaluated in compatison to the Threshold Limit Value (Method 1) and using two other methodologies that incorporate respiratory parameters (Methods 2 and 3). The proportion of miners at risk was determined with each of these methods and compared. RESULTS: Based on the Threshold Limit Value (Method 1), 43.48% of miners were classified as being at risk. With the other two methods that incorporate respiratory parameters, the proportion of overexposed miners was 82.61% with Method 2, and 73.91% with Method 3. CONCLUSIONS: Of the three methods analyzed, the one that considers the respiratory parameter minute volume, through the estimation of the inhaled dose, is the safest to define the group of miners at risk due to exposure to silica at high altitude.


OBJETIVO: Evaluar la exposición a sílice de mineros chilenos en altitud usando diferentes metodologías, con el propósito de determinar el método más seguro para controlar la exposición.  Métodos: Los 46 mineros que conforman la muestra trabajan a 3000 metros sobre el nivel del mar con sistema de turnos no convencionales, en jornadas de 12 horas diarias por 4 días consecutivos, después de los cuales se descansa por otros 4 días. Se tomaron muestras de sílice en cada uno de los puestos de trabajo de estos 46 mineros en altitud. Los resultados de las concentraciones se presentan en (mg/m3). La exposición se evaluó usando el Threshold Limit Value y otras dos metodologías que incorporan parámetros respiratorios. Se determinó el grupo de mineros en riesgo con cada uno de estos métodos y se comparó la proporción de mineros expuestos en cada caso. RESULTADOS: evaluando con el Threshold Limit Value (método 1) se obtuvo un 43,48% de mineros en riesgo. Con los métodos que incluyen parámetros respiratorios se obtuvo una proporción de mineros sobre-expuestos del 82,61% con el método 2, y 73,91% con el método 3. CONCLUSIONES: de los tres métodos analizados, el que considera el parámetro respiratorio volumen minuto, a través de la estimación de la dosis inhalada, es el más seguro para definir el grupo de mineros en riesgo por exposición a sílice a gran altura.


Assuntos
Altitude , Mineração , Exposição Ocupacional , Dióxido de Silício , Humanos , Chile , Exposição por Inalação/efeitos adversos , Masculino , Adulto
9.
Sci Total Environ ; 927: 171997, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38565357

RESUMO

Marathon running significantly increases breathing volumes and, consequently, air pollution inhalation doses. This is of special concern for elite athletes who ventilate at very high rates. However, race organizers and sport governing bodies have little guidance to support events scheduling to protect runners. A key limitation is the lack of hyper-local, high temporal resolution air quality data representative of exposure along the racecourse. This work aimed to understand the air pollution exposures and dose inhaled by athletes, by means of a dynamic monitoring methodology designed for road races. Air quality monitors were deployed during three marathons, monitoring nitrogen dioxide (NO2), ozone (O3), particulate matter (PMx), air temperature, and relative humidity. One fixed monitor was installed at the Start/Finish line and one mobile monitor followed the women elite runner pack. The data from the fixed monitors, deployed prior the race, described daily air pollution trends. Mobile monitors in combination with heatmap analysis facilitated the hyper-local characterization of athletes' exposures and helped identify local hotspots (e.g., areas prone to PM resuspension) which should be preferably bypassed. The estimation of inhaled doses disaggregated by gender and ventilation showed that doses inhaled by last finishers may be equal or higher than those inhaled by first finishers for O3 and PMx, due to longer exposures as well as the increase of these pollutants over time (e.g., 58.2 ± 9.6 and 72.1 ± 23.7 µg of PM2.5 for first and last man during Rome marathon). Similarly, men received significantly higher doses than women due to their higher ventilation rate, with differences of 31-114 µg for NO2, 79-232 µg for O3, and 6-41 µg for PMx. Finally, the aggregated data obtained during the 4 week- period prior the marathon can support better race scheduling by the organizers and provide actionable information to mitigate air pollution impacts on athletes' health and performance.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Material Particulado , Humanos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Feminino , Poluição do Ar/estatística & dados numéricos , Masculino , Corrida/fisiologia , Ozônio/análise , Exposição Ambiental/estatística & dados numéricos , Exposição Ambiental/análise , Exposição por Inalação/estatística & dados numéricos , Exposição por Inalação/análise , Dióxido de Nitrogênio/análise , Atletas
10.
Regul Toxicol Pharmacol ; 149: 105627, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621522

RESUMO

CropLife Europe collected literature values from monitoring studies measuring air concentrations of Plant Protection Products (PPPs) that may be inhaled by humans located in rural areas but not immediately adjacent to PPP applications. The resulting "Combined Air Concentration Database" (CACD) was used to determine whether air concentrations of PPPs reported by the French "Agency for Food, Environmental and Occupational Health & Safety" (ANSES) are consistent with those measured by others to increase confidence in values of exposure to humans. The results were put into risk assessment context. Results show that 25-90% of samples do not contain measurable PPP concentrations. Measured respirable fractions were below EU default air concentrations used for risk assessment for resident exposure by the European Food Safety Authority. All measured exposures in the CACD were also below established toxicological endpoints, even when considering the highest maximum average reported concentrations and very conservative inhalation rates. The highest recorded air concentration was for prosulfocarb (0.696 µg/m³ measured over 48 h) which is below the EFSA default limit of 1 µg/m³ for low volatility substances. In conclusion, based on the CACD, measured air concentrations of PPPs are significantly lower than EFSA default limits and relevant toxicological reference values.


Assuntos
Poluentes Atmosféricos , Bases de Dados Factuais , Monitoramento Ambiental , Medição de Risco , Humanos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Exposição por Inalação/análise , Exposição por Inalação/efeitos adversos
11.
Hum Exp Toxicol ; 43: 9603271241248631, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646969

RESUMO

BACKGROUND: Fresh Menthol 3% Nicotine (FM3) is a novel JUUL e-liquid formulation. Its potential toxicity and that of the corresponding base formulation relative to a filtered air (FA) control was studied in a subchronic inhalation study conducted in general accordance with OECD 413. METHODS: Aerosols generated with an intense puffing regime were administered to rats in a nose-only fashion at 1400 µg aerosol collected mass/L on a 6 hour/day basis for 90 days with a 42-day recovery. Exposure atmospheres met target criteria. Systemic exposure was confirmed by plasma measurement of nicotine. RESULTS: No test article-related mortality, clinical signs (other than reversible lower body weight gains in males), clinical pathology or gross findings were noted during this study. No microscopic lesions related to base formulation exposure were identified. Minimal microscopic lesions were observed in the FM3 6-hour exposure group. Microscopic lesions observed in the FM3 6-hour exposure group comprised only minimal laryngeal squamous metaplasia in one male and one female animal. No microscopic lesions related to FM3 exposure remained after the recovery period. CONCLUSION: Exposure atmosphere characterization indicated that conditions were achieved to permit thorough assessment of test articles and results indicate a low order of toxicity for the FM3 Electronic nicotine delivery systems (ENDS) formulation and its base formulation.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotina , Animais , Masculino , Feminino , Nicotina/toxicidade , Nicotina/administração & dosagem , Administração por Inalação , Testes de Toxicidade Subcrônica , Aerossóis , Mentol/toxicidade , Mentol/administração & dosagem , Ratos Sprague-Dawley , Ratos , Exposição por Inalação
12.
Ecotoxicol Environ Saf ; 276: 116279, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581906

RESUMO

Hydrogen sulfide (H2S) is a typical odour compound mainly causing respiratory and central nervous system symptoms. However, the immunotoxicity of inhaled H2S and the underlying mechanisms remain largely unknown. In this study, a low-dose inhalation exposure to H2S was arranged to observe inflammatory response and immunotoxicity in lung tissue of rats. Low concentrations of H2S exposure affected the immune level of pulmonary tissue and peripheral blood. Significant pathological changes in lung tissue in the exposure group were observed. At low concentration, H2S not only induced the upregulation of AQP-4 and MMP-9 expression but also stimulated immune responses, initiating various anti-inflammatory and inflammatory factors, altering tissue homeostatic environments. The TNF and chemokine signaling pathway played an important role which can promote the deterioration of pulmonary inflammatory processes and lead to lung injury and fibrosis. Excessive immune response causes an inflammatory effect and blood-gas barrier damage. These data will be of value in evaluating future occupational health risks and providing technical support for the further development of reliable, sensitive, and easy-to-use screening indicators of exposure injury.


Assuntos
Sulfeto de Hidrogênio , Exposição por Inalação , Pulmão , Animais , Sulfeto de Hidrogênio/toxicidade , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/imunologia , Ratos , Exposição por Inalação/efeitos adversos , Masculino , Inflamação/induzido quimicamente , Inflamação/patologia , Ratos Sprague-Dawley , Metaloproteinase 9 da Matriz/metabolismo , Poluentes Atmosféricos/toxicidade
13.
Eur Respir Rev ; 33(172)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657996

RESUMO

Common airborne allergens (pollen, animal dander and those from fungi and insects) are the main triggers of type I allergic disorder in the respiratory system and are associated with allergic rhinitis, allergic asthma, as well as immunoglobulin E (IgE)-mediated allergic bronchopulmonary aspergillosis. These allergens promote IgE crosslinking, vasodilation, infiltration of inflammatory cells, mucosal barrier dysfunction, extracellular matrix deposition and smooth muscle spasm, which collectively cause remodelling of the airways. Fungus and insect (house dust mite and cockroaches) indoor allergens are particularly rich in proteases. Indeed, more than 40 different types of aeroallergen proteases, which have both IgE-neutralising and tissue-destructive activities, have been documented in the Allergen Nomenclature database. Of all the inhaled protease allergens, 85% are classed as serine protease activities and include trypsin-like, chymotrypsin-like and collagenolytic serine proteases. In this article, we review and compare the allergenicity and proteolytic effect of allergen serine proteases as listed in the Allergen Nomenclature and MEROPS databases and highlight their contribution to allergic sensitisation, disruption of the epithelial barrier and activation of innate immunity in allergic airways disease. The utility of small-molecule inhibitors of allergen serine proteases as a potential treatment strategy for allergic airways disease will also be discussed.


Assuntos
Alérgenos , Imunidade Inata , Serina Proteases , Humanos , Alérgenos/imunologia , Serina Proteases/metabolismo , Serina Proteases/imunologia , Animais , Poluição do Ar em Ambientes Fechados/efeitos adversos , Inibidores de Serina Proteinase/uso terapêutico , Exposição por Inalação/efeitos adversos , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/enzimologia
14.
Environ Sci Technol ; 58(14): 6105-6116, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38547313

RESUMO

Inhalation of PCB-contaminated air is increasingly recognized as a route for PCB exposure. Because limited information about the disposition of PCBs following inhalation exposure is available, this study investigated the disposition of 2,2',5,5'-tetrachlorobiphenyl (PCB52) and its metabolites in rats following acute, nose-only inhalation of PCB52. Male and female Sprague-Dawley rats (50-58 days of age, 210 ± 27 g; n = 6) were exposed for 4 h by inhalation to approximately 14 or 23 µg/kg body weight of PCB52 using a nose-only exposure system. Sham animals (n = 6) were exposed to filtered lab air. Based on gas chromatography-tandem mass spectrometry (GC-MS/MS), PCB52 was present in adipose, brain, intestinal content, lung, liver, and serum. 2,2',5,5'-Tetrachlorobiphenyl-4-ol (4-OH-PCB52) and one unknown monohydroxylated metabolite were detected in these compartments except for the brain. Liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis identified several metabolites, including sulfated, methoxylated, and dechlorinated PCB52 metabolites. These metabolites were primarily found in the liver (7 metabolites), lung (9 metabolites), and serum (9 metabolites) due to the short exposure time. These results demonstrate for the first time that complex mixtures of sulfated, methoxylated, and dechlorinated PCB52 metabolites are formed in adolescent rats following PCB52 inhalation, laying the groundwork for future animal studies of the adverse effects of inhaled PCB52.


Assuntos
Exposição por Inalação , Bifenilos Policlorados , Ratos , Masculino , Feminino , Animais , Exposição por Inalação/análise , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Bifenilos Policlorados/análise , Bifenilos Policlorados/metabolismo
15.
J Occup Environ Hyg ; 21(4): 247-258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451548

RESUMO

Exposure to respirable dust and crystalline silica (SiO2) has been linked to chronic obstructive pulmonary disease, silicosis, cancer, heart disease, and other respiratory diseases. Relatively few studies have measured respirable dust and SiO2 concentrations among workers at brick kilns in low- and middle-income countries. The purpose of this study was to measure personal breathing zone (PBZ) respirable dust and SiO2 concentrations among workers at one brick kiln in Bhaktapur, Nepal. A cross-sectional study was conducted among 49 workers in five job categories: administration, fire master, green (unfired) brick hand molder, green brick machine molder, and top loader. PBZ air samples were collected from each worker following Methods 0600 (respirable dust) and 7500 (respirable crystalline SiO2: cristobalite, quartz, tridymite) of the U.S. National Institute for Occupational Safety and Health. Eight-hour time-weighted average (TWA) respirable dust and quartz concentrations were also calculated. SiO2 percentage was measured in one bulk sample each of wet clay, the release agent used by green brick hand molders, and top coat soil at the brick kiln. The geometric mean (GM) sample and TWA respirable dust concentrations were 0.20 (95% confidence interval [CI]: 0.16, 0.27) and 0.12 (95% CI: 0.09, 0.16) mg/m3, respectively. GM sample and TWA quartz concentrations were 15.28 (95% CI: 11.11, 21.02) and 8.60 (95% CI: 5.99, 12.34) µg/m3, respectively. Job category was significantly associated with GM sample and TWA respirable dust and quartz concentrations (all p < 0.0001). Top loaders had the highest GM sample and TWA respirable dust concentrations of 1.49 and 0.99 mg/m3, respectively. Top loaders also had the highest GM sample and TWA quartz concentrations of 173.08 and 114.39 µg/m3, respectively. Quartz percentages in bulk samples were 16%-27%. Interventions including using wet methods to reduce dust generation, administrative controls, personal protective equipment, and education and training should be implemented to reduce brick kiln worker exposures to respirable dust and SiO2.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Humanos , Dióxido de Silício/análise , Exposição Ocupacional/análise , Quartzo/análise , Poeira/análise , Poluentes Ocupacionais do Ar/análise , Nepal , Estudos Transversais , Exposição por Inalação/análise
16.
Inhal Toxicol ; 36(3): 189-204, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466202

RESUMO

OBJECTIVE: Inhalation of diesel exhaust (DE) has been shown to be an occupational hazard in the transportation, mining, and gas and oil industries. DE also contributes to air pollution, and therefore, is a health hazard to the general public. Because of its effects on human health, changes have been made to diesel engines to reduce both the amounts of particulate matter and volatile fumes they generate. The goal of the current study was to examine the effects of inhalation of diesel exhaust. MATERIALS AND METHODS: The study presented here specifically examines the effects of exposure to 0.2 and 1.0 mg/m3 DE or filtered air (6h/d for 4 d) on measures of peripheral and cardio-vascular function, and biomarkers of heart and kidney dysfunction in male rats. A Tier 2 engine used in oil and gas fracking operations was used to generate the diesel exhaust. RESULTS: Exposure to 0.2 mg/m3 DE resulted in an increase in blood pressure 1d following the last exposure, and increases in dobutamine-induced cardiac output and stroke volume 1 and 27d after exposure. Changes in peripheral vascular responses to norepinephrine and acetylcholine were minimal as were changes in transcript expression in the heart and kidney. Exposure to 1.0 mg/m3 DE did not result in major changes in blood pressure, measures of cardiac function, peripheral vascular function or transcript expression. DISCUSSION AND CONCLUSIONS: Based on the results of this study, we suggest that exposure to DE generated by a Tier 2 compliant diesel engine generates acute effects on biomarkers indicative of cardiovascular dysfunction. Recovery occurs quickly with most measures of vascular/cardiovascular function returning to baseline levels by 7d following exposure.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Masculino , Ratos , Animais , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Material Particulado/toxicidade , Biomarcadores , Exposição por Inalação/efeitos adversos
17.
Toxicology ; 504: 153781, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493948

RESUMO

This comprehensive review focuses on various dimensions of nanoparticle toxicity, emphasizing toxicological characteristics, assessment techniques, and examinations of relevant studies on the effects on biological systems. The primary objective is to comprehend the potential risks associated with nanoparticles and to provide efficient strategies for mitigating them by consolidating current research discoveries. For in-depth insights, the discussions extend to crucial aspects such as toxicity associated with different nanoparticles, human exposure, and nanoparticle deposition in the human respiratory tract. The analysis utilizes the multiple-path particle dosimetry (MPPD) modeling for computational simulation. The SiO2 nanoparticles with a volume concentration of 1% and a particle size of 50 nm are used to depict the MPPD modeling of the Left upper (LU), left lower (LL), right upper (RU), right middle (RM), and right lower (RL) lobes in the respiratory tract. The analysis revealed a substantial 67.5% decrease in the deposition fraction as the particle size increased from 10 nm to 100 nm. Graphical representation emphasizes the significant impact of exposure path selection on nanoparticle deposition, with distinct deposition values observed for nasal, oral, oronasal-mouth breather, oronasal - normal augmenter, and endotracheal paths (0.00291 µg, 0.00332 µg, 0.00297 µg, 0.00291 µg, and 0.00383 µg, respectively). Consistent with the focus of the review, the article also addresses crucial mitigation strategies for managing nanoparticle toxicity.


Assuntos
Nanopartículas , Sistema Respiratório , Humanos , Nanopartículas/toxicidade , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/metabolismo , Animais , Fatores de Risco , Exposição por Inalação/efeitos adversos , Tamanho da Partícula , Medição de Risco
18.
Toxicol Sci ; 199(1): 149-159, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38366927

RESUMO

Large-scale production and waste of plastic materials have resulted in widespread environmental contamination by the breakdown product of bulk plastic materials to micro- and nanoplastics (MNPs). The small size of these particles enables their suspension in the air, making pulmonary exposure inevitable. Previous work has demonstrated that xenobiotic pulmonary exposure to nanoparticles during gestation leads to maternal vascular impairments, as well as cardiovascular dysfunction within the fetus. Few studies have assessed the toxicological consequences of maternal nanoplastic (NP) exposure; therefore, the objective of this study was to assess maternal and fetal health after a single maternal pulmonary exposure to polystyrene NP in late gestation. We hypothesized that this acute exposure would impair maternal and fetal cardiovascular function. Pregnant rats were exposed to nanopolystyrene on gestational day 19 via intratracheal instillation. 24 h later, maternal and fetal health outcomes were evaluated. Cardiovascular function was assessed in dams using vascular myography ex vivo and in fetuses in vivo function was measured via ultrasound. Both fetal and placental weight were reduced after maternal exposure to nanopolystyrene. Increased heart weight and vascular dysfunction in the aorta were evident in exposed dams. Maternal exposure led to vascular dysfunction in the radial artery of the uterus, a resistance vessel that controls blood flow to the fetoplacental compartment. Function of the fetal heart, fetal aorta, and umbilical artery after gestational exposure was dysregulated. Taken together, these data suggest that exposure to NPs negatively impacts maternal and fetal health, highlighting the concern of MNPs exposure on pregnancy and fetal development.


Assuntos
Exposição Materna , Poliestirenos , Animais , Gravidez , Feminino , Poliestirenos/toxicidade , Exposição Materna/efeitos adversos , Nanopartículas/toxicidade , Ratos Sprague-Dawley , Pulmão/efeitos dos fármacos , Pulmão/irrigação sanguínea , Ratos , Feto/efeitos dos fármacos , Troca Materno-Fetal , Exposição por Inalação/efeitos adversos , Placenta/efeitos dos fármacos , Placenta/irrigação sanguínea
19.
J Environ Manage ; 355: 120438, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422853

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are of significant public concern because of their toxicity and long-range transport potential. Extensive studies have been conducted to explore the source-receptor relationships of PAHs via atmospheric transport. However, the transfer of trade-driven regional and global PAHs is poorly understood. This study estimated the virtual PAHs emission transfer embodied in global trade from 2004 to 2014 and simulated the impact of international trade on global contamination and associated human inhalation exposure risk of PAHs. Results show that trade-driven PAHs flowed primarily from developed to less-developed regions, particularly in those regions with intensive heavy industries and transportation. As the result, international trade resulted in an increasing risk of lung cancer induced by exposure to PAHs (27.8% in China, 14.7% in India, and 11.3% in Southeast Asia). In contrast, we found decreasing risks of PAHs-induced lung cancer in Western Europe (63.2%) and the United States (45.9%) in 2004. Our findings indicate that final demand and emission intensity are the key driving factors contributing to rising and falling consumption-based PAHs emissions and related health risk respectively. The results could provide a useful reference for global collaboration in the reduction of PAHs pollution and related health risks.


Assuntos
Poluentes Atmosféricos , Neoplasias Pulmonares , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Poluentes Atmosféricos/análise , Exposição por Inalação/análise , Comércio , Internacionalidade , China , Monitoramento Ambiental/métodos , Medição de Risco
20.
Ann Work Expo Health ; 68(4): 437-441, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38412287

RESUMO

Personal air monitoring using a TSI SidePak AM520 personal aerosol monitor was performed on a northern Colorado construction site during five tasks from the OSHA Table 1: Specified Exposure Control Methods When Working With Materials Containing Crystalline Silica to estimate silica dust concentrations in real time. Photometric measurements were modified using a gravimetric correction factor and a % respirable crystalline silica adjustment. Each task was sampled once; sample time ranged from 14 min to 40 min, with a mean sample time of 27 min. The mean silica dust concentration estimates (µg/m3) (standard deviation [SD]) for the five tasks computed from the TSI SidePak AM520 respirable dust measurements were core drilling 12 µg/m3 [2.46], grinding 918 µg/m3 [1134.08], cutting with a walk-behind saw 36 µg/m3 [79.67], jackhammering 27 µg/m3 [23.24], and dowel drilling 66 µg/m3 [77.65]. Silica exposure estimates from real-time monitoring can be used to identify exposures that may be related to inadequate controls or worker behaviors that contribute to peak exposures. Respirable crystalline silica exposure estimates presented here are likely not generalizable to other construction sites or tasks.


Assuntos
Poluentes Ocupacionais do Ar , Poeira , Monitoramento Ambiental , Exposição por Inalação , Exposição Ocupacional , Dióxido de Silício , Exposição Ocupacional/análise , Dióxido de Silício/análise , Poluentes Ocupacionais do Ar/análise , Exposição por Inalação/análise , Humanos , Poeira/análise , Monitoramento Ambiental/métodos , Indústria da Construção , Colorado , Materiais de Construção/análise , Aerossóis/análise , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...