Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Biomed Pharmacother ; 143: 112207, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34563950

RESUMO

Stevia rebaudiana Bertoni is a native plant to Paraguay. The extracts have been used as a famous sweetening agent, and the bioactive components derived from stevia possess a broad spectrum of therapeutical potential for various illnesses. Among its medicinal benefits are anti-hypertensive, anti-tumorigenic, anti-diabetic, and anti-hyperlipidemia. Statins (3-hydro-3-methylglutaryl-coenzyme A reductase inhibitor) are a class of drugs used to treat atherosclerosis. Statins are explicitly targeting the HMG-CoA reductase, an enzyme in the rate-limiting step of cholesterol biosynthesis. Despite being widely used in regulating plasma cholesterol levels, the adverse effects of the drug are a significant concern among clinicians and patients. Hence, steviol glycosides derived from stevia have been proposed as an alternative in replacing statins. Diterpene glycosides from stevia, such as stevioside and rebaudioside A have been evaluated for their efficacy in alleviating cholesterol levels. These glycosides are a potential candidate in treating and preventing atherosclerosis provoked by circulating lipid retention in the sub-endothelial lining of the artery. The present review is an effort to integrate the pathogenesis of atherosclerosis, involvement of lipid droplets biogenesis and its associated proteins in atherogenesis, current approaches to treat atherosclerosis, and pharmacological potential of stevia in treating the disease.


Assuntos
Aterosclerose/prevenção & controle , Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/prevenção & controle , Dislipidemias/tratamento farmacológico , Hipolipemiantes/uso terapêutico , Extratos Vegetais/uso terapêutico , Stevia , Animais , Aterosclerose/diagnóstico , Aterosclerose/epidemiologia , Biomarcadores/sangue , Fármacos Cardiovasculares/efeitos adversos , Fármacos Cardiovasculares/isolamento & purificação , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Dislipidemias/diagnóstico , Dislipidemias/epidemiologia , Fatores de Risco de Doenças Cardíacas , Humanos , Hipolipemiantes/efeitos adversos , Hipolipemiantes/isolamento & purificação , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Lipídeos/sangue , Extratos Vegetais/efeitos adversos , Extratos Vegetais/isolamento & purificação , Medição de Risco , Stevia/química , Resultado do Tratamento
2.
J Cardiovasc Pharmacol ; 78(5): e681-e689, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354001

RESUMO

ABSTRACT: Panax notoginseng saponins (PNS) are commonly used in the treatment of cardiovascular diseases. Whether PNS can protect myocardial ischemia-reperfusion injury by regulating the forkhead box O3a hypoxia-inducible factor-1 alpha (FOXO3a/HIF-1α) cell signaling pathway remains unclear. The purpose of this study was to investigate the protective effect of PNS on H9c2 cardiomyocytes through the FOXO3a/HIF-1α cell signaling pathway. Hypoxia and reoxygenation of H9C2 cells were used to mimic MIRI in vitro, and the cells were treated with PNS, 2-methoxyestradiol (2ME2), and LY294002." Cell proliferation, lactate dehydrogenase, and malonaldehyde were used to evaluate the degree of cell injury. The level of reactive oxygen species was detected with a fluorescence microscope. The apoptosis rate was detected by flow cytometry. The expression of autophagy-related proteins and apoptosis-related proteins was detected by western blot assay. PNS could reduce H9c2 hypoxia-reoxygenation injury by promoting autophagy and inhibiting apoptosis through the HIF-1α/FOXO3a cell signaling pathway. Furthermore, the protective effects of PNS were abolished by HIF-1α inhibitor 2ME2 and PI3K/Akt inhibitor LY294002. PNS could reduce H9c2 hypoxia-reoxygenation injury by promoting autophagy and inhibiting apoptosis through the HIF-1α/FOXO3a cell signaling pathway.


Assuntos
Fármacos Cardiovasculares/farmacologia , Proteína Forkhead Box O3/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Panax notoginseng , Extratos Vegetais/farmacologia , Saponinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Fármacos Cardiovasculares/isolamento & purificação , Linhagem Celular , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Panax notoginseng/química , Fosfatidilinositol 3-Quinase/metabolismo , Extratos Vegetais/isolamento & purificação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Saponinas/isolamento & purificação , Transdução de Sinais
3.
Food Funct ; 12(5): 2282-2291, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33599642

RESUMO

Phospholipids not only have high nutritional value, but also have a positive effect on cardiovascular disease, cancer and nervous system diseases. However, the activity of individual phospholipid classes of shrimp phospholipids is rarely studied. This paper researched phospholipids in the by-products of Penaeus vannamei processing. The phospholipid classes of the head from P. vannamei (PV) were separated by column chromatography, analyzed with UHPLC-Q-Exactive HF/MS, and quantified using ammonium ferrothiocyarate spectrophometry. In addition, their cardiovascular activities in zebrafish models were evaluated. A total of 5 phospholipid classes were obtained, including PV-PC, PV-PE, PV-PI, PV-PS and PV-SM, and identified as phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS) and sphingomyelin (SM), respectively. In the phospholipid profiling analysis, PV-PC (308 molecules) had the highest proportion with 85.24%, followed by PV-PE (139 types) with 9.32%, PV-SM (41 structures) with 4.75%, PV-PS (24 types) with 0.16%, and PV-PI (6 molecules) with 0.03%. In the quantitative analysis, the content of PV was 45.7%, and the purity of phospholipid classes was 75.5-88.1%. In the cardiovascular activity assays, the effects of different phospholipid classes were different. For example, PV-PC groups had strong angiogenesis activity, but PV-PE groups showed the opposite property. Our comprehensive profiling analysis and in vivo bioactivity evaluation of phospholipids from the head of P. vannamei can provide evidence for their targeted applications in the future.


Assuntos
Fármacos Cardiovasculares , Penaeidae/química , Fosfolipídeos , Indutores da Angiogênese/análise , Indutores da Angiogênese/química , Indutores da Angiogênese/isolamento & purificação , Indutores da Angiogênese/farmacologia , Animais , Fármacos Cardiovasculares/análise , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/isolamento & purificação , Fármacos Cardiovasculares/farmacologia , Coração/efeitos dos fármacos , Fosfolipídeos/análise , Fosfolipídeos/química , Fosfolipídeos/isolamento & purificação , Fosfolipídeos/farmacologia , Peixe-Zebra
4.
Biomed Pharmacother ; 135: 111184, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33418305

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Many studies have shown the beneficial effects of aconite water-soluble alkaloid extract (AWA) in experimental models of heart disease, which have been ascribed to the presence of aconine, hypaconine, talatisamine, fuziline, neoline, and songorine. This study evaluated the effects of a chemically characterized AWA by chemical content, evaluated its effects in suprarenal abdominal aortic coarctation surgery (AAC)-induced chronic heart failure (CHF) in rats, and revealed the underlying mechanisms of action by proteomics. METHODS: Rats were distributed into different groups: sham, model, and AWA-treated groups (10, 20, and 40 mg/kg/day). Sham rats received surgery without AAC, whereas model rats an AWA-treated groups underwent AAC surgery. after 8 weeks, the treatment group was fed AWA for 4 weeks, and body weight was assessed weekly. At the end of the treatment, heart function was tested by echocardiography. AAC-induced chronic heart failure, including myocardial fibrosis, cardiomyocyte hypertrophy, and apoptosis, was evaluated in heart tissue and plasma by RT-qPCR, ELISA, hematoxylin and eosin (H&E) staining, Masson's trichrome staining, TUNEL staining, and immunofluorescence staining of α-SMA, Col Ⅰ, and Col Ⅲ. Then, a proteomics approach was used to explore the underlying mechanisms of action of AWA in chronic heart failure. RESULTS: AWA administration reduced body weight gain, myocardial fibrosis, cardiomyocyte hypertrophy, and apoptosis, and rats showed improvement in cardiac function compared to model group. The extract significantly ameliorated the AAC-induced altered expression of heart failure markers such as ANP, NT-proBNP, and ß-MHC, as well as fibrosis, hypertrophy markers MMP-2 and MMP-9, and other heart failure-related factors including plasma levels of TNF-α and IL-6. Furthermore, the extract reduced the protein expression of α-SMA, Col Ⅰ, and Col Ⅲ in the left ventricular (LV), thus inhibiting the LV remodeling associated with CHF. In addition, proteomics characterization of differentially expressed proteins showed that AWA administration inhibited left ventricular remodeling in CHF rats via a calcium signaling pathway, and reversed the expression of RyR2 and SERCA2a. CONCLUSIONS: AWA extract exerts beneficial effects in an AAC-induced CHF model in rats, which was associated with an improvement in LV function, hypertrophy, fibrosis, and apoptotic status. These effects may be related to the regulation of calcium signaling by the altered expression of RyR2 and SERCA2a.


Assuntos
Aconitum , Sinalização do Cálcio/efeitos dos fármacos , Fármacos Cardiovasculares/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Aconitum/química , Animais , Apoptose/efeitos dos fármacos , Fármacos Cardiovasculares/isolamento & purificação , Doença Crônica , Modelos Animais de Doenças , Fibrose , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Extratos Vegetais/isolamento & purificação , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Solubilidade , Solventes/química , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Água/química
5.
Biomed Pharmacother ; 136: 111287, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33485065

RESUMO

Morbidity and mortality from acute myocardial infarction (AMI) remains substantial although interventional coronary reperfusion strategies are widely use and successful. MI remains the most common cause of heart failure (HF) worldwide. Here we demonstrated that Panax Notoginseng saponins (PNS), the extract of Panax notoginseng, exerts cardioprotective effect in AMI and the underlying mechanism refers to inducing cardiomyocyte autophagy, antiplatelet aggregation, enhancing endothelial migration and angiogenesis. PNS was initially tested to rescue the myocardial infarct size and cardiac function in left anterior descending (LAD) ligation-operated mice to mimic AMI. RNA-seq to profile transcriptome changes in the heart by treatment with PNS were then conducted. PNS and its main constituents Rg1 and Rd directly inhibited platelet aggregation of healthy subjects with VerifyNow Aspirin and P2Y12 assays but less affecting on coagulation compared with dual-antiplatelet (DAPT). In addition, wound healing scratch assay and heart staining demonstrated that PNS and its main constituents Rg1 and R1 significant enhanced the migration of endothelial cells and angiogenesis in response to MI injury. Interestingly, PNS rather than its constituents enhanced glucose deprivation (GD)-induced autophagy through phosphorylation of AMPK Thr172 and CaMKII Thr287 in cardiomyocytes. These findings provide new insights for drug development from natural products like PNS against ischemia heart diseases and HF post MI.


Assuntos
Autofagia/efeitos dos fármacos , Fármacos Cardiovasculares/farmacologia , Insuficiência Cardíaca/prevenção & controle , Infarto do Miocárdio/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Panax notoginseng , Saponinas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Fármacos Cardiovasculares/isolamento & purificação , Linhagem Celular , Modelos Animais de Doenças , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Panax notoginseng/química , Fosforilação , Agregação Plaquetária/efeitos dos fármacos , Ratos , Saponinas/isolamento & purificação , Transdução de Sinais
6.
Protein Pept Lett ; 28(7): 750-760, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33511924

RESUMO

The use of medicinal plants as a therapy alternative is old as human existence itself. Nowadays, the search for effective molecules for chronic diseases treatments has increased. The cardiometabolic disorders still the main cause of death worldwide and plants may offer potential pharmacological innovative approaches to treat and prevent diseases. In the range of plant molecules are inserted the terpenes, which constituent essential elements with several pharmacological characteristics and applications, including cardiovascular and metabolic properties. Thus, the aim of the present review is to update the terpenes use on chronic disorders such as obesity, diabetes, hypertension and vascular conditions. The review includes a brief terpenes description based on the scientific literature in addition to data collected from secondary sources such as books and conference proceedings. We concluded that terpenes could act as adjuvant or main alternative treatment (when started earlier) to improve cardiometabolic diseases, contributing to reduce side effects of conventional drugs, in addition to preserving ethnopharmacological knowledge.


Assuntos
Anti-Inflamatórios/uso terapêutico , Aterosclerose/tratamento farmacológico , Fármacos Cardiovasculares/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Hipertensão/tratamento farmacológico , Obesidade/tratamento farmacológico , Terpenos/uso terapêutico , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/classificação , Anti-Inflamatórios/isolamento & purificação , Aterosclerose/metabolismo , Aterosclerose/patologia , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/classificação , Fármacos Cardiovasculares/isolamento & purificação , Quimioterapia Adjuvante/métodos , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Modelos Animais de Doenças , Etnofarmacologia/métodos , Humanos , Hipertensão/metabolismo , Hipertensão/patologia , Obesidade/metabolismo , Obesidade/patologia , Extratos Vegetais/química , Plantas Medicinais , Estereoisomerismo , Terpenos/química , Terpenos/classificação , Terpenos/isolamento & purificação
7.
J Ethnopharmacol ; 264: 113391, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32931880

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: As the largest genus of Gentianaceae family, the Gentiana genus harbors over 400 species, widely distributed in the alpine areas of temperate regions worldwide. Plants from Gentiana genus are traditionally used to treat a wide variety of diseases including easing pain dispelling rheumatism, and treating liver jaundice, chronic pharyngitis and arthritis in China since ancient times. In this review, a systematic and constructive overview of the traditional uses, phytochemistry, molecular mechanisms, toxicology and pharmacological activities of the researched species of genus Gentiana is provided. MATERIALS AND METHODS: The used information in this review is based on various databases (PubMed, Science Direct, Wiley online library, Wanfang Data, Web of Science) through a search using the keyword "Gentiana" in the period of 1981-2019. Besides, other ethnopharmacological information was acquired from Chinese herbal classic books and Chinese pharmacopoeia 2015 edition. RESULTS: The plants from Gentiana genus have a long tradition of various medicinal uses in Europe and Asia. Phytochemical studies showed that the main bioactive components isolated from this genus includes iridoids xanthones and flavonoids. These compounds and extracts isolated from this genus show a wide range of protective activities including hepatic protection, gastrointestinal protection, cardiovascular protection, immunomodulation, joint protection, pulmonary protection, bone protection and reproductive protection. Molecular mechanism studies also indicated several potential therapeutic targets in the treatment of certain diseases by plants from this genus. Besides, natural products from this plant show no significant animal toxicity, cytotoxicity or genotoxicity. CONCLUSION: This review summarized the traditional medicinal uses, phytochemistry, pharmacology, toxicology and molecular mechanism of genus Gentiana, providing references and research tendency for plant-based drug development and further clinical studies.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Etnofarmacologia/métodos , Gentiana , Compostos Fitoquímicos/uso terapêutico , Animais , Fármacos Cardiovasculares/isolamento & purificação , Fármacos Cardiovasculares/uso terapêutico , Medicamentos de Ervas Chinesas/isolamento & purificação , Etnofarmacologia/tendências , Fármacos Gastrointestinais/isolamento & purificação , Fármacos Gastrointestinais/uso terapêutico , Humanos , Compostos Fitoquímicos/isolamento & purificação
8.
J Ethnopharmacol ; 269: 113688, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33338592

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Scrophularia ningpoensis Hemsl. (known as Xuanshen) has been used in China for centuries as a traditional medicinal plant to treat numerous diseases including inflammation, hypertension, cancer, and diabetes. AIM OF REVIEW: In this review, we provide an update on the botany, pharmacology, phytochemistry, pharmacokinetics, traditional uses, and safety of S. ningpoensis to highlight future research needs and potential uses of this plant. MATERIALS AND METHODS: All information on S. ningpoensis was obtained from scientific databases including ScienceDirect, Springer, PubMed, Sci Finder, China Knowledge Resource Integrated Database from the China National Knowledge Infrastructure (CNKI), Google Scholar, and Baidu Scholar. Additional information was collected from Chinese herbal medicine books, Ph.D. dissertations, and M.Sc. Theses. Plant taxonomy was verified by "The Plant List" database (http://www.theplantlist.org). RESULTS: S. ningpoensis displays fever reducing, detoxifying, and nourishing 'Yin' effects in traditional Chinese medicine (TCM). More than 162 compounds have been identified and isolated from S. ningpoensis, including iridoids and iridoid glycosides, phenylpropanoid glycosides, organic acids, volatile oils, terpenoids, saccharides, flavonoids, sterols, and saponins. These compounds possess a diverse variety of pharmacological properties that affect the cardiovascular, hepatic, and nervous systems, and protect the body against inflammation, oxidation, and carcinogenesis. CONCLUSIONS: Modern pharmacological studies have confirmed that S. ningpoensis is a valuable Chinese medicinal herb with many pharmacological uses in the treatment of cardiovascular, diabetic, and liver diseases. Most of the S. ningpoensis activity may be attributed to iridoid glycosides and phenylpropanoid glycosides; however, detailed information on the molecular mechanisms, metabolic activity, toxicology, and structure-function relationships of active components is limited. Further comprehensive research to evaluate the medicinal properties of S. ningpoensis is needed.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Etnofarmacologia/métodos , Medicina Tradicional Chinesa/métodos , Compostos Fitoquímicos/uso terapêutico , Scrophularia , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Fármacos Cardiovasculares/isolamento & purificação , Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/uso terapêutico , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia
9.
J Ethnopharmacol ; 269: 113690, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33309917

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Coreopsis tinctoria Nutt. (family Asteraceae) is an important traditional medicine in North America, Europe, and Asia for quite a long historical period, which has received great attention due to its health-benefiting activities, including disinfection, treatment sexual infection, diarrhoea, acute and chronic dysentery, red-eye swelling as well as pain, heat, thirst, hypertension, palpitation, gastrointestinal discomfort, and loss of appetite. AIM OF THE REVIEW: The purpose of this review is to give an overview of the current phytochemistry and pharmacological activities of C. tinctoria, and reveals the correlation among its traditional uses, phytochemistry, pharmacological profile, and potential toxicity. MATERIALS AND METHODS: This review is based on published studies and books from electronic sources and library, including the online ethnobotanical database, ethnobotanical monographs, Scopus, SciFinder, Baidu Scholar, CNKI, and PubMed. These reports are related to the traditional uses, phytochemistry, pharmacology, and toxicology of C. tinctoria. RESULTS: Coreopsis tinctoria is traditionally used in diarrhoea, infection, and chronic metabolic diseases. From 1954 to now, more than 120 chemical constituents have been identified from C. tinctoria, such as flavonoids, polyacetylenes, polysaccharides, phenylpropanoids, and volatile oils. Flavonoids are the major bioactive components in C. tinctoria. Current research has shown that its extracts and compounds possess diverse biological and pharmacological activities such as antidiabetes, anti-cardiovascular diseases, antioxidant, anti-inflammatory, protective effects on organs, neuroprotective effects, antimicrobial, and antineoplastic. Studies in animal models, including acute toxicity, long-term toxicity, and genotoxicity have demonstrated that Snow Chrysanthemum is a non-toxic herb, especially for its water-soluble parts. CONCLUSIONS: Recent findings regarding the main phytochemical and pharmacological properties of C. tinctorial have confirmed its traditional uses in anti-infection and treatment of chronic metabolic disease and, more importantly, have revealed the plant as a valuable medicinal plant resource for the treatment of a wide range of diseases. The available reports indicated that most of the bioactivities in C. tinctorial could be attributed to flavonoids. However, higher quality studies on animals and humans studies are required to explore the efficacy and mechanism of action of C. tinctoria in future.


Assuntos
Coreopsis , Etnofarmacologia/métodos , Medicina Tradicional/métodos , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/uso terapêutico , Animais , Fármacos Cardiovasculares/isolamento & purificação , Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/uso terapêutico , Humanos , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia
10.
Mar Drugs ; 18(9)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854344

RESUMO

Atherosclerosis is a chronic disease characterized by lipid accumulation and chronic inflammation of the arterial wall, which is the pathological basis for coronary heart disease, cerebrovascular disease and thromboembolic disease. Currently, there is a lack of low-cost therapeutic agents that effectively slow the progression of atherosclerosis. Therefore, the development of new drugs is urgently needed. The research and development of marine-derived drugs have gained increasing interest from researchers across the world. Many marine organisms provide a rich material basis for the development of atherosclerotic drugs. This review focuses on the latest technological advances in the structures and mechanisms of action of marine-derived anti-atherosclerotic substances and the challenges of the application of these substances including marine polysaccharides, proteins and peptides, polyunsaturated fatty acids and small molecule compounds. Here, we describe the theoretical basis of marine biological resources in the treatment of atherosclerosis.


Assuntos
Organismos Aquáticos/química , Aterosclerose/tratamento farmacológico , Fármacos Cardiovasculares/farmacologia , Ácidos Graxos Insaturados/farmacologia , Polissacarídeos/farmacologia , Proteínas/farmacologia , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/isolamento & purificação , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/isolamento & purificação , Humanos , Estrutura Molecular , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Proteínas/química , Proteínas/isolamento & purificação , Relação Estrutura-Atividade
11.
J Ethnopharmacol ; 257: 112887, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32315737

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The plant Anchusa italica Retz. (Anchusa azurea Mill.) has been traditionally used in Uygur medicine for the treatment of cardiovascular and cerebrovascular diseases in China. Our previous study showed that total flavonoids from Anchusa italica Retz. (TFAI) exhibited potent cardioprotection in acute ischemia/reperfusion injured rats. AIM OF THE STUDY: This study was undertaken to investigate the effects of TFAI on chronic myocardial infarction (MI) in mice and the underlying mechanism. MATERIALS AND METHODS: Total flavonoids were extracted from the whole herb of Anchusa italica Retz. and were characterized using HPLC-MS analysis. The left anterior descending branch of the coronary artery was ligated to simulate MI injury in mice. After surgery, mice were orally fed with TFAI at the doses of 10, 30 and 50 mg/kg body weight/day for a total of four weeks. Cardiac function and infarct size were measured, and inflammatory mediators were detected. Hematoxylin and eosin (H&E) staining and Masson's trichrome staining were performed on heart sections. The apoptotic factors, such as Bax, Bcl-2 and cleaved caspase 3, as well as the key proteins in the PI3K/Akt/mTOR signaling pathway were examined by Western blot. RESULTS: The content of total flavonoids in TFAI was 56.2%. Four weeks following the MI surgery, TFAI enhanced the survival rate in post-MI mice. TFAI treatment at the doses of 30 and 50 mg/kg remarkably reduced infarct size and improved cardiac function as indicated by elevated EF and FS. Assay of the inflammatory factors showed that sera levels of TNF-α, IL-1ß and IL-6 were markedly decreased by TFAI treatment compared to the MI group. H&E staining and Masson's trichrome staining demonstrated that TFAI suppressed myocyte hypertrophy and cardiac fibrosis as indicated by the decreased cross-section area and collagen volume. Western blot analysis showed that cleaved caspase 3 and Bax/Bcl-2 were significantly downregulated following TFAI treatment. Furthermore, TFAI treatment significantly suppressed the activation of the PI3K/Akt/mTOR signaling pathway. CONCLUSIONS: Our data suggest that TFAI exerts a potent protective effect against chronic MI injury, and its beneficial effects on cardiac function and cardiac remodeling might be attributable, at least in part, to anti-inflammation and inhibition of the PI3K/Akt/mTOR signaling pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Boraginaceae , Fármacos Cardiovasculares/farmacologia , Flavonoides/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/patologia , Extratos Vegetais/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Anti-Inflamatórios/isolamento & purificação , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Boraginaceae/química , Fármacos Cardiovasculares/isolamento & purificação , Modelos Animais de Doenças , Fibrose , Flavonoides/isolamento & purificação , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Extratos Vegetais/isolamento & purificação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR
12.
Environ Toxicol ; 35(6): 707-713, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32023008

RESUMO

Excessive intake of high fat diet (HFD) and associated obese conditions are critical contributors of cardiac diseases. In this study, an active metabolite andrographolide from Andrographis paniculata was found to ameliorate HFD-induced cardiac apoptosis. C57/BL6 mouse were grouped as control (n = 9), obese (n = 8), low dose (25 mg/kg/d) andrographolide treatment (n = 9), and high dose (50 mg/kg/d) andrographolide treatment (n = 9). The control group was provided with standard laboratory chow and the other groups were fed with HFD. Andrographolide was administered through oral gavage for 1 week. Histopathological analysis showed increase in apoptotic nuclei and considerable cardiac-damages in the obese group signifying cardiac remodeling effects. Further, Western blot results showed increase in pro-apoptotic proteins and decrease in the proteins of IGF-1R-survival signaling. However, feeding of andrographolide significantly reduced the cardiac effects of HFD. The results strongly suggest that andrographolide supplementation can be used for prevention and treatment of cardiovascular disease in obese patients.


Assuntos
Apoptose/efeitos dos fármacos , Fármacos Cardiovasculares/farmacologia , Dieta Hiperlipídica/efeitos adversos , Diterpenos/farmacologia , Coração/efeitos dos fármacos , Obesidade/patologia , Andrographis/química , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Fármacos Cardiovasculares/isolamento & purificação , Diterpenos/isolamento & purificação , Masculino , Camundongos , Camundongos Obesos , Miocárdio/metabolismo , Miocárdio/patologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Transdução de Sinais
13.
Curr Drug Targets ; 20(15): 1572-1586, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31215388

RESUMO

Quinolizidine alkaloids, a main form of alkaloids found in the genus Sophora, have been shown to have many pharmacological effects. This review aims to summarize the photochemical reports and biological activities of quinolizidine alkaloids in Sophora. The collected information suggested that a total of 99 quinolizidine alkaloids were isolated and detected from different parts of Sophora plants, represented by lupinine-type, cytisine-type, sparteine-type, and matrine-type. However, quality control needs to be monitored because it could provide basic information for the reasonable and efficient use of quinolizidine alkaloids as medicines and raw materials. The nonmedicinal parts may be promising to be used as a source of quinolizidine alkaloid raw materials and to reduce the waste of resources and environmental pollution. In addition, the diversity of chemical compounds based on the alkaloid scaffold to make a biological compound library needs to be extended, which may reduce toxicity and find new bioactivities of quinolizidine alkaloids. The bioactivities most reported are in the fields of antitumor activity along with the effects on the cardiovascular system. However, those studies rely on theoretical research, and novel drugs based on quinolizidine alkaloids are expected.


Assuntos
Alcaloides/farmacologia , Extratos Vegetais/farmacologia , Quinolizidinas/farmacologia , Sophora/química , Alcaloides/isolamento & purificação , Alcaloides/normas , Alcaloides/uso terapêutico , Analgésicos/isolamento & purificação , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antimetabólitos/isolamento & purificação , Antimetabólitos/farmacologia , Antimetabólitos/uso terapêutico , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Antineoplásicos/normas , Antineoplásicos/uso terapêutico , Fármacos Cardiovasculares/isolamento & purificação , Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/uso terapêutico , Desenvolvimento de Medicamentos , Descoberta de Drogas , Humanos , Inseticidas , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/normas , Extratos Vegetais/uso terapêutico , Controle de Qualidade , Quinolizidinas/isolamento & purificação , Quinolizidinas/normas , Quinolizidinas/uso terapêutico
15.
Cardiovasc Toxicol ; 19(1): 72-81, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30128816

RESUMO

Heart failure-associated morbidity and mortality is largely attributable to extensive and unregulated cardiac remodelling. Roselle (Hibiscus sabdariffa) calyces are enriched with natural polyphenols known for antioxidant and anti-hypertensive effects, yet its effects on early cardiac remodelling in post myocardial infarction (MI) setting are still unclear. Thus, the aim of this study was to investigate the actions of roselle extract on cardiac remodelling in rat model of MI. Male Wistar rats (200-300 g) were randomly allotted into three groups: Control, MI, and MI + Roselle. MI was induced with isoprenaline (ISO) (85 mg/kg, s.c) for two consecutive days followed by roselle treatment (100 mg/kg, orally) for 7 days. Isoprenaline administration showed changes in heart weight to body weight (HW/BW) ratio. MI was especially evident by the elevated cardiac injury marker, troponin-T, and histological observation. Upregulation of plasma levels and cardiac gene expression levels of inflammatory cytokines such as interleukin (IL)-6 and IL-10 was seen in MI rats. A relatively high percentage of fibrosis was observed in rat heart tissues with over-expression of collagen (Col)-1 and Col-3 genes following isoprenaline-induced MI. On top of that, cardiomyocyte areas were larger in heart tissues of MI rats with upregulation of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) gene expression, indicating cardiac hypertrophy. Interestingly, roselle supplementation attenuated elevation of plasma troponin-T, IL-6, IL10, and gene expression level of IL-10. Furthermore, reduction of cardiac fibrosis and hypertrophy were observed. In conclusion, roselle treatment was able to limit early cardiac remodelling in MI rat model by alleviating inflammation, fibrosis, and hypertrophy; hence, the potential application of roselle in early adjunctive treatment to prevent heart failure.


Assuntos
Fármacos Cardiovasculares/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Hibiscus , Hipertrofia Ventricular Esquerda/prevenção & controle , Infarto do Miocárdio/tratamento farmacológico , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Fármacos Cardiovasculares/isolamento & purificação , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Modelos Animais de Doenças , Fibrose , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Hibiscus/química , Hipertrofia Ventricular Esquerda/induzido quimicamente , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Mediadores da Inflamação/sangue , Interleucina-10/sangue , Interleucina-10/genética , Interleucina-6/sangue , Interleucina-6/genética , Isoproterenol , Masculino , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Ratos Wistar , Troponina T/sangue
16.
Vascul Pharmacol ; 113: 1-8, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30391545

RESUMO

Aspirin is currently the most widely used drug worldwide, and has been clearly one of the most important pharmacological achievements of the twentieth century. Historians of medicine have traced its birth in 1897, but the fascinating history of aspirin actually dates back >3500 years, when willow bark was used as a painkiller and antipyretic by Sumerians and Egyptians, and then by great physicians from ancient Greece and Rome. The modern history of aspirin precursors, salicylates, began in 1763 with Reverend Stone - who first described their antipyretic effects - and continued in the 19th century with many researchers involved in their extraction and chemical synthesis. Bayer chemist Felix Hoffmann synthesized aspirin in 1897, and 70 years later the pharmacologist John Vane elucidated its mechanism of action in inhibiting prostaglandin production. Originally used as an antipyretic and anti-inflammatory drug, aspirin then became, for its antiplatelet properties, a milestone in preventing cardiovascular and cerebrovascular diseases. The aspirin story continues today with the growing evidence of its chemopreventive effect against colorectal and other types of cancer, now awaiting the results of ongoing primary prevention trials in this setting. This concise review revisits the history of aspirin with a focus on its most remote origins.


Assuntos
Anti-Inflamatórios não Esteroides/história , Antipiréticos/história , Aspirina/história , Fármacos Cardiovasculares/história , Inibidores da Agregação Plaquetária/história , Salix , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Anti-Inflamatórios não Esteroides/uso terapêutico , Antipiréticos/síntese química , Antipiréticos/isolamento & purificação , Antipiréticos/uso terapêutico , Aspirina/síntese química , Aspirina/isolamento & purificação , Aspirina/uso terapêutico , Fármacos Cardiovasculares/síntese química , Fármacos Cardiovasculares/isolamento & purificação , Fármacos Cardiovasculares/uso terapêutico , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , História Antiga , Humanos , Casca de Planta , Folhas de Planta , Inibidores da Agregação Plaquetária/síntese química , Inibidores da Agregação Plaquetária/isolamento & purificação , Inibidores da Agregação Plaquetária/uso terapêutico , Salix/química
17.
Biomed Pharmacother ; 109: 21-27, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30391705

RESUMO

OBJECTIVE: Saffron as a natural product has long been used to impede and treat different disorders including cardiovascular disease (CVDs). Stigma is the most principal part of saffron. Various compounds such as carotenoids and flavonoids are the essential components of saffron stigma. The health benefits of saffron have been shown in previous studies; however, there is a lack of comprehensive data on the mechanistic aspects of its cardiovascular-health properties. This current comprehensive review focuses on the medicinal applications of saffron, and then the new findings regarding its cardiovascular-health effects and various cellular and molecular mechanisms of action will be debated. METHODS: The literature search of MEDLINE, Embase, PubMed, Google Scholar and Cochrane Library was performed for all comparative studies since 2000-2018 with the limitations of the English language. RESULTS: The results provided new evidence about antioxidant, anti-inflammatory, anti- atherogenic, anti- apoptotic, anti- hypertensive, and hypolipidemic effects of saffron. Pharmacological effects of saffron are due to a number of ingredients contained within this spice, including safranal, crocetin and crocins. CONCLUSIONS: Our study concludes that saffron with wide range of usefulness in medicine may be the potent candidate in the process of new drug production for the treatment of CVDs.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Crocus/química , Preparações de Plantas/farmacologia , Animais , Fármacos Cardiovasculares/isolamento & purificação , Fármacos Cardiovasculares/farmacologia , Doenças Cardiovasculares/fisiopatologia , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/fisiopatologia , Humanos
18.
J Cardiovasc Pharmacol ; 73(2): 92-99, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30531436

RESUMO

BACKGROUND AND OBJECTIVE: Panax Notoginseng Saponins (PNS) is a formula of Chinese medicine commonly used for treating ischemia myocardial in China. However, its mechanism of action is yet unclear. This study investigated the effect and the mechanism of PNS on myocardial ischemia-reperfusion injury (MIRI) through the hypoxia-inducible factor 1α (HIF-1α)/bcl-2/adenovirus E1B19kDa-interacting protein3 (BNIP3) pathway of autophagy. METHODS: We constructed a rat model of myocardial injury and compared among 4 groups (n = 10, each): the sham-operated group (Sham), the ischemia-reperfusion group (IR), the PNS low-dose group, and the PNS high-dose group were pretreated with PNS (30 and 60 mg/kg, respectively). Serum creatine kinase, malonaldehyde (MDA), lactate dehydrogenase, myocardial tissue superoxide dismutase, and reactive oxygen species were detected in rats with myocardial ischemia-reperfusion after the intervention of PNS. The rat myocardial tissue was examined using hematoxylin and eosin (H&E) staining, and the mitochondria of myocardial cells were observed using transmission electron microscopy. The expressions of microtubule-associated protein light chain 3 (LC3), HIF-1α, BNIP3, Beclin-1, and autophagy-related gene-5 (Atg5) in rat myocardial tissue were detected using Western blotting. RESULTS: The results showed that PNS was significantly protected against MIRI, as evidenced by the decreasing in the concentration of serum CK, MDA, lactate dehydrogenase, and myocardial tissue superoxide dismutase, reactive oxygen species, the attenuation of myocardial tissue histopathological changes and the mitochondrial damages of myocardial cells, and the increase of mitochondria autophagosome in myocardial cells. In addition, PNS significantly increased the expression of LC3 and the ratio of LC3II/LC3I in rat myocardial tissue. Moreover, PNS significantly increased the expression of HIF-1α, BNIP3, Atg5, and Beclin-1 in rat myocardial tissue. CONCLUSIONS: The protective effect of PNS on MIRI was mainly due to its ability to enhance the mitochondrial autophagy of myocardial tissue through the HIF-1α/BNIP3 pathway.


Assuntos
Autofagia/efeitos dos fármacos , Fármacos Cardiovasculares/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Panax , Saponinas/farmacologia , Animais , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Fármacos Cardiovasculares/isolamento & purificação , Modelos Animais de Doenças , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Panax/química , Ratos Sprague-Dawley , Saponinas/isolamento & purificação , Transdução de Sinais
19.
Expert Opin Ther Pat ; 29(1): 43-53, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30583706

RESUMO

INTRODUCTION: Terpenes are a class of secondary metabolites that can be found in a variety of animal and plants species. They are considered the most structurally diversified and abundant of all natural compounds. Several studies have shown the application of terpenes, such as carvacrol, linalool, and limonene in many pharmaceutical and medicinal fields, including cardiovascular disorders, the leading cause of death worldwide. AREAS COVERED: In this review, the authors outlined patents from the last 10 years relating to the therapeutic application of terpenes for the treatment and/or prevention of cardiovascular diseases found in different databases, emphasizing the possibility of these compounds becoming new drugs that may help to decrease the burden of these disorders. EXPERT OPINION: There has been a growing awareness over recent years of the therapeutic use of terpenes and their derivatives as new pharmaceutical products. Patents involving the use of terpenes have been especially important in the technological development of new strategies for the treatment of cardiovascular diseases by bringing new scientific knowledge into the pharmaceutical industry. Therefore, the development of biotechnologies using natural products should be encouraged in order to increase the variety of drugs available for the treatment of cardiovascular diseases.


Assuntos
Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Terpenos/uso terapêutico , Animais , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/uso terapêutico , Biotecnologia/métodos , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/isolamento & purificação , Doenças Cardiovasculares/fisiopatologia , Desenvolvimento de Medicamentos , Humanos , Patentes como Assunto , Terpenos/química , Terpenos/isolamento & purificação
20.
J Cardiovasc Pharmacol ; 72(5): 214-221, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30212415

RESUMO

There is an increase in oxidative stress and apoptosis signaling during the transition from hypertrophy to right ventricular (RV) failure caused by pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). In this study, it was evaluated the action of copaiba oil on the modulation of proteins involved in RV apoptosis signaling in rats with PAH. Male Wistar rats (±170 g, n = 7/group) were divided into 4 groups: control, MCT, copaiba oil, and MCT + copaiba oil. PAH was induced by MCT (60 mg/kg intraperitoneally) and, 7 days later, treatment with copaiba oil (400 mg/kg by gavage) was given for 14 days. Echocardiographic and hemodynamic measurements were performed, and the RV was collected for morphometric evaluations, oxidative stress, apoptosis, and cell survival signaling, and eNOS protein expression. Copaiba oil reduced RV hypertrophy (24%), improved RV systolic function, and reduced RV end-diastolic pressure, increased total sulfhydryl levels and eNOS protein expression, reduced lipid and protein oxidation, and the expression of proteins involved in apoptosis signaling in the RV of MCT + copaiba oil as compared to MCT group. In conclusion, copaiba oil reduced oxidative stress, and apoptosis signaling in RV of rats with PAH, which may be associated with an improvement in cardiac function caused by this compound.


Assuntos
Apoptose/efeitos dos fármacos , Fármacos Cardiovasculares/farmacologia , Fabaceae , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Direita/prevenção & controle , Monocrotalina , Miocárdio , Óleos de Plantas/farmacologia , Disfunção Ventricular Direita/prevenção & controle , Função Ventricular Direita/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Fármacos Cardiovasculares/isolamento & purificação , Modelos Animais de Doenças , Fabaceae/química , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Óleos de Plantas/isolamento & purificação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Disfunção Ventricular Direita/induzido quimicamente , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...