Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 459
Filtrar
1.
Neurosci Lett ; 771: 136467, 2022 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-35063502

RESUMO

The inflammatory response related to surgery is considered surgical inflammation. Most anesthetic agents directly or indirectly suppress the immune response. However, the intravenous anesthetics pentobarbital and ketamine were reported to inhibit the lipopolysaccharide-induced inflammatory response such as cytokines formation. Neurogenic inflammation is inflammation originating from the local release of inflammatory mediators, such as substance P (SP), by primary afferent neurons after noxious stimuli like surgery. Thus, in this study, we examined whether pentobarbital and ketamine suppress SP release from cultured dorsal root ganglion (DRG) neurons. DRG cells were dissected from male Wistar rats. Released SP was measured by radioimmunoassay. We demonstrated that higher concentrations of pentobarbital (100-1,000 µM) significantly inhibited capsaicin (100 nM)-induced, but not high K+ (50 mM)-induced, SP release from DRG cells, although a high concentration of ketamine (1 mM) did not. This study revealed that pentobarbital functions between the activation of vanilloid receptor subtype 1 (TRPV1) receptors, to which capsaicin selectively binds, and the opening of voltage-operated Ca2+ channels (VOCC) in the nerve endings. Therefore, the anti-inflammatory action of pentobarbital is mediated through different mechanisms than those of ketamine. Thus, the inhibitory effect of pentobarbital on SP release from peripheral terminals may protect against neurogenic inflammation after surgery.


Assuntos
Anti-Inflamatórios/uso terapêutico , Inflamação Neurogênica/tratamento farmacológico , Pentobarbital/uso terapêutico , Nervos Periféricos/metabolismo , Substância P/metabolismo , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Canais de Cálcio/metabolismo , Capsaicina/farmacologia , Células Cultivadas , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Ketamina/farmacologia , Masculino , Inflamação Neurogênica/metabolismo , Pentobarbital/farmacologia , Nervos Periféricos/efeitos dos fármacos , Ratos , Ratos Wistar , Fármacos do Sistema Sensorial/farmacologia , Canais de Cátion TRPV/metabolismo
2.
Biomed Pharmacother ; 145: 112452, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34808551

RESUMO

The gut barrier - including tight junction proteins (TJPs) and mucus layers, is the first line of defense against physical, chemical or pathogenic incursions. This barrier is compromised in various health disorders. Capsaicin, a dietary agonist of Transient receptor potential vanilloid 1 (TRPV1) channel, is reported to alleviate the complications of obesity. While it is well known to improve energy expenditure and metabolism, and prevent dysbiosis, the more local effects on the host gut - particularly the gut barrier and mucus system remain elusive. To investigate the effect of capsaicin on the gut barrier and mucus production and to understand the involvement of mucus, bacteria, and TRPV1 in these phenomena, we employed a diet-induced obesity model in C57BL/6 mice, and capsaicin (2 mg/kg/day p.o.) or mucin (1 g/kg/day p.o.) as interventions, for 12 weeks. Parameters like weight gain, glucose homeostasis, TJPs expression, mucus staining, intestinal permeability etc were studied. 16 S rDNA sequencing and in vitro Ca2+ measurement experiments were performed to explore the role of microbiota in the beneficial effects. Mucin feeding reflected several anti-obesity effects produced by capsaicin, suggesting that mucus modulation might play a crucial role in capsaicin-induced anti-obesity effects. 16 S rDNA sequencing and in vitro Ca2+ measurement experiments pointed to TRPV1 modulation by bacteria besides capsaicin. Capsaicin, bacteria and the host mucus system seem to act in a cyclic cascade involving TRPV1, which can be activated by capsaicin and various bacteria. These findings provide new insight into the role of TRPV1 in maintaining a healthy gut environment.


Assuntos
Capsaicina , Microbiota , Mucinas , Obesidade , Canais de Cátion TRPV/agonistas , Animais , Capsaicina/metabolismo , Capsaicina/farmacologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Microbiota/efeitos dos fármacos , Microbiota/fisiologia , Mucinas/metabolismo , Mucinas/farmacologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Fármacos do Sistema Sensorial/farmacologia , Canais de Cátion TRPV/metabolismo , Proteínas de Junções Íntimas/metabolismo
3.
Exp Eye Res ; 213: 108840, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34798144

RESUMO

Posterior capsule opacification (PCO), the most common complication of cataract surgery occurring in 20-50% of patients after 2-5 years of cataract surgery, is a major problem in the aging society. The epithelial-mesenchymal transition (EMT) of lens epithelial cells after cataract surgery has been proposed as a major cause of PCO. Capsaicin, widely used as a food additive and analgesic agent, is a major pungent ingredient in red pepper. Although the effect of capsaicin on EMT has been reported in cancer cells, the biological reaction of capsaicin was unique in each cell type, and there have been no reports describing its effects on EMT earlier. In this study, we demonstrated that treatment with capsaicin inhibited TGFß2-induced EMT in vitro lens epithelial cells and ex vivo explant lens epithelial cells. Furthermore, eye drops of capsaicin inhibited the PCO model mice in vivo. Finally, we showed that capsaicin inhibited non-canonically induced Smad2/3 activation via suppression of EGFR activation and ERK phosphorylation. Our findings indicate that capsaicin and its derivatives are good candidate compounds for preventing PCO after cataract surgery.


Assuntos
Capsaicina/farmacologia , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Cristalino/citologia , Fármacos do Sistema Sensorial/farmacologia , Fator de Crescimento Transformador beta2/antagonistas & inibidores , Actinas/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/metabolismo , Humanos , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Cicatrização/efeitos dos fármacos
4.
J Neurophysiol ; 126(2): 668-679, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34259043

RESUMO

Activation of renal sensory nerves by chemo- and mechanosensitive stimuli produces changes in efferent sympathetic nerve activity (SNA) and arterial blood pressure (ABP). Anesthesia and sex influence autonomic function and cardiovascular hemodynamics, but it is unclear to what extent anesthesia and sex impact SNA and ABP responses to renal sensory stimuli. We measured renal, splanchnic, and lumbar SNA and ABP in male and female Sprague-Dawley rats during contralateral renal infusion of capsaicin and bradykinin or during elevation in renal pelvic pressure. Responses were evaluated with a decerebrate preparation or Inactin, urethane, or isoflurane anesthesia. Intrarenal arterial infusion of capsaicin (0.1-30.0 µM) increased renal SNA, splanchnic SNA, or ABP but decreased lumbar SNA in the Inactin group. Intrarenal arterial infusion of bradykinin (0.1-30.0 µM) increased renal SNA, splanchnic SNA, and ABP but decreased lumbar SNA in the Inactin group. Elevated renal pelvic pressure (0-20 mmHg, 30 s) significantly increased renal SNA and splanchnic SNA but not lumbar SNA in the Inactin group. In marked contrast, SNA and ABP responses to every renal stimulus were severely blunted in the urethane and decerebrate groups and absent in the isoflurane group. In the Inactin group, the magnitude of SNA responses to chemo- and mechanosensory stimuli were not different between male and female rats. Thus, chemo- and mechanosensitive stimuli produce differential changes in renal, splanchnic, and lumbar SNA. Experimentally, future investigations should consider Inactin anesthesia to examine sympathetic and hemodynamic responses to renal sensory stimuli.NEW & NOTEWORTHY The findings highlight the impact of anesthesia, and to a lesser extent sex, on sympathetic efferent and hemodynamic responses to chemosensory and mechanosensory renal stimuli. Sympathetic nerve activity (SNA) and arterial blood pressure (ABP) responses were present in Inactin-anesthetized rats but largely absent in decerebrate, isoflurane, or urethane preparations. Renal chemosensory stimuli differentially changed SNA: renal and splanchnic SNA increased, but lumbar SNA decreased. Future investigations should consider Inactin anesthesia to study SNA and hemodynamic responses to renal sensory nerve activation.


Assuntos
Anestésicos Gerais/farmacologia , Hemodinâmica , Rim/inervação , Neurônios Eferentes/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Capsaicina/farmacologia , Feminino , Isoflurano/farmacologia , Rim/efeitos dos fármacos , Rim/fisiologia , Masculino , Neurônios Eferentes/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fármacos do Sistema Sensorial/farmacologia , Fatores Sexuais , Sistema Nervoso Simpático/efeitos dos fármacos , Tiopental/análogos & derivados , Tiopental/farmacologia , Tato , Uretana/farmacologia
5.
Mol Pain ; 17: 17448069211011315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33906494

RESUMO

Peripheral inflammatory and neuropathic pain are closely related to the activation of purinergic receptor P2X ligand-gated ion channel 3 (P2X3) and transient receptor potential vanilloid 1 (TRPV1), but the interaction between P2X3 and TRPV1 in different types of pathological pain has rarely been reported. In this study, complete Freund's adjuvant (CFA)-induced inflammatory pain and spared nerve injury (SNI)-induced neuropathic pain models were established in adult rats. The interactions between P2X3 and TRPV1 in the dorsal root ganglion were observed by pharmacological, co-immunoprecipitation, immunofluorescence and whole-cell patch-clamp recording assays. TRPV1 was shown to promote the induction of spontaneous pain caused by P2X3 in the SNI model, but the induction of spontaneous pain behaviour by TRPV1 was not completely dependent on P2X3 in vivo. In both the CFA and SNI models, the activation of peripheral P2X3 enhanced the effect of TRPV1 on spontaneous pain, while the inhibition of peripheral TRPV1 reduced the induction of spontaneous pain by P2X3 in the CFA model. TRPV1 and P2X3 had inhibitory effects on each other in the inflammatory pain model. During neuropathic pain, P2X3 facilitated the function of TRPV1, while TRPV1 had an inhibitory effect on P2X3. These results suggest that the mutual effects of P2X3 and TRPV1 differ in cases of inflammatory and neuropathic pain in rats.


Assuntos
Gânglios Espinais/metabolismo , Dor/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Comportamento Animal/fisiologia , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Gânglios Espinais/efeitos dos fármacos , Inflamação/metabolismo , Masculino , Neuralgia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Medição da Dor , Ratos , Ratos Sprague-Dawley , Fármacos do Sistema Sensorial/farmacologia
6.
Osteoarthritis Cartilage ; 29(5): 728-738, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33609695

RESUMO

OBJECTIVE: While the prevalence of radiographic and symptomatic osteoarthritis (OA) is higher in women, male mice are more frequently used in animal experiments to explore its pathogenesis or drug efficacy. In this study, we examined whether sexual dimorphism affects pain and joint degeneration in destabilization of the medial meniscus (DMM) mouse model. METHODS: DMM or sham surgery was performed on the knee of male and female C57BL/6 mice. Joint damage was assessed by safranin O staining and scored using the Osteoarthritis Research Society International (OARSI) scoring system. Von Frey hair, incapacitance, and rotarod tests were conducted to measure joint pain. The analgesic effect of capsazepine (CPZ), a TRPV1 antagonist, was compared between male and female mice. RESULTS: Histology and OARSI scoring analysis showed that cartilage degeneration developed, and progressed in both male and female DMM groups, however, damage was less severe in females at the late stage of OA. Pain behavior, as measured by mechanical allodynia, was displayed for longer in male DMM mice compared to females. Incapacitance data showed that CPZ significantly reduced DMM-induced pain in male mice but not in female mice. Immunofluorescence microscopy analysis demonstrated that DMM surgery increased the expression of TRPV1 in both female and male dorsal root ganglion (DRG). Injection of CPZ significantly suppressed TRPV1 expression in the DRG of male mice only. CONCLUSION: Joint damage develops comparably in both female and male mice after DMM although it progresses less in females. There was a subtle sex difference in pain behaviors and analgesic efficacy of a TRPV1 antagonist, which was accompanied by a differential regulation of TPRV1.


Assuntos
Comportamento Animal , Cartilagem Articular/patologia , Osteoartrite/patologia , Dor/etiologia , Fatores Sexuais , Animais , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Modelos Animais de Doenças , Feminino , Gânglios Espinais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Osteoartrite/tratamento farmacológico , Fármacos do Sistema Sensorial/farmacologia , Joelho de Quadrúpedes/patologia , Canais de Cátion TRPV/metabolismo
7.
Int J Mol Sci ; 22(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567493

RESUMO

Capsaicin-sensitive peptidergic sensory nerves play complex, mainly protective regulatory roles in the inflammatory cascade of the joints via neuropeptide mediators, but the mechanisms of the hyperacute arthritis phase has not been investigated. Therefore, we studied the involvement of these afferents in the early, "black box" period of a rheumatoid arthritis (RA) mouse model. Capsaicin-sensitive fibres were defunctionalized by pretreatment with the ultrapotent capsaicin analog resiniferatoxin and arthritis was induced by K/BxN arthritogenic serum. Disease severity was assessed by clinical scoring, reactive oxygen species (ROS) burst by chemiluminescent, vascular permeability by fluorescent in vivo imaging. Contrast-enhanced magnetic resonance imaging was used to correlate the functional and morphological changes. After sensory desensitization, both early phase ROS-burst and vascular leakage were significantly enhanced, which was later followed by the increased clinical severity scores. Furthermore, the early vascular leakage and ROS-burst were found to be good predictors of later arthritis severity. We conclude that the anti-inflammatory role of peptidergic afferents depends on their activity in the hyperacute phase, characterized by decreased cellular and vascular inflammatory components presumably via anti-inflammatory neuropeptide release. Therefore, these fibres might serve as important gatekeepers in RA.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Capsaicina/farmacologia , Inflamação Neurogênica/prevenção & controle , Neuropeptídeos/farmacologia , Fármacos do Sistema Sensorial/farmacologia , Animais , Artrite Experimental/etiologia , Artrite Experimental/patologia , Artrite Reumatoide/etiologia , Artrite Reumatoide/patologia , Diterpenos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo
8.
Neurotherapeutics ; 18(2): 1360-1370, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33449304

RESUMO

Oropharyngeal dysphagia is prevalent in age-related neurological disorders presenting with impaired efficacy and safety of swallowing due to a loss of muscle force and sensory deficits. Stimulating the oropharynx with capsaicin that mediates Substance P release is an emerging pharmacological treatment option which needs further scientific evidence. Our aim was to comprehensively evaluate the effect of capsaicin on biochemical, neurophysiological, and biomechanical parameters of swallowing function. In a randomized study on healthy individuals, the impact of orally administered capsaicinoids at different dosages and application durations in comparison to non-carbonated water was evaluated. Time course and magnitude of salivary Substance P increase were monitored. Magnetoencephalography was used to detect cortical swallowing network alterations. Modifications in swallowing biomechanics were measured applying high-resolution pharyngeal manometry. Capsaicinoids at 10 µmol/L improved swallowing efficacy as seen by a significant increase of pharyngeal contractile integral and upper esophageal sphincter activation and relaxation times in manometry. Significant improvement of precision in a challenging swallow task accompanied by a reduction in swallowing-related submental electromyographic power was observed with capsaicinoids preconditioning at 10 µmol/L over 5 min, but not with continuous stimulation. The cortical activation pattern remained unchanged after any intervention. A significant increase of salivary Substance P was not detected with 10 µmol/L but with 50 µmol/L and lasted for 15 min after application. Capsaicinoids mediate dose-dependent Substance P release and positively alter swallowing biomechanics in healthy subjects. The results provide supportive evidence for the value of natural capsaicinoids to improve swallowing function.


Assuntos
Capsaicina/farmacologia , Córtex Cerebral/efeitos dos fármacos , Deglutição/efeitos dos fármacos , Esfíncter Esofágico Superior/efeitos dos fármacos , Faringe/efeitos dos fármacos , Fármacos do Sistema Sensorial/farmacologia , Substância P/efeitos dos fármacos , Adulto , Fenômenos Biomecânicos , Capsaicina/análogos & derivados , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Deglutição/fisiologia , Eletromiografia , Esfíncter Esofágico Superior/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Magnetoencefalografia , Masculino , Manometria , Faringe/fisiologia , Distribuição Aleatória , Saliva/química , Saliva/efeitos dos fármacos , Substância P/metabolismo , Adulto Jovem
9.
Vet Radiol Ultrasound ; 62(2): 255-263, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33350542

RESUMO

Radiation-induced acute oral mucositis is associated with inflammation and pain. In other realms of pain research, nociceptors are known to be activated by inflammatory cytokines; for example, tumor necrosis factor alpha (TNF-α) can activate transient receptor potential ion channels on sensory neurons. But there is an unclear relationship between inflammatory cytokines and molecular mediators of pain in radiation-induced mucositis (RIM) and radiation-associated pain (RAP). In this prospective, analytical, experimental pilot study, a common drug (pentoxifylline [PTX]) was used with the goal of inhibiting TNF-α signaling in mice that underwent lingual irradiation to induce severe acute oral RIM/RAP. Body weight and glossitis scores were recorded daily. Eye wiping behaviors were assayed as a surrogate measure of oral discomfort (which is possible due to cross-sensitization of the mandibular and ophthalmic branches of the trigeminal nerve). Quantitative real-time reverse transcription polymerase chain reaction was performed on irradiated tongue tissue to measure changes in expression of TNF-α, its receptor, nuclear factor kappa-light-chain-enhancer of activated B cells, transient receptor potential vanilloid type 1 (TRPV1), and transient receptor potential vanilloid type 4 (TRPV4). Responsiveness of afferent sensory trigeminal neurons to TNF-α, a TRPV1 agonist (capsaicin), and a partial TRPV4 agonist (histamine) was measured via calcium imaging. Although PTX treatment did not reduce glossitis severity or mitigate weight loss in mice with RIM/RAP, it did inhibit the upregulation of TNF-α's receptor that normally accompanies RIM, and it also reduced neuronal responsiveness to each of the aforementioned chemical stimuli. These results provide provisional evidence that inhibition of TNF-α signaling with PTX treatment may serve as a useful tool for reducing pain in head and neck cancer patients.


Assuntos
Dor/veterinária , Pentoxifilina/uso terapêutico , Radioterapia/efeitos adversos , Estomatite/complicações , Animais , Capsaicina/farmacologia , Histamina/farmacologia , Camundongos , Dor/prevenção & controle , Projetos Piloto , Estudos Prospectivos , Protetores contra Radiação/uso terapêutico , Fármacos do Sistema Sensorial/farmacologia , Transdução de Sinais/efeitos dos fármacos , Estomatite/tratamento farmacológico , Estomatite/etiologia , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/metabolismo
10.
Chest ; 159(3): 1136-1146, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32926869

RESUMO

BACKGROUND: Cough is a defense mechanism that protects the airways and lungs in response to airway irritation. The sensory neurons involved in detecting airway irritants and the neural pathways mediating cough share similarities with those that encode pain from the body. Painful conditioning stimuli applied to one body site are known to reduce the perception of pain at another. However, whether the neural regulation of cough is influenced by painful stimuli is not known. RESEARCH QUESTION: What are the behavioral and neural outcomes of painful conditioning stimuli on urge-to-cough (UTC) and cough evoked by inhaled capsaicin? STUDY DESIGN AND METHODS: Sixteen healthy participants underwent psychophysical testing and functional MRI while completing a series of capsaicin inhalations to induce UTC and cough. The responses associated with capsaicin inhalation without pain were compared with those after the application of painful conditioning stimuli. RESULTS: Significant decreases were seen behaviorally of 18.7% ± 17.3% (P < .001) and 47.0% ± 30.8% (P < .001) in participants' UTC ratings and cough frequencies, respectively, during the application of pain. UTC ratings were reduced by 24.2% ± 36.5% (P < .005) and increased by 67% ± 40% (P < .001) for capsaicin and saline inhalation, respectively, during the scanning session. Painful conditioning stimuli were associated with widespread decreases in regional brain responses to capsaicin inhalation (P < .001). Several brain regions showed levels of reduced activation attributable to painful conditioning that correlated with related changes in behavioral responses during scanning (R2 = 0.53). INTERPRETATION: Pain-related decreases of cough and UTC are accompanied by widespread changes in brain activity during capsaicin inhalation, suggesting that pain can modify the central processing of inputs arising from the airways. A mechanistic understanding of how cough and pain processing interact within the brain may help develop more effective therapies to reduce unwanted coughing.


Assuntos
Encéfalo , Capsaicina/farmacologia , Tosse , Dor , Sistema Respiratório , Administração por Inalação , Adulto , Sintomas Comportamentais/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Tosse/fisiopatologia , Tosse/psicologia , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiopatologia , Dor/fisiopatologia , Dor/psicologia , Reflexo/efeitos dos fármacos , Reflexo/fisiologia , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/fisiopatologia , Fármacos do Sistema Sensorial/farmacologia
11.
Gut ; 70(5): 970-981, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33272979

RESUMO

Chronic pain is a hallmark of functional disorders, inflammatory diseases and cancer of the digestive system. The mechanisms that initiate and sustain chronic pain are incompletely understood, and available therapies are inadequate. This review highlights recent advances in the structure and function of pronociceptive and antinociceptive G protein-coupled receptors (GPCRs) that provide insights into the mechanisms and treatment of chronic pain. This knowledge, derived from studies of somatic pain, can guide research into visceral pain. Mediators from injured tissues transiently activate GPCRs at the plasma membrane of neurons, leading to sensitisation of ion channels and acute hyperexcitability and nociception. Sustained agonist release evokes GPCR redistribution to endosomes, where persistent signalling regulates activity of channels and genes that control chronic hyperexcitability and nociception. Endosomally targeted GPCR antagonists provide superior pain relief in preclinical models. Biased agonists stabilise GPCR conformations that favour signalling of beneficial actions at the expense of detrimental side effects. Biased agonists of µ-opioid receptors (MOPrs) can provide analgesia without addiction, respiratory depression and constipation. Opioids that preferentially bind to MOPrs in the acidic microenvironment of diseased tissues produce analgesia without side effects. Allosteric modulators of GPCRs fine-tune actions of endogenous ligands, offering the prospect of refined pain control. GPCR dimers might function as distinct therapeutic targets for nociception. The discovery that GPCRs that control itch also mediate irritant sensation in the colon has revealed new targets. A deeper understanding of GPCR structure and function in different microenvironments offers the potential of developing superior treatments for GI pain.


Assuntos
Dor Crônica/tratamento farmacológico , Dor Crônica/metabolismo , Gastroenteropatias/tratamento farmacológico , Gastroenteropatias/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Analgésicos/farmacologia , Animais , Humanos , Ligantes , Nociceptividade/efeitos dos fármacos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Fármacos do Sistema Sensorial/farmacologia , Transdução de Sinais/efeitos dos fármacos , Vísceras/inervação
12.
Am J Physiol Renal Physiol ; 320(2): F212-F223, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33283648

RESUMO

Prostaglandin E2 (PGE2) instilled into the bladder generates symptoms of urinary urgency in healthy women and reduces bladder capacity and urethral pressure in both humans and female rats. Systemic capsaicin desensitization, which causes degeneration of C-fibers, prevented PGE2-mediated reductions in bladder capacity, suggesting that PGE2 acts as an irritant (Maggi CA, Giuliani S, Conte B, Furio M, Santicioli P, Meli P, Gragnani L, Meli A. Eur J Pharmacol 145: 105-112, 1988). In the present study, we instilled PGE2 in female rats after capsaicin desensitization but without the hypogastric nerve transection that was conducted in the Maggi et al. study. One week after capsaicin injection (125 mg/kg sc), rats underwent cystometric and urethral perfusion testing under urethane anesthesia with saline and 100 µM PGE2. Similar to naïve rats, capsaicin-desensitized rats exhibited a reduction in bladder capacity from 1.23 ± 0.08 mL to 0.70 ± 0.10 mL (P = 0.002, n = 9), a reduction in urethral perfusion pressure from 19.3 ± 2.1 cmH2O to 10.9 ± 1.2 cmH2O (P = 0.004, n = 9), and a reduction in bladder compliance from 0.13 ± 0.020 mL/cmH2O to 0.090 ± 0.014 mL/cmH2O (P = 0.011, n = 9). Thus, changes in bladder function following the instillation of PGE2 were not dependent on capsaicin-sensitive pathways. Further, these results suggest that urethral relaxation/weakness and/or increased detrusor pressure as a result of decreased compliance may contribute to urinary urgency and highlight potential targets for new therapies for overactive bladder.


Assuntos
Capsaicina/farmacologia , Dinoprostona/farmacologia , Bexiga Urinária/efeitos dos fármacos , Administração Intravesical , Animais , Dinoprostona/administração & dosagem , Feminino , Ocitócicos/farmacologia , Ratos , Ratos Wistar , Fármacos do Sistema Sensorial/farmacologia , Bexiga Urinária/fisiologia
13.
Am J Physiol Heart Circ Physiol ; 320(1): H117-H132, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33216622

RESUMO

Elevated renal afferent nerve (ARNA) activity or dysfunctional reno-renal reflexes via altered ARNA sensitivity contribute to hypertension and chronic kidney disease. These nerves contain mechano- and chemosensitive fibers that respond to ischemia, changes in intrarenal pressures, and chemokines. Most studies have utilized various anesthetized preparations and exclusively male animals to characterize ARNA responses. Therefore, this study assessed the impact of anesthesia, sex, and circadian period on ARNA responses and sensitivity. Multifiber ARNA recordings were performed in male and female Sprague-Dawley rats (250-400 g) and compared across decerebrate versus Inactin, isoflurane, and urethane anesthesia groups. Intrarenal artery infusion of capsaicin (0.1-50.0 µM, 0.05 mL) produced concentration-dependent increases in ARNA; however, the ARNA sensitivity was significantly greater in decerebrate versus Inactin, isoflurane, and urethane groups. Increases in renal pelvic pressure (0-30 mmHg, 30 s) produced pressure-dependent increases in ARNA; however, ARNA sensitivity was again greater in decerebrate and Inactin groups versus isoflurane and urethane. Acute renal artery occlusion (30 s) increased ARNA, but responses did not differ across groups. Analysis of ARNA responses to increased pelvic pressure between male and female rats revealed significant sex differences only in isoflurane and urethane groups. ARNA responses to intrarenal capsaicin infusion were significantly blunted at nighttime versus daytime; however, ARNA responses to increased pelvic pressure or renal artery occlusion were not different between daytime and nighttime. These results demonstrate that ARNA sensitivity is greatest in decerebrate and Inactin-anesthetized groups but was not consistently influenced by sex.NEW & NOTEWORTHY We determined the impact of anesthesia, sex, and circadian cycle on renal afferent nerve (ARNA) sensitivity to chemical and mechanical stimuli. ARNA sensitivity to renal capsaicin infusion was greatest in decerebrate > Inactin > urethane or isoflurane groups. Elevated renal pelvic pressure significantly increased ARNA; decerebrate and Inactin groups exhibited the greatest ARNA sensitivity. Sex differences in renal afferent responses were not consistently observed. Circadian cycle altered chemosensory but not mechanosensory responses.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Anestésicos Inalatórios/farmacologia , Anestésicos Intravenosos/farmacologia , Capsaicina/farmacologia , Ritmo Circadiano , Rim/irrigação sanguínea , Neurônios Aferentes/efeitos dos fármacos , Fármacos do Sistema Sensorial/farmacologia , Animais , Estado de Descerebração , Relação Dose-Resposta a Droga , Feminino , Hemodinâmica/efeitos dos fármacos , Isoflurano/farmacologia , Masculino , Pressão , Ratos Sprague-Dawley , Fatores Sexuais , Tiopental/análogos & derivados , Tiopental/farmacologia , Fatores de Tempo , Uretana/farmacologia
14.
J Neurosci ; 40(40): 7688-7701, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32895292

RESUMO

Innocuous mechanical stimuli, such as rubbing or stroking the skin, relieve itch through the activation of low-threshold mechanoreceptors. However, the mechanisms behind this inhibition remain unknown. We presently investigated whether stroking the skin reduces the responses of superficial dorsal horn neurons to pruritogens in male C57BL/6J mice. Single-unit recordings revealed that neuronal responses to chloroquine were enhanced during skin stroking, and this was followed by suppression of firing below baseline levels after the termination of stroking. Most of these neurons additionally responded to capsaicin. Stroking did not suppress neuronal responses to capsaicin, indicating state-dependent inhibition. Vesicular glutamate transporter 3 (VGLUT3)-lineage sensory nerves compose a subset of low-threshold mechanoreceptors. Stroking-related inhibition of neuronal responses to chloroquine was diminished by optogenetic inhibition of VGLUT3-lineage sensory nerves in male and female Vglut3-cre/NpHR-EYFP mice. Conversely, in male and female Vglut3-cre/ChR2-EYFP mice, optogenetic stimulation of VGLUT3-lineage sensory nerves inhibited firing responses of spinal neurons to pruritogens after the termination of stimulation. This inhibition was nearly abolished by spinal delivery of the κ-opioid receptor antagonist nor-binaltorphimine dihydrochloride, but not the neuropeptide Y receptor Y1 antagonist BMS193885. Optogenetic stimulation of VGLUT3-lineage sensory nerves inhibited pruritogen-evoked scratching without affecting mechanical and thermal pain behaviors. Therefore, VGLUT3-lineage sensory nerves appear to mediate inhibition of itch by tactile stimuli.SIGNIFICANCE STATEMENT Rubbing or stroking the skin is known to relieve itch. We investigated the mechanisms behind touch-evoked inhibition of itch in mice. Stroking the skin reduced the activity of itch-responsive spinal neurons. Optogenetic inhibition of VGLUT3-lineage sensory nerves diminished stroking-evoked inhibition, and optogenetic stimulation of VGLUT3-lineage nerves inhibited pruritogen-evoked firing. Together, our results provide a mechanistic understanding of touch-evoked inhibition of itch.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Mecanorreceptores/metabolismo , Prurido/metabolismo , Limiar Sensorial , Tato , Potenciais de Ação , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animais , Capsaicina/farmacologia , Di-Hidropiridinas/farmacologia , Feminino , Masculino , Mecanorreceptores/efeitos dos fármacos , Mecanorreceptores/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Inibição Neural , Compostos de Fenilureia/farmacologia , Fármacos do Sistema Sensorial/farmacologia
15.
Int J Mol Sci ; 21(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867366

RESUMO

Oropharyngeal dysphagia, or difficulty in swallowing, is a major health problem that can lead to serious complications, such as pulmonary aspiration, malnutrition, dehydration, and pneumonia. The current clinical management of oropharyngeal dysphagia mainly focuses on compensatory strategies and swallowing exercises/maneuvers; however, studies have suggested their limited effectiveness for recovering swallowing physiology and for promoting neuroplasticity in swallowing-related neuronal networks. Several new and innovative strategies based on neurostimulation in peripheral and cortical swallowing-related regions have been investigated, and appear promising for the management of oropharyngeal dysphagia. The peripheral chemical neurostimulation strategy is one of the innovative strategies, and targets chemosensory ion channels expressed in peripheral swallowing-related regions. A considerable number of animal and human studies, including randomized clinical trials in patients with oropharyngeal dysphagia, have reported improvements in the efficacy, safety, and physiology of swallowing using this strategy. There is also evidence that neuroplasticity is promoted in swallowing-related neuronal networks with this strategy. The targeting of chemosensory ion channels in peripheral swallowing-related regions may therefore be a promising pharmacological treatment strategy for the management of oropharyngeal dysphagia. In this review, we focus on this strategy, including its possible neurophysiological and molecular mechanisms.


Assuntos
Transtornos de Deglutição/tratamento farmacológico , Canais Iônicos/metabolismo , Fármacos do Sistema Sensorial/uso terapêutico , Animais , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Ácido Cítrico/farmacologia , Ácido Cítrico/uso terapêutico , Transtornos de Deglutição/metabolismo , Humanos , Canais Iônicos/antagonistas & inibidores , Mentol/farmacologia , Mentol/uso terapêutico , Terapia de Alvo Molecular , Plasticidade Neuronal , Ensaios Clínicos Controlados Aleatórios como Assunto , Fármacos do Sistema Sensorial/farmacologia
16.
Brain Res ; 1747: 147052, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32791143

RESUMO

Transient receptor potential vanilloid 1 (TRPV1), a non-selective cation channel, is mainly expressed in nociceptive primary sensory neurons. Sensitivity of TRPV1 to several stimuli is known to vary among species, specifically, the avian orthologue is nearly insensitive to capsaicin. Extracellular sodium ions ([Na+]o) regulate TRPV1 activity in mammals, but their regulatory role on chicken TRPV1 (cTRPV1) is unknown. Here, we focused on the actions of capsaicin and low [Na+]o on cTRPV1 activity. In chicken dorsal root ganglion (cDRG) neurons, capsaicin elicited [Ca2+]i increases, but its effective concentration was much higher than those in mammals. Low [Na+]o evoked [Ca2+]i increases in cDRG neurons in a decreasing [Na+]o-dependent manner and the complete removal of [Na+]o (0Na) produced maximal effects. The population of 0Na-sensitive neurons was mostly overlapped with those of proton- and capsaicin-sensitive ones. Low [Na+]o synergistically potentiated the capsaicin- and proton-induced TRPV1 activation in cDRG neurons. In HEK293 cells expressing cTRPV1 (cTRPV1-HEK), capsaicin elicited [Ca2+]i increases with an EC50 of 11.8 µM, and low [Na+]o also did. Well-defined mammalian TRPV1 antagonists hardly suppressed cTRPV1 activation by low [Na+]o. 0Na evoked outwardly rectified currents in cTRPV1-HEK. Mutagenesis analyses revealed a possible interaction of [Na+]o with the proton-binding sites of cTRPV1. The administration of capsaicin and 0Na to chick eyes elicited pain-related behaviors. These results suggest that low [Na+]o is capable of activating cTRPV1 in vitro, resulting in pain in vivo. Our data demonstrate that characterization of the cTRPV1 function is important to understand activation mechanisms of TRPV1.


Assuntos
Gânglios Espinais/metabolismo , Neurônios/metabolismo , Nociceptividade/fisiologia , Sódio/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Capsaicina/farmacologia , Galinhas , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fármacos do Sistema Sensorial/farmacologia
17.
Toxicol Appl Pharmacol ; 402: 115124, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32652086

RESUMO

Atypical antipsychotics (AAPs) have the tendency of inducing severe metabolic alterations like obesity, diabetes mellitus, insulin resistance, dyslipidemia and cardiovascular complications. These alterations have been attributed to altered hypothalamic appetite regulation, energy sensing, insulin/leptin signaling, inflammatory reactions and active reward anticipation. Line of evidence suggests that transient receptor potential vanilloid type 1 and 3 (TRPV1 and TRPV3) channels are emerging targets in treatment of obesity, diabetes mellitus and could modulate feed intake. The present study was aimed to investigate the putative role TRPV1/TRPV3 in olanzapine-induced metabolic alterations in mice. Female BALB/c mice were treated with olanzapine for six weeks to induce metabolic alterations. Non-selective TRPV1/TRPV3 antagonist (ruthenium red) and selective TRPV1 (capsazepine) and TRPV3 antagonists (2,2-diphenyltetrahydrofuran or DPTHF) were used to investigate the involvement of TRPV1/TRPV3 in chronic olanzapine-induced metabolic alterations. These metabolic alterations were differentially reversed by ruthenium red and capsazepine, while DPTHF didn't show any significant effect. Olanzapine treatment also altered the mRNA expression of hypothalamic appetite-regulating and nutrient-sensing factors, inflammatory genes and TRPV1/TRPV3, which were reversed with ruthenium red and capsazepine treatment. Furthermore, olanzapine treatment also increased expression of TRPV1/TRPV3 in nucleus accumbens (NAc), TRPV3 expression in ventral tegmental area (VTA), which were reversed by the respective antagonists. However, DPTHF treatment showed reduced feed intake in olanzapine treated mice, which might be due to TRPV3 specific antagonism and reduced hedonic feed intake. In conclusion, our results suggested the putative role TRPV1 in hypothalamic dysregulations and TRPV3 in the mesolimbic pathway; both regulate feeding in olanzapine treated mice.


Assuntos
Regulação do Apetite/efeitos dos fármacos , Inflamação/metabolismo , Olanzapina/farmacologia , Canais de Cátion TRPV/metabolismo , Animais , Capsaicina/administração & dosagem , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Corantes/administração & dosagem , Corantes/farmacologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Feminino , Furanos/administração & dosagem , Furanos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Teste de Tolerância a Glucose , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Hipotálamo/efeitos dos fármacos , Inflamação/genética , Metformina/administração & dosagem , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Atividade Motora , Rutênio Vermelho/administração & dosagem , Rutênio Vermelho/farmacologia , Fármacos do Sistema Sensorial/administração & dosagem , Fármacos do Sistema Sensorial/farmacologia , Canais de Cátion TRPV/genética
18.
Neuroreport ; 31(11): 781-786, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32618816

RESUMO

Transient receptor potential vanilloid type-1 (TRPV1) channels have crucial roles in inflammatory hyperalgesia. Different inflammatory mediators can modulate TRPV1 sensitization. Bradykinin is an algogenic substance released at the site of inflammation. The aim of the present study is to investigate the desensitization of TRPV1 receptor by nonpungent agonists and to determine how bradykinin and prostaglandin E2 receptors (EP3 and EP4) modulate the resensitization of TRPV1 receptor after being desensitized by nonpungent agonists. Tail flick test was used to investigate capsaicin-induced thermal hyperalgesia and the desensitization of TRPV1 by the nonpungent agonists (olvanil and arvanil) in male BALB/c mice weighed (22-25 g). Resensitization of TRPV1 by bradykinin and the role of prostaglandin receptors in mediating sensitization of TRPV1 were also investigated. Intraplantar injection of capsaicin (0.3 µg) produced a robust thermal hyperalgesia in mice, while olvanil (0.3 µg) or arvanil (0.3 µg) produced no hyperalgesia, emphasizing their lack of pungency. Olvanil and arvanil significantly attenuated capsaicin-induced thermal hyperalgesia in mice. Bradykinin significantly reversed the desensitizing effects of arvanil, but not olvanil. EP4 but not EP3 receptors mediate the sensitization of TRPV1 By bradykinin in vivo. The present study provides evidence for a novel signaling pathway through which bradykinin can regulate the TRPV1 ion channel function via EP4 receptor.


Assuntos
Bradicinina/metabolismo , Nociceptividade/fisiologia , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Fármacos do Sistema Sensorial/farmacologia
19.
Neuropharmacology ; 176: 108215, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32574651

RESUMO

Post-traumatic headache (PTH) is a condition that frequently affects individuals after traumatic brain injury (TBI). Inflammation is one of the major causes of this disability. However, little is known about the trigger for, and endurance of, this painful process. Thus, the involvement of fibers containing the transient receptor potential vanilloid 1 (TRPV1) channels on the PTH and inflammation after TBI through neonatal treatment with capsaicin are investigated. Fluid percussion injury (FPI) in adult male Wistar rats caused periorbital allodynia in one, three and seven days after injury, and the neonatal treatment reversed the painful sensation in seven days. The lack of TRPV1 channels reduced the activation of macrophages and glial cells induced by TBI in the trigeminal system, which were characterized by glial fibrillary acidic protein (GFAP) and ionized calcium binding adapter molecule-1 (IBA-1) immune content in the ipsilateral trigeminal ganglion, brainstem, and perilesional cortex. Immunofluorescence analyses of the ipsilateral Sp5C nucleus demonstrated a hypertrophic astrocytes profile after TBI which was reduced with treatment. Moreover, effects of succinate sumatriptan (SUMA - 1 mg/kg), TRPV1 selective antagonist capsazepine (CPZ - 2 mg/kg), and TRP non-selective antagonist ruthenium red (RR - 3 mg/kg) were evaluated. Although all mentioned drugs reduced the painful sensation, SUMA and CPZ demonstrated a stronger effect compared to the RR treatment, reinforcing the involvement of TRPV1 channels in periorbital allodynia after TBI. Hence, this report suggests that TRPV1-containing fibers and TRPV1 channels are able to induce inflammation of the trigeminal system and maintain the painful sensation after TBI.


Assuntos
Capsaicina/farmacologia , Cefaleia/metabolismo , Mediadores da Inflamação/metabolismo , Fibras Nervosas/metabolismo , Cefaleia Pós-Traumática/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Animais Recém-Nascidos , Cefaleia/etiologia , Masculino , Fibras Nervosas/efeitos dos fármacos , Cefaleia Pós-Traumática/complicações , Ratos , Ratos Wistar , Fármacos do Sistema Sensorial/farmacologia , Sumatriptana/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores
20.
Neurochem Int ; 135: 104709, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32105721

RESUMO

Capsaicin, a compound found in chili peppers, causes burning sensations by acting on the peripheral sensory system. However, it has also been reported to exert substantial effects on central neurons. The aim of this patch-clamp study was to test the antiepileptic potential of capsaicin in prefrontal cortical pyramidal neurons. Capsaicin at a concentration of 60 µM inhibited neuronal excitability. Moreover, later spikes in response to 50-s-long current steps were much smaller in amplitude in the presence of 60 µM capsaicin than in control solution. The tested compound did not influence the membrane potential. Voltage-clamp recordings showed that capsaicin markedly enhanced the use-dependent block of sodium channels (sodium currents were evoked at frequencies of 0,5 Hz and 10 Hz). The presence of the compound shifted the steady-state inactivation curve of sodium channels towards hyperpolarization, which suggests greater inactivation of sodium channels at rest in the presence of capsaicin. Moreover, capsaicin inhibited epileptiform events evoked in three different proepileptic solutions. Capsaicin abolished interictal-like events lasting less than 1 s recorded in zero magnesium solution with an increased potassium ion concentration. The drug also abolished long ictal events evoked in zero magnesium solution containing 4-AP. Moreover, ictal events recorded in zero magnesium solution containing picrotoxin were substantially shortened in the presence of capsaicin. We suggest that capsaicin exerts an antiepileptic effect. The important mechanism behind this phenomenon seems to be the inhibition of sodium channels, which is an effect of many antiepileptic drugs.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Anticonvulsivantes/farmacologia , Capsaicina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Potenciais de Ação/fisiologia , Animais , Técnicas de Cultura de Órgãos , Córtex Pré-Frontal/fisiopatologia , Células Piramidais/fisiologia , Ratos , Fármacos do Sistema Sensorial/farmacologia , Bloqueadores dos Canais de Sódio/uso terapêutico , Canais de Sódio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...