Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(9)2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34572134

RESUMO

Glioblastoma (GBM) is the most aggressive malignant glioma. Therapeutic targeting of GBM is made more difficult due to its heterogeneity, resistance to treatment, and diffuse infiltration into the brain parenchyma. Better understanding of the tumor microenvironment should aid in finding more effective management of GBM. GBM-associated macrophages (GAM) comprise up to 30% of the GBM microenvironment. Therefore, exploration of GAM activity/function and their specific markers are important for developing new therapeutic agents. In this study, we identified and evaluated the expression of ALDH1A2 in the GBM microenvironment, and especially in M2 GAM, though it is also expressed in reactive astrocytes and multinucleated tumor cells. We demonstrated that M2 GAM highly express ALDH1A2 when compared to other ALDH1 family proteins. Additionally, GBM samples showed higher expression of ALDH1A2 when compared to low-grade gliomas (LGG), and this expression was increased upon tumor recurrence both at the gene and protein levels. We demonstrated that the enzymatic product of ALDH1A2, retinoic acid (RA), modulated the expression and activity of MMP-2 and MMP-9 in macrophages, but not in GBM tumor cells. Thus, the expression of ALDH1A2 may promote the progressive phenotype of GBM.


Assuntos
Família Aldeído Desidrogenase 1/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Macrófagos/imunologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Retinal Desidrogenase/metabolismo , Família Aldeído Desidrogenase 1/genética , Família Aldeído Desidrogenase 1/imunologia , Apoptose , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Movimento Celular , Proliferação de Células , Glioblastoma/genética , Glioblastoma/imunologia , Glioblastoma/metabolismo , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Retinal Desidrogenase/genética , Retinal Desidrogenase/imunologia , Tretinoína/metabolismo , Células Tumorais Cultivadas , Microambiente Tumoral
2.
Sci Rep ; 11(1): 1342, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446666

RESUMO

Dendritic cells (DCs) promote T-cell mediated tolerance to self-antigens and induce inflammation to innocuous-antigens. This dual potential makes DCs fundamental players in inflammatory disorders. Evidence from inflammatory colitis mouse models and inflammatory bowel diseases (IBD) patients indicated that gut inflammation in IBD is driven mainly by T-helper-1 (Th1) and Th17 cells, suggesting an essential role for DCs in the development of IBD. Here we show that GSK-J4, a selective inhibitor of the histone demethylase JMJD3/UTX, attenuated inflammatory colitis by reducing the inflammatory potential and increasing the tolerogenic features of DCs. Mechanistic analyses revealed that GSK-J4 increased activating epigenetic signals while reducing repressive marks in the promoter of retinaldehyde dehydrogenase isoforms 1 and 3 in DCs, enhancing the production of retinoic acid. This, in turn, has an impact on regulatory T cells (Treg) increasing their lineage stability and gut tropism as well as potentiating their suppressive activity. Our results open new avenues for the treatment of IBD patients.


Assuntos
Benzazepinas/farmacologia , Colite/imunologia , Células Dendríticas/imunologia , Doenças Inflamatórias Intestinais/imunologia , Pirimidinas/farmacologia , Tretinoína/imunologia , Família Aldeído Desidrogenase 1/genética , Família Aldeído Desidrogenase 1/imunologia , Animais , Colite/tratamento farmacológico , Colite/genética , Colite/patologia , Células Dendríticas/patologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Camundongos , Camundongos Knockout , Retinal Desidrogenase/genética , Retinal Desidrogenase/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Células Th1/imunologia , Células Th1/patologia , Células Th17/imunologia , Células Th17/patologia
3.
J Allergy Clin Immunol ; 148(1): 182-194.e4, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33378690

RESUMO

BACKGROUND: Peanut is a potent inducer of proallergenic TH2 responses in susceptible individuals. Antigen-presenting cells (APCs) including dendritic cells and monocytes instruct naive T cells to differentiate into various effector cells, determining immune responses such as allergy and tolerance. OBJECTIVE: We sought to detect peanut protein (PN)-induced changes in gene expression in human myeloid dendritic cells (mDCs) and monocytes, identify signaling receptors that mediate these changes, and assess how PN-induced genes in mDCs impact their ability to promote T-cell differentiation. METHODS: mDCs, monocytes, and naive CD4+ T cells were isolated from blood bank donors and peanut-allergic patients. APCs were incubated with PN and other stimulants, and gene expression was measured using microarray and RT quantitative PCR. To assess T-cell differentiation, mDCs were cocultured with naive TH cells. RESULTS: PN induced a unique gene expression profile in mDCs, including the gene that encodes retinaldehyde dehydrogenase 2 (RALDH2), a rate-limiting enzyme in the retinoic acid (RA)-producing pathway. Stimulation of mDCs with PN also induced a 7-fold increase in the enzymatic activity of RALDH2. Blocking antibodies against Toll-like receptor (TLR)1/TLR2, as well as small interfering RNA targeting TLR1/TLR2, reduced the expression of RALDH2 in PN-stimulated APCs by 70%. Naive TH cells cocultured with PN-stimulated mDCs showed an RA-dependent 4-fold increase in production of IL-5 and expression of integrin α4ß7. CONCLUSIONS: PN induces RALDH2 in human APCs by signaling through the TLR1/TLR2 heterodimer. This leads to production of RA, which acts on TH cells to induce IL-5 and gut-homing integrin. RALDH2 induction by PN in APCs and RA-promoted TH2 differentiation could be an important factor determining allergic responses to peanut.


Assuntos
Família Aldeído Desidrogenase 1/imunologia , Células Apresentadoras de Antígenos/imunologia , Arachis/imunologia , Retinal Desidrogenase/imunologia , Células Th2/imunologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Células HEK293 , Humanos , Hipersensibilidade/imunologia , Ativação Linfocitária/imunologia , Monócitos/imunologia , Tretinoína/imunologia
4.
Food Chem ; 317: 126376, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32078991

RESUMO

We and others have identified biomarker candidates of tenderness or marbling, two major attributes of bovine meat-eating qualities for consumers' satisfaction. In this study, Reverse Phase Protein Arrays (RPPA) and targeted mass spectrometry assays using Parallel Reaction Monitoring (PRM) were developed to test whether 10 proteins pass the sequential qualification and verification steps of the challenging biomarker discovery pipeline. At least MYH1, TPI1, ALDH1A1 and CRYAB were qualified by RPPA or PRM as being differentially abundant according to marbling values of longissimus thoracis and semimembranosus muscles. Significant mathematical relationships between the individual abundance of each of the four proteins and marbling values were verified by linear or logistic regressions. Four proteins, TNNT1, MDH1, PRDX6 and ENO3 were qualified and verified for tenderness, and the abundance of MDH1 explained 49% of the tenderness variability. The present PRM and RPPA results pave the way for development of useful meat industrial multiplex-proteins assays.


Assuntos
Anticorpos/imunologia , Biomarcadores/análise , Carne/análise , Proteômica/métodos , Família Aldeído Desidrogenase 1/análise , Família Aldeído Desidrogenase 1/imunologia , Animais , Anticorpos/análise , Bovinos , Limite de Detecção , Modelos Lineares , Modelos Logísticos , Espectrometria de Massas , Músculo Esquelético/metabolismo , Cadeias Pesadas de Miosina/análise , Cadeias Pesadas de Miosina/imunologia , Análise Serial de Proteínas
5.
mSphere ; 4(3)2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31167948

RESUMO

Epidemiological evidence correlates low serum vitamin A (retinol) levels with increased susceptibility to active tuberculosis (TB); however, retinol is biologically inactive and must be converted into its bioactive form, all-trans retinoic acid (ATRA). Given that ATRA triggers a Niemann-Pick type C2 (NPC2)-dependent antimicrobial response against Mycobacterium tuberculosis, we investigated the mechanism by which the immune system converts retinol into ATRA at the site of infection. We demonstrate that granulocyte-macrophage colony-stimulating factor (GM-CSF)-derived dendritic cells (DCs), but not macrophages, express enzymes in the vitamin A metabolic pathway, including aldehyde dehydrogenase 1 family, member a2 (ALDH1A2) and short-chain dehydrogenase/reductase family, member 9 (DHRS9), enzymes capable of the two-step conversion of retinol into ATRA, which is subsequently released from the cell. Additionally, mRNA and protein expression levels of ALDH1A2 and DC marker CD1B were lower in tuberculosis lung tissues than in normal lung. The conditioned medium from DCs cultured with retinol stimulated antimicrobial activity from M. tuberculosis-infected macrophages, as well as the expression of NPC2 in monocytes, which was blocked by specific inhibitors, including retinoic acid receptor inhibitor (RARi) or N,N-diethylaminobenzaldehyde (DEAB), an ALDH1A2 inhibitor. These results indicate that metabolism of vitamin A by DCs transactivates macrophage antimicrobial responses.IMPORTANCE Tuberculosis (TB) is the leading cause of death by a single infectious agent worldwide. One factor that contributes to the success of the microbe is the deficiency in immunomodulatory nutrients, such as vitamin A (retinol), which are prevalent in areas where TB is endemic. Clinical trials show that restoration of systemic retinol levels in active TB patients is ineffective in mitigating the disease; however, laboratory studies demonstrate that activation of the vitamin A pathway in Mycobacterium tuberculosis-infected macrophages triggers an antimicrobial response. Therefore, the goal of this study was to determine the link between host retinol levels and retinoic acid-mediated antimicrobial responses against M. tuberculosis By combining established in vitro models with in situ studies of lung tissue from TB patients, this study demonstrates that the innate immune system utilizes transcellular metabolism leading to activation between dendritic cells and macrophages as a means to combat the pathogen.


Assuntos
Células Dendríticas/enzimologia , Células Dendríticas/imunologia , Mycobacterium tuberculosis/imunologia , Vitamina A/metabolismo , 3-Hidroxiesteroide Desidrogenases/genética , 3-Hidroxiesteroide Desidrogenases/imunologia , Adulto , Família Aldeído Desidrogenase 1/genética , Família Aldeído Desidrogenase 1/imunologia , Células Cultivadas , Meios de Cultivo Condicionados/química , Células Dendríticas/microbiologia , Humanos , Pulmão/microbiologia , Macrófagos/enzimologia , Macrófagos/imunologia , Macrófagos/microbiologia , Retinal Desidrogenase/genética , Retinal Desidrogenase/imunologia , Tuberculose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...