Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 598
Filtrar
1.
Redox Rep ; 29(1): 2395779, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39221774

RESUMO

OBJECTIVES: Alcohol and its metabolites, such as acetaldehyde, induced hepatic mitochondrial dysfunction play a pathological role in the development of alcohol-related liver disease (ALD). METHODS: In this study, we investigated the potential of nobiletin (NOB), a polymethoxylated flavone, to counter alcohol-induced mitochondrial dysfunction and liver injury. RESULTS: Our findings demonstrate that NOB administration markedly attenuated alcohol-induced hepatic steatosis, endoplasmic reticulum stress, inflammation, and tissue damage in mice. NOB reversed hepatic mitochondrial dysfunction and oxidative stress in both alcohol-fed mice and acetaldehyde-treated hepatocytes. Mechanistically, NOB restored the reduction of hepatic mitochondrial transcription factor A (TFAM) at both mRNA and protein levels. Notably, the protective effects of NOB against acetaldehyde-induced mitochondrial dysfunction and cell death were abolished in hepatocytes lacking Tfam. Furthermore, NOB administration reinstated the levels of hepatocellular NRF1, a key transcriptional regulator of TFAM, which were decreased by alcohol and acetaldehyde exposure. Consistent with these findings, hepatocyte-specific overexpression of Nrf1 protected against alcohol-induced hepatic Tfam reduction, mitochondrial dysfunction, oxidative stress, and liver injury. CONCLUSIONS: Our study elucidates the involvement of the NRF1-TFAM signaling pathway in the protective mechanism of NOB against chronic-plus-binge alcohol consumption-induced mitochondrial dysfunction and liver injury, suggesting NOB supplementation as a potential therapeutic strategy for ALD.


Assuntos
Flavonas , Transdução de Sinais , Animais , Camundongos , Flavonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Masculino , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fígado/efeitos dos fármacos , Fígado/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Etanol/toxicidade , Etanol/efeitos adversos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Fator 1 Nuclear Respiratório/metabolismo , Fator 1 Nuclear Respiratório/genética , Substâncias Protetoras/farmacologia , Fator 1 Relacionado a NF-E2/metabolismo , Fator 1 Relacionado a NF-E2/genética , Proteínas de Grupo de Alta Mobilidade
2.
Mol Cell ; 84(16): 3003-3005, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39178835

RESUMO

In this issue of Molecular Cell, Yoshida et al.1 report an unconventional sugar-dependent ubiquitination event on Nrf1 that disrupts Nrf1 transcriptional activation.


Assuntos
Ubiquitina , Ubiquitinação , Humanos , Ubiquitina/metabolismo , Fator 1 Nuclear Respiratório/metabolismo , Fator 1 Nuclear Respiratório/genética , Açúcares/metabolismo , Ativação Transcricional , Animais
3.
Mol Cell ; 84(16): 3115-3127.e11, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39116872

RESUMO

Proteasome is essential for cell survival, and proteasome inhibition induces proteasomal gene transcription via the activated endoplasmic-reticulum-associated transcription factor nuclear factor erythroid 2-like 1 (Nrf1/NFE2L1). Nrf1 activation requires proteolytic cleavage by DDI2 and N-glycan removal by NGLY1. We previously showed that Nrf1 ubiquitination by SKP1-CUL1-F-box (SCF)FBS2/FBXO6, an N-glycan-recognizing E3 ubiquitin ligase, impairs its activation, although the molecular mechanism remained elusive. Here, we show that SCFFBS2 cooperates with the RING-between-RING (RBR)-type E3 ligase ARIH1 to ubiquitinate Nrf1 through oxyester bonds in human cells. Endo-ß-N-acetylglucosaminidase (ENGASE) generates asparagine-linked N-acetyl glucosamine (N-GlcNAc) residues from N-glycans, and N-GlcNAc residues on Nrf1 served as acceptor sites for SCFFBS2-ARIH1-mediated ubiquitination. We reconstituted the polyubiquitination of N-GlcNAc and serine/threonine residues on glycopeptides and found that the RBR-specific E2 enzyme UBE2L3 is required for the assembly of atypical ubiquitin chains on Nrf1. The atypical ubiquitin chains inhibited DDI2-mediated activation. The present results identify an unconventional ubiquitination pathway that inhibits Nrf1 activation.


Assuntos
Fator 1 Nuclear Respiratório , Ubiquitinação , Humanos , Células HEK293 , Fator 1 Nuclear Respiratório/metabolismo , Fator 1 Nuclear Respiratório/genética , Fator 1 Relacionado a NF-E2/metabolismo , Fator 1 Relacionado a NF-E2/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Acetilglucosamina/metabolismo , Células HeLa , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas F-Box/metabolismo , Proteínas F-Box/genética
4.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125617

RESUMO

Progression of metabolic dysfunction-associated steatites liver disease (MASLD) to steatohepatitis (MASH) is driven by stress-inducing lipids that promote liver inflammation and fibrosis, and MASH can lead to cirrhosis and hepatocellular carcinoma. Previously, we showed coordinated defenses regulated by transcription factors, nuclear factor erythroid 2-related factor-1 (Nrf1) and -2 (Nrf2), protect against hepatic lipid stress. Here, we investigated protective effects of hepatocyte Nrf1 and Nrf2 against MASH-linked liver fibrosis and tumorigenesis. Male and female mice with flox alleles for genes encoding Nrf1 (Nfe2l1), Nrf2 (Nfe2l2), or both were fed a MASH-inducing diet enriched with high fat, fructose, and cholesterol (HFFC) or a control diet for 24-52 weeks. During this period, hepatocyte Nrf1, Nrf2, or combined deficiency for ~7 days, ~7 weeks, and ~35 weeks was induced by administering mice hepatocyte-targeting adeno-associated virus (AAV) expressing Cre recombinase. The effects on MASH, markers of liver fibrosis and proliferation, and liver tumorigenesis were compared to control mice receiving AAV-expressing green fluorescent protein. Also, to assess the impact of Nrf1 and Nrf2 induction on liver fibrosis, HFFC diet-fed C57bl/6J mice received weekly injections of carbon tetrachloride, and from week 16 to 24, mice were treated with the Nrf2-activating drug bardoxolone, hepatocyte overexpression of human NRF1 (hNRF1), or both, and these groups were compared to control. Compared to the control diet, 24-week feeding with the HFFC diet increased bodyweight as well as liver weight, steatosis, and inflammation. It also increased hepatocyte proliferation and a marker of liver damage, p62. Hepatocyte Nrf1 and combined deficiency increased liver steatosis in control diet-fed but not HFFC diet-fed mice, and increased liver inflammation under both diet conditions. Hepatocyte Nrf1 deficiency also increased hepatocyte proliferation, whereas combined deficiency did not, and this also occurred for p62 level in control diet-fed conditions. In 52-week HFFC diet-fed mice, 35 weeks of hepatocyte Nrf1 deficiency, but not combined deficiency, resulted in more liver tumors in male mice, but not in female mice. In contrast, hepatocyte Nrf2 deficiency had no effect on any of these parameters. However, in the 15-week CCL4-exposed and 24-week HFFC diet-fed mice, Nrf2 induction with bardoxolone reduced liver steatosis, inflammation, fibrosis, and proliferation. Induction of hepatic Nrf1 activity with hNRF1 enhanced the effect of bardoxolone on steatosis and may have stimulated liver progenitor cells. Physiologic Nrf1 delays MASLD progression, Nrf2 induction alleviates MASH, and combined enhancement synergistically protects against steatosis and may facilitate liver repair.


Assuntos
Hepatócitos , Fator 2 Relacionado a NF-E2 , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Camundongos , Hepatócitos/metabolismo , Masculino , Feminino , Progressão da Doença , Camundongos Endogâmicos C57BL , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Fator 1 Relacionado a NF-E2/metabolismo , Fator 1 Relacionado a NF-E2/genética , Fator 1 Nuclear Respiratório/metabolismo , Fator 1 Nuclear Respiratório/genética , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Fígado/patologia , Humanos
5.
Biomed Pharmacother ; 177: 117008, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901196

RESUMO

Astragaloside IV (AS-IV) exhibits diverse biological activities. Despite this, the detailed molecular mechanisms by which AS-IV ameliorates diabetic nephropathy (DN) and shields podocytes from oxidative stress (OS) and mitochondrial dysfunction remain poorly understood. In this study, we used biochemical assays, histopathological analysis, Doppler ultrasound, transmission electron microscopy,flow cytometry, fluorescence staining, and Western blotting and other methods. AS-IV was administered to db/db mice for in vivo experimentation. Our findings indicated that AS-IV treatment significantly reduced diabetes-associated markers, proteinuria, and kidney damage. It also diminished ROS levels in the kidney, enhanced the expression of endogenous antioxidant enzymes, and improved mitochondrial health. Phenyl sulfate (PS), a protein-bound uremic solute of enteric origin, has been closely linked with DN and represents a promising avenue for further research. In vitro, PS exposure induced OS and mitochondrial dysfunction in podocytes, increasing ROS levels while decreasing antioxidant enzyme activity (Catalase, Heme Oxygenase-1, Superoxide Dismutase, and Glutathione Peroxidase). ROS inhibitors (N-acetyl-L-cysteine, NAC) as the positive control group can significantly reduce the levels of ROS and restore antioxidant enzymes protein levels. Additionally, PS reduced markers associated with mitochondrial biosynthesis and function (SIRT1, PGC1α, Nrf1, and TFAM). These adverse effects were partially reversed by AS-IV treatment. However, co-treatment with AS-IV and the SIRT1 inhibitor EX527 failed to restore these indicators. Overall, our study demonstrates that AS-IV effectively attenuates DN and mitigates PS-induced OS and mitochondrial dysfunction in podocytes via the SIRT1/PGC1α/Nrf1 pathway.


Assuntos
Mitocôndrias , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Podócitos , Saponinas , Transdução de Sinais , Sirtuína 1 , Triterpenos , Animais , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Podócitos/patologia , Sirtuína 1/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Saponinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Camundongos , Triterpenos/farmacologia , Masculino , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Fator 1 Nuclear Respiratório/metabolismo , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Fator 1 Relacionado a NF-E2/metabolismo
6.
J Cell Biol ; 223(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38767572

RESUMO

Proteasome activity is crucial for cellular integrity, but how tissues adjust proteasome content in response to catabolic stimuli is uncertain. Here, we demonstrate that transcriptional coordination by multiple transcription factors is required to increase proteasome content and activate proteolysis in catabolic states. Using denervated mouse muscle as a model system for accelerated proteolysis in vivo, we reveal that a two-phase transcriptional program activates genes encoding proteasome subunits and assembly chaperones to boost an increase in proteasome content. Initially, gene induction is necessary to maintain basal proteasome levels, and in a more delayed phase (7-10 days after denervation), it stimulates proteasome assembly to meet cellular demand for excessive proteolysis. Intriguingly, the transcription factors PAX4 and α-PALNRF-1 control the expression of proteasome among other genes in a combinatorial manner, driving cellular adaptation to muscle denervation. Consequently, PAX4 and α-PALNRF-1 represent new therapeutic targets to inhibit proteolysis in catabolic diseases (e.g., type-2 diabetes, cancer).


Assuntos
Fator 1 Nuclear Respiratório , Fatores de Transcrição Box Pareados , Complexo de Endopeptidases do Proteassoma , Proteólise , Animais , Masculino , Camundongos , Regulação da Expressão Gênica , Músculo Esquelético/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Fatores de Transcrição Box Pareados/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Camundongos Endogâmicos ICR , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo
7.
BMC Gastroenterol ; 24(1): 97, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438958

RESUMO

BACKGROUND: Cellular response to oxidative stress plays significant roles in hepatocellular carcinoma (HCC) development, yet the exact mechanism by which HCC cells respond to oxidative stress remains poorly understood. This study aimed to investigate the role and mechanism of super enhancer (SE)-controlled genes in oxidative stress response of HCC cells. METHODS: The GSE112221 dataset was used to identify SEs by HOMER. Functional enrichment of SE-controlled genes was performed by Metascape. Transcription factors were predicted using HOMER. Prognosis analysis was conducted using the Kaplan-Meier Plotter website. Expression correlation analysis was performed using the Tumor Immune Estimation Resource web server. NRF1 and SPIDR expression in HCC and normal liver tissues was analyzed based on the TCGA-LIHC dataset. ChIP-qPCR was used to detect acetylation of lysine 27 on histone 3 (H3K27ac) levels of SE regions of genes, and the binding of NRF1 to the SE of SPIDR. To mimic oxidative stress, HepG2 and Hep3B cells were stimulated with H2O2. The effects of NRF1 and SPIDR on the oxidative stress response of HCC cells were determined by the functional assays. RESULTS: A total of 318 HCC-specific SE-controlled genes were identified. The functions of these genes was significant association with oxidative stress response. SPIDR and RHOB were enriched in the "response to oxidative stress" term and were chosen for validation. SE regions of SPIDR and RHOB exhibited strong H3K27ac modification, which was significantly inhibited by JQ1. JQ1 treatment suppressed the expression of SPIDR and RHOB, and increased reactive oxygen species (ROS) levels in HCC cells. TEAD2, TEAD3, NRF1, HINFP and TCFL5 were identified as potential transcription factors for HCC-specific SE-controlled genes related to oxidative stress response. The five transcription factors were positively correlated with SPIDR expression, with the highest correlation coefficient for NRF1. NRF1 and SPIDR expression was up-regulated in HCC tissues and cells. NRF1 activated SPIDR transcription by binding to its SE. Silencing SPIDR or NRF1 significantly promoted ROS accumulation in HCC cells. Under oxidative stress, silencing SPIDR or NRF1 increased ROS, malondialdehyde (MDA) and γH2AX levels, and decreased superoxide dismutase (SOD) levels and cell proliferation of HCC cells. Furthermore, overexpression of SPIDR partially offset the effects of NRF1 silencing on ROS, MDA, SOD, γH2AX levels and cell proliferation of HCC cells. CONCLUSION: NRF1 driven SPIDR transcription by occupying its SE, protecting HCC cells from oxidative stress-induced damage. NRF1 and SPIDR are promising biomarkers for targeting oxidative stress in the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Fator 1 Nuclear Respiratório/genética , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Super Intensificadores , Neoplasias Hepáticas/genética , Fatores de Transcrição , Estresse Oxidativo , Superóxido Dismutase , Fatores de Transcrição Hélice-Alça-Hélice Básicos
8.
Poult Sci ; 103(5): 103559, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430780

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARγ) is a master regulator of adipogenesis. Our previous study revealed that chicken PPARγ has 3 alternative promoters named as P1, P2, and P3, and the DNA methylation of promoter P3 was negatively associated with PPARγ mRNA expression in abdominal adipose tissue (AAT). However, the methylation status of promoters P1 and P2 is unclear. Here we assessed promoter P1 methylation status in AAT of Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF). The results showed that promoter P1 methylation differed in AAT between the lean and fat lines of NEAUHLF at 7 wk of age (p < 0.05), and AAT expression of PPARγ transcript 1 (PPARγ1), which was derived from the promoter P1, was greatly higher in fat line than in lean line at 2 and 7 wk of age. The results of the correlation analysis showed that P1 methylation was positively correlated with PPARγ1 expression at 7 wk of age (Pearson's r = 0.356, p = 0.0242), suggesting P1 methylation promotes PPARγ1 expression. To explore the underlying molecular mechanism of P1 methylation on PPARγ1 expression, bioinformatics analysis, dual-luciferase reporter assay, pyrosequencing, and electrophoresis mobility shift assay (EMSA) were performed. The results showed that transcription factor NRF1 repressed the promoter activity of the unmethylated P1, but not the methylated P1. Of all the 4 CpGs (CpG48, CpG49, CpG50, and CpG51), which reside within or nearby the NRF1 binding sites of the P1, only CpG49 methylation in AAT was remarkably higher in the fat line than in lean line at 7 wk of age (3.18 to 0.57, p < 0.05), and CpG49 methylation was positively correlated with PPARγ1 expression (Pearson's r = 0.3716, p = 0.0432). Furthermore, EMSA showed that CpG49 methylation reduced the binding of NRF1 to the P1. Taken together, our findings illustrate that P1 methylation promotes PPARγ1 expression at least in part by preventing NRF1 from binding to the promoter P1.


Assuntos
Galinhas , Metilação de DNA , Fator 1 Nuclear Respiratório , PPAR gama , Regiões Promotoras Genéticas , Animais , PPAR gama/genética , PPAR gama/metabolismo , Galinhas/genética , Galinhas/metabolismo , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Regulação da Expressão Gênica , Gordura Abdominal/metabolismo
9.
J Chem Neuroanat ; 137: 102412, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38460773

RESUMO

Organ damage brought on by ischemia is exacerbated by the reperfusion process. L-cysteine is a semi-essential amino acid that acts as a substrate for cystathionine-ß-synthase in the central nervous system. The aim of this study was to investigate the possible protective effects of L- cysteine against the structural and biochemical changes that occur in the rat sciatic nerve after ischemia reperfusion (I/R) and to address some of the underlying mechanisms of these effects. Rats were divided into 4 groups: sham, l-cysteine, I/R, and l-cysteine- I/R groups. Specimens of sciatic nerve were processed for biochemical, histological, and immunohistochemical assessment. The results showed in I/R group, a significant increase in malondialdehyde with a significant decrease in both Nuclear respiratory factor-1 (NRF1) and superoxide dismutase levels. Moreover, with histological alteration. There was a significant increase in the mean surface area fraction of anti-caspase immunopositive cells as well as a significantdecrease in mean surface area fraction of anti-CD 34 immunopositive cells. In contrast, the l-cysteine- I/R group showed amelioration of these biochemical, structural, and immunohistochemical changes. To the best of our knowledge, this is the first study showed the protective effects of l-cysteine in sciatic nerve I/R via NRF1and caspase 3 modulation as well as telocyte activation.


Assuntos
Caspase 3 , Cisteína , Ratos Wistar , Traumatismo por Reperfusão , Nervo Isquiático , Animais , Ratos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Cisteína/farmacologia , Masculino , Caspase 3/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Imuno-Histoquímica , Fator 1 Nuclear Respiratório/metabolismo , Modelos Animais de Doenças
10.
Exp Cell Res ; 435(2): 113931, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38253280

RESUMO

The mortality rate linked with nephrotic syndrome (NS) is quite high. The renal tubular injury influences the response of NS patients to steroid treatment. KN motif and ankyrin repeat domains 2 (KANK2) regulates actin polymerization, which is required for renal tubular cells to maintain their function. In this study, we found that the levels of KANK2 in patients with NS were considerably lower than those in healthy controls, especially in NS patients with acute kidney injury (AKI). To get a deeper understanding of the KANK2 transcriptional control mechanism, the core promoter region of the KANK2 gene was identified. KANK2 was further found to be positively regulated by E2F Transcription Factor 1 (E2F1), Transcription Factor AP-2 Gamma (TFAP2C), and Nuclear Respiratory Factor 1 (NRF1), both at mRNA and protein levels. Knocking down E2F1, TFAP2C, or NRF1 deformed the cytoskeleton of renal tubular cells and reduced F-actin content. EMSA and ChIP assays confirmed that all three transcription factors could bind to the upstream promoter transcription site of KANK2 to transactivate KANK2 in renal tubular epithelial cells. Our study suggests that E2F1, TFAP2C, and NRF1 play essential roles in regulating the KANK2 transcription, therefore shedding fresh light on the development of putative therapeutic options for the treatment of NS patients.


Assuntos
Síndrome Nefrótica , Fator 1 Nuclear Respiratório , Humanos , Fator 1 Nuclear Respiratório/metabolismo , Síndrome Nefrótica/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas/genética , Fator de Transcrição E2F1/genética , Fator de Transcrição AP-2/genética
11.
Mol Neurobiol ; 61(2): 835-882, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37668961

RESUMO

Cerebral amyloid angiopathy (CAA) is a degenerative vasculopathy. We have previously shown that transcription regulating proteins- inhibitor of DNA binding protein 3 (ID3) and the nuclear respiratory factor 1 (NRF1) contribute to vascular dysregulation. In this study, we have identified sex specific ID3 and NRF1-mediated gene networks in CAA patients diagnosed with Alzheimer's Disease (AD). High expression of ID3 mRNA coupled with low NRF1 mRNA levels was observed in the temporal cortex of men and women CAA patients. Low NRF1 mRNA expression in the temporal cortex was found in men with severe CAA. High ID3 expression was found in women with the genetic risk factor APOE4. Low NRF1 expression was also associated with APOE4 in women with CAA. Genome wide transcriptional activity of both ID3 and NRF1 paralleled their mRNA expression levels. Sex specific differences in transcriptional gene signatures of both ID3 and NRF1 were observed. These findings were further corroborated by Bayesian machine learning and the GeNIe simulation models. Dynamic machine learning using a Monte Carlo Markov Chain (MCMC) gene ordering approach revealed that ID3 was associated with disease severity in women. NRF1 was associated with CAA and severity of this disease in men. These findings suggest that aberrant ID3 and NRF1 activity presumably plays a major role in the pathogenesis and severity of CAA. Further analyses of ID3- and NRF1-regulated molecular drivers of CAA may provide new targets for personalized medicine and/or prevention strategies against CAA.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Feminino , Humanos , Masculino , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4 , Teorema de Bayes , Angiopatia Amiloide Cerebral/complicações , Proteínas de Ligação a DNA , Proteínas Inibidoras de Diferenciação , Proteínas de Neoplasias , Fator 1 Nuclear Respiratório/genética , RNA Mensageiro/genética
12.
Nucleic Acids Res ; 52(2): 953-966, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38055835

RESUMO

Nuclear respiratory factor 1 (NRF1) regulates the expression of genes that are vital for mitochondrial biogenesis, respiration, and various other cellular processes. While NRF1 has been reported to bind specifically to GC-rich promoters as a homodimer, the precise molecular mechanism governing its recognition of target gene promoters has remained elusive. To unravel the recognition mechanism, we have determined the crystal structure of the NRF1 homodimer bound to an ATGCGCATGCGCAT dsDNA. In this complex, NRF1 utilizes a flexible linker to connect its dimerization domain (DD) and DNA binding domain (DBD). This configuration allows one NRF1 monomer to adopt a U-turn conformation, facilitating the homodimer to specifically bind to the two TGCGC motifs in the GCGCATGCGC consensus sequence from opposite directions. Strikingly, while the NRF1 DBD alone could also bind to the half-site (TGCGC) DNA of the consensus sequence, the cooperativity between DD and DBD is essential for the binding of the intact GCGCATGCGC sequence and the transcriptional activity of NRF1. Taken together, our results elucidate the molecular mechanism by which NRF1 recognizes specific DNA sequences in the promoters to regulate gene expression.


Assuntos
DNA , Fator 1 Nuclear Respiratório , Humanos , Sequência de Bases , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo , Regiões Promotoras Genéticas
13.
Folia Biol (Praha) ; 69(1): 13-21, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37962027

RESUMO

Oxidored-nitro domain-containing protein 1 (NOR1) is a critical tumour suppressor gene, though its regulatory mechanism in oxidative stress of glioblastoma (GBM) remains unclear. Hence, further study is needed to unravel the function of NOR1 in the progression of oxidative stress in GBM. In this study, we evaluated the expression of NOR1 and nuclear respiratory factor 1 (NRF1) in GBM tissue and normal brain tissue (NBT) using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB), and investigated their relationship. We then induced oxidative stress in U251 cells through H2O2 treatment and conducted Cell Count-ing Kit-8, Transwell and wound healing assays to analyse cell proliferation, invasion and migration. Cell apoptosis was assessed by flow cytometry and TUNEL staining. We also measured the activities of superoxide dismutase and catalase, as well as the level of reactive oxygen species (ROS) using biochemical techniques. Via qRT-PCR and WB, the mRNA and protein expression levels of NOR1 and NRF1 were determined. Chromatin immunoprecipitation (ChIP) assays were applied to validate NRF1's interaction with NOR1. Our results showed that the expression of NOR1 and NRF1 was low in GBM, and their expression levels were positively correlated. H2O2-induced oxidative stress reduced NRF1 and NOR1 expression levels and increased the ROS level. The ChIP assay confirmed the binding of NRF1 to NOR1. Over-expression of NRF1 attenuated the inhibitory effect of oxidative stress on the proliferation, migration and invasion of U251 cells, which was reversed by knockdown of NOR1.


Assuntos
Glioblastoma , Fator 1 Nuclear Respiratório , Humanos , Proliferação de Células , Glioblastoma/genética , Peróxido de Hidrogênio/farmacologia , Fator 1 Nuclear Respiratório/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio
14.
Biol Direct ; 18(1): 67, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875967

RESUMO

BACKGROUND: Nuclear respiratory factor 1 (NRF1) is a transcription factor that participates in several kinds of tumor, but its role in hepatocellular carcinoma (HCC) remains elusive. This study aims to explore the role of NRF1 in HCC progression and investigate the underlying mechanisms. RESULTS: NRF1 was overexpressed and hyperactive in HCC tissue and cell lines and high expression of NRF1 indicated unfavorable prognosis of HCC patients. NRF1 promoted proliferation, migration and invasion of HCC cells both in vitro and in vivo. Mechanistically, NRF1 activated ERK1/2-CREB signaling pathway by transactivating lysophosphatidylcholine acyltransferase 1 (LPCAT1), thus promoting cell cycle progression and epithelial mesenchymal transition (EMT) of HCC cells. Meanwhile, LPCAT1 upregulated the expression of NRF1 by activating ERK1/2-CREB signaling pathway, forming a positive feedback loop. CONCLUSIONS: NRF1 is overexpressed in HCC and promotes HCC progression by activating LPCAT1-ERK1/2-CREB axis. NRF1 is a promising therapeutic target for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo , Sistema de Sinalização das MAP Quinases , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
15.
Sci Rep ; 13(1): 14481, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660209

RESUMO

Exercise plays an important role in cardiac health and enhances the transport of glucose in cardiac muscle by increasing the glucose transporter-4 (GLUT4) content at the cell membrane. The GLUT4 gene is a target of myocyte enhancer transcription factor 2A (MEF2A). Several transcription factors are regulated by microRNAs (miRs), small non-coding RNAs that control gene expression at the posttranscriptional level. In this study we tested the hypothesis that exercise regulates the expression of miR-223 and that MEF2A is a direct target of miR-223. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and western blot experiments showed that GLUT4 gene expression and protein abundance increased by 30 and 23%, respectively, in the microsomal fraction immediately after exercise, and had returned to control levels after 18 h. In contrast, the increase in GLUT4 in the membrane fraction was delayed. Exercise also increased the protein abundance of transcription factors involved in GLUT4 expression. Immediately after exercise, the protein abundance of MEF2A, nuclear respiratory factor 1 (NRF1), and forkhead box O1 (FOXO1) increased by 18, 30, and 40%, respectively. qRT-PCR experiments showed that miR-223-3p and miR-223-5p expression decreased immediately after exercise by 60 and 30%, respectively, and luciferase assays indicated that MEF2A is a target of the 5p strand of miR-223. Overexpression of miR-223-5p in H9c2 cells decreased the protein abundance of MEF2A. Our results suggest that the exercise-induced increase in GLUT4 content in cardiac muscle is partly due to the posttranscriptional increase in MEF2A protein abundance caused by the decrease in miR-223-5p expression. The exercise-induced decrease in miR-223-3p expression likely contributes to the increases in NRF1 and FOXO1 abundance and GLUT4 content.


Assuntos
MicroRNAs , Miocárdio , Animais , Ratos , Coração , Bioensaio , Fatores de Transcrição MEF2/genética , MicroRNAs/genética , Fator 1 Nuclear Respiratório
16.
EMBO J ; 42(16): e113258, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37409632

RESUMO

Mitochondrial biogenesis is the process of generating new mitochondria to maintain cellular homeostasis. Here, we report that viruses exploit mitochondrial biogenesis to antagonize innate antiviral immunity. We found that nuclear respiratory factor-1 (NRF1), a vital transcriptional factor involved in nuclear-mitochondrial interactions, is essential for RNA (VSV) or DNA (HSV-1) virus-induced mitochondrial biogenesis. NRF1 deficiency resulted in enhanced innate immunity, a diminished viral load, and morbidity in mice. Mechanistically, the inhibition of NRF1-mediated mitochondrial biogenesis aggravated virus-induced mitochondrial damage, promoted the release of mitochondrial DNA (mtDNA), increased the production of mitochondrial reactive oxygen species (mtROS), and activated the innate immune response. Notably, virus-activated kinase TBK1 phosphorylated NRF1 at Ser318 and thereby triggered the inactivation of the NRF1-TFAM axis during HSV-1 infection. A knock-in (KI) strategy that mimicked TBK1-NRF1 signaling revealed that interrupting the TBK1-NRF1 connection ablated mtDNA release and thereby attenuated the HSV-1-induced innate antiviral response. Our study reveals a previously unidentified antiviral mechanism that utilizes a NRF1-mediated negative feedback loop to modulate mitochondrial biogenesis and antagonize innate immune response.


Assuntos
Antivirais , Biogênese de Organelas , Animais , Camundongos , DNA Mitocondrial/genética , Imunidade Inata , Fator 1 Nuclear Respiratório/genética
17.
Biochem Biophys Res Commun ; 668: 96-103, 2023 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-37245295

RESUMO

Hepatocyte stress signaling has been established to alter glucose metabolism and impair systemic glucose homeostasis. In contrast, the role of stress defenses in the control of glucose homeostasis is less understood. Nuclear factor erythroid 2 related factor-1 (NRF1) and -2 (NRF2) are transcription factors that promote stress defense and can exert hepatocyte stress defense programming via complementary gene regulation. To identify whether there are independent or complementary roles of these factors in hepatocytes on glucose homeostasis, we investigated the effect of adult-onset, hepatocyte-specific deletion of NRF1, NRF2, or both on glycemia in mice fed 1-3 weeks with a mildly stressful diet enriched with fat, fructose, and cholesterol. Compared to respective control, NRF1 deficiency and combined deficiency reduced glycemia, in some cases resulting in hypoglycemia, whereas there was no effect of NRF2 deficiency. However, reduced glycemia in NRF1 deficiency did not occur in the leptin-deficient mouse model of obesity and diabetes, suggesting hepatocyte NRF1 support defenses that counteract hypoglycemia but does not promote hyperglycemia. Consistent with this, NRF1 deficiency was associated with reduced liver glycogen and glycogen synthase expression as well as marked alteration to circulating level of glycemia-influencing hormones, growth hormone and insulin-like growth factor-1 (IGF1). Overall, we identify a role for hepatocyte NRF1 in modulating glucose homeostasis, which may be linked to liver glycogen storage and the growth hormone/IGF1 axis.


Assuntos
Hipoglicemia , Glicogênio Hepático , Camundongos , Animais , Glicogênio Hepático/metabolismo , Fator 1 Nuclear Respiratório/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Glucose/metabolismo , Hipoglicemia/metabolismo , Hormônio do Crescimento/metabolismo
18.
Technol Cancer Res Treat ; 22: 15330338231161141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960492

RESUMO

Introduction: Nuclear respiratory factor 1 (NRF1) is an important regulator involved in mitochondrial biogenesis and energy metabolism. However, the specific mechanism of NRF1 in anoikis and epithelial-mesenchymal transition (EMT) remains unclear. Methods: We examined the effect of NRF1 on mitochondria and identified the specific mechanism through transcriptome sequencing, and explored the relationships among NRF1, anoikis, and EMT. Results: We found that upregulated NRF1 expression led to increased mitochondrial oxidative phosphorylation (OXPHOS) and ATP generation. Simultaneously, a significant amount of ROS is generated during OXPHOS. Alternatively, NRF1 upregulates the expression of ROS-scavenging enzymes, allowing tumor cells to maintain low ROS levels and promoting anoikis resistance and EMT. We also found that exogenous ROS was maintained at a low level by NRF1 in breast cancer cells. Conclusion: our study provides mechanistic insight into the function of NRF1 in breast cancer, indicating that NRF1 may serve as a therapeutic target for breast cancer treatment.


Assuntos
Anoikis , Neoplasias da Mama , Transição Epitelial-Mesenquimal , Fator 1 Nuclear Respiratório , Humanos , Feminino , Linhagem Celular Tumoral , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal/genética , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo , Fosforilação Oxidativa , Homeostase , Anoikis/genética , Trifosfato de Adenosina/biossíntese , Mitocôndrias/metabolismo , Potencial da Membrana Mitocondrial , Espécies Reativas de Oxigênio/metabolismo
19.
Aging (Albany NY) ; 15(6): 2033-2045, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36920182

RESUMO

Osteoporosis (OP) is a metabolic bone disease that leads to decrease of bone strength and increase bone brittle and fracture. Dexamethasone (DXMS) usage is a common risk factor of OP. In present study, we found that the Epimedin C protect the DXMS-induced OP, Ras Homolog Family Member A transforming protein (RhoA) was increased in osteoblasts (OBs) and OP models. We further revealed that Nrf1 is a transcription factor that responds to Epimedin C and DXMS in modulating RhoA promoter. The results collectively demonstrate that Epimedin C functions as a positive modifier of RhoA via alteration of Nrf1 transcriptional activity on RhoA promoter, thereby, protecting OBs against OP. Our work is the first study identifying the Epimedin C function in balancing the OBs in OP model via Nrf1-RhoA.


Assuntos
Osteoporose , Proteína rhoA de Ligação ao GTP , Humanos , Dexametasona/farmacologia , Osteoblastos/metabolismo , Osteoporose/induzido quimicamente , Osteoporose/prevenção & controle , Osteoporose/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Fator 1 Nuclear Respiratório/metabolismo
20.
Anticancer Res ; 43(4): 1521-1531, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36974812

RESUMO

BACKGROUND/AIM: Nuclear respiratory factor 1 (NRF1) is a key mediator of genes involved in mitochondrial biogenesis and the respiratory chain; however, its role in bladder cancer remains unknown. Transitional cell carcinoma, also known as urothelial cell carcinoma, is the most common type of bladder cancer resistant to chemotherapy. An established high-grade and invasive transitional cell carcinoma line from patients with urinary bladder cancer, known as T24, has been extensively used in cancer research. In this study, we aimed to investigate the mechanisms through which NRF1 regulates proliferation and cell migration of bladder cancer cells using the T24 cell line. MATERIALS AND METHODS: Cells were transfected with plasmid cloning DNA for NRF1 to evaluate the effect of NRF1 overexpression on bladder cancer cells. Western blot was used to examine epithelial and mesenchymal markers (E-cadherin and α-smooth muscle actin), transcriptional regulators for epithelial-mesenchymal transition (snail family transcriptional repressors), components of transforming growth factor-ß1/SMADs signaling, high-mobility group box 1 (HMGB1), and receptor for advanced glycation end-products (RAGE). The in situ expression of E-cadherin, α-smooth muscle actin and SMAD7 was determined using immunofluorescence staining. Cell migration capacity was assessed by wound-healing assay. RESULTS: Transfection with NRF1 expression vector repressed the migration capacity of bladder cancer cells, diminishing HMGB1/RAGE expression and reducing transforming growth factor ß-associated epithelial-mesenchymal transition in T24 cells. CONCLUSION: Therapeutic avenues that increase NRF1 expression may serve as an adjunct to conventional treatments for bladder cancer.


Assuntos
Carcinoma de Células de Transição , Proteína HMGB1 , Neoplasias da Bexiga Urinária , Humanos , Carcinoma de Células de Transição/patologia , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Fator 1 Nuclear Respiratório/genética , Receptor para Produtos Finais de Glicação Avançada , Actinas , Neoplasias da Bexiga Urinária/patologia , Caderinas/metabolismo , Transição Epitelial-Mesenquimal/genética , Movimento Celular/genética , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA