Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Nanoscale ; 16(17): 8352-8360, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563277

RESUMO

Detection and characterization of protein-protein interactions are essential for many cellular processes, such as cell growth, tissue repair, drug delivery, and other physiological functions. In our research, we have utilized emerging solid-state nanopore sensing technology, which is highly sensitive to better understand heparin and fibroblast growth factor 1 (FGF-1) protein interactions at a single-molecule level without any modifications. Understanding the structure and behavior of heparin-FGF-1 complexes at the single-molecule level is very important. An abnormality in their formation can lead to life-threatening conditions like tumor growth, fibrosis, and neurological disorders. Using a controlled dielectric breakdown pore fabrication approach, we have characterized individual heparin and FGF-1 (one of the 22 known FGFs in humans) proteins through the fabrication of 17 ± 1 nm nanopores. Compared to heparin, the positively charged heparin-binding domains of some FGF-1 proteins translocationally react with the pore walls, giving rise to a distinguishable second peak with higher current blockade. Additionally, we have confirmed that the dynamic FGF-1 is stabilized upon binding with heparin-FGF-1 at the single-molecule level. The larger current blockades from the complexes relative to individual heparin and the FGF-1 recorded during the translocation ensure the binding of heparin-FGF-1 proteins, forming binding complexes with higher excluded volumes. Taken together, we demonstrate that solid-state nanopores can be employed to investigate the properties of individual proteins and their complex interactions, potentially paving the way for innovative medical therapies and advancements.


Assuntos
Fator 1 de Crescimento de Fibroblastos , Heparina , Nanoporos , Ligação Proteica , Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/metabolismo , Heparina/química , Heparina/metabolismo , Humanos
2.
Biomolecules ; 11(8)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34439755

RESUMO

FGFRs are cell surface receptors that, when activated by specific FGFs ligands, transmit signals through the plasma membrane, regulating key cellular processes such as differentiation, division, motility, metabolism and death. We have recently shown that the modulation of the spatial distribution of FGFR1 at the cell surface constitutes an additional mechanism for fine-tuning cellular signaling. Depending on the multivalent, engineered ligand used, the clustering of FGFR1 into diverse supramolecular complexes enhances the efficiency and modifies the mechanism of receptor endocytosis, alters FGFR1 lifetime and modifies receptor signaling, ultimately determining cell fate. Here, we present a novel approach to generate multivalent FGFR1 ligands. We functionalized FGF1 for controlled oligomerization by developing N- and C-terminal fusions of FGF1 with the Fc fragment of human IgG1 (FGF1-Fc and Fc-FGF1). As oligomerization scaffolds, we employed GFPpolygons, engineered GFP variants capable of well-ordered multivalent display, fused to protein G to ensure binding of Fc fragment. The presented strategy allows efficient assembly of oligomeric FGFR1 ligands with up to twelve receptor binding sites. We show that multivalent FGFR1 ligands are biologically active and trigger receptor clustering on the cell surface. Importantly, the approach described in this study can be easily adapted to oligomerize alternative growth factors to control the activity of other cell surface receptors.


Assuntos
Fator 1 de Crescimento de Fibroblastos/química , Imunoglobulina G/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/química , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Análise por Conglomerados , Endocitose , Endossomos/metabolismo , Proteínas de Fluorescência Verde/química , Humanos , Ligantes , Camundongos , Microscopia de Fluorescência , Células NIH 3T3 , Fosforilação , Ligação Proteica , Domínios Proteicos , Engenharia de Proteínas , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes/química , Transdução de Sinais
3.
Sci Rep ; 11(1): 15579, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341408

RESUMO

Human acidic fibroblast growth factor (hFGF1) is an all beta-sheet protein that is involved in the regulation of key cellular processes including cell proliferation and wound healing. hFGF1 is known to aggregate when subjected to thermal unfolding. In this study, we investigate the equilibrium unfolding of hFGF1 using a wide array of biophysical and biochemical techniques. Systematic analyses of the thermal and chemical denaturation data on hFGF1 variants (Q54P, K126N, R136E, K126N/R136E, Q54P/K126N, Q54P/R136E, and Q54P/K126N/R136E) indicate that nullification of charges in the heparin-binding pocket can significantly increase the stability of wtFGF1. Triple variant (Q54P/K126N/R136E) was found to be the most stable of all the hFGF1 variants studied. With the exception of triple variant, thermal unfolding of wtFGF1 and the other variants is irreversible. Thermally unfolded triple variant refolds completely to its biologically native conformation. Microsecond-level molecular dynamic simulations reveal that a network of hydrogen bonds and salt bridges linked to Q54P, K126N, and R136E mutations, are responsible for the high stability and reversibility of thermal unfolding of the triple variant. In our opinion, the findings of the study provide valuable clues for the rational design of a stable hFGF1 variant that exhibits potent wound healing properties.


Assuntos
Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/metabolismo , Desdobramento de Proteína , Temperatura , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Guanidina/farmacologia , Heparina/metabolismo , Humanos , Camundongos , Proteínas Mutantes/química , Mutação/genética , Células NIH 3T3 , Conformação Proteica , Desnaturação Proteica/efeitos dos fármacos , Estabilidade Proteica , Eletricidade Estática , Ureia/farmacologia
4.
Int J Biol Macromol ; 180: 470-483, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33745974

RESUMO

Fibroblast growth factor receptors (FGFRs) are integral membrane proteins involved in various biological processes including proliferation, migration and apoptosis. There are a number of regulatory mechanisms of FGFR signaling, which tightly control the specificity and duration of transmitted signals. The effect of the FGFRs spatial distribution in the plasma membrane on receptor-dependent functions is still largely unknown. We have demonstrated that oligomerization of FGF1 with coiled-coil motifs largely improves FGF1 affinity for FGFRs and heparin. Set of developed FGF1 oligomers evoked prolonged activation of FGFR1 and receptor-downstream signaling pathways, as compared to the wild type FGF1. The majority of obtained oligomeric FGF1 variants showed increased stability, enhanced mitogenic activity and largely improved internalization via FGFR1-dependent endocytosis. Importantly, FGF1 oligomers with the highest oligomeric state exhibited reduced ability to stimulate FGFR-dependent glucose uptake, while at the same time remained hyperactive in the induction of cell proliferation. Our data implicate that oligomerization of FGF1 alters the biological activity of the FGF/GFR1 signaling system. Furthermore, developed FGF1 oligomers, due to improved stability and proliferative potential, can be applied in the regenerative medicine or as drug delivery vehicles in the ADC approach against FGFR1-overproducing cancers.


Assuntos
Proliferação de Células , Fator 1 de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Células 3T3-L1 , Animais , Ligação Competitiva , Linhagem Celular Tumoral , Fator 1 de Crescimento de Fibroblastos/química , Heparina/metabolismo , Humanos , Camundongos , Microscopia de Fluorescência , Células NIH 3T3 , Ligação Proteica , Multimerização Proteica
5.
Mol Med Rep ; 21(6): 2560-2570, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32323787

RESUMO

Dysregulation of angiogenesis can be caused by hypoxia, which may result in severe diseases of the heart, including coronary artery disease. Hypoxia­inducible factor 1 (HIF­1) modulates angiogenesis via the regulation of several angiogenic factors. However, the underlying mechanism of hypoxia­induced angiogenesis remains unknown. In the present study, it was hypothesized that long non­coding RNA (lncRNA) non­coding RNA activated by DNA damage (NORAD) may serve a role in the process of angiogenesis via the regulation of microRNA(miR)­590­3p under hypoxic conditions. The effect of NORAD and miR­590­3p on cell viability and properties associated with angiogenesis, including cell migration and tube formation in human umbilical vein endothelial cells (HUVECs) under hypoxic conditions, were assessed. Potential downstream angiogenic factors of miR­590­3p were also determined by molecular experiments. It was identified that NORAD expression was upregulated and miR­590­3p expression was downregulated in hypoxia­exposed HUVECs, and also in myocardial infarction (MI) left ventricle tissues in mice. Moreover, downregulation of NORAD expression resulted in decreased cell viability and angiogenic capacity, but further knocking down miR­590­3p expression reversed these alterations, resulting in increased cell migration and tube formation in HUVECs under hypoxic conditions for 24 h. It was demonstrated that NORAD overexpression also increased cell vitality and tube­formation capacity. Furthermore, NORAD was identified to bind with miR­590­3p directly, and miR­590­3p was shown to target certain proangiogenic agents, such as vascular endothelial growth factor (VEGF)A, fibroblast growth factor (FGF)1 and FGF2 directly. Therefore, the present results suggested that lncRNA NORAD may bind with miR­590­3p to regulate the angiogenic ability of HUVECs via the regulation of several downstream proangiogenic factors under hypoxia. Thus, the lncRNA NORAD/miR­590­3p axis may be a novel regulatory pathway in the angiogenic mechanisms in HUVECs, which highlights a potentially novel perspective for treating ischemia/hypoxia­induced angiogenic diseases.


Assuntos
Hipóxia Celular , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Antagomirs/metabolismo , Movimento Celular , Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Infarto do Miocárdio/patologia , Neovascularização Fisiológica , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Analyst ; 145(8): 3090-3099, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32150181

RESUMO

Identifying structural elements within heparin (as well as other glycosaminoglycan) chains that enable their interaction with a specific client protein remains a challenging task due to the high degree of both intra- and inter-chain heterogeneity exhibited by this polysaccharide. The new experimental approach explored in this work is based on the assumption that the heparin chain segments bound to the protein surface will be less prone to collision-induced dissociation (CID) in the gas phase compared to the chain regions that are not involved in binding. Facile removal of the unbound chain segments from the protein/heparin complex should allow the length and the number of sulfate groups within the protein-binding segment of the heparin chain to be determined by measuring the mass of the truncated heparin chain that remains bound to the protein. Conformational integrity of the heparin-binding interface on the protein surface in the course of CID is ensured by monitoring the evolution of collisional cross-section (CCS) of the protein/heparin complexes as a function of collisional energy. A dramatic increase in CCS signals the occurrence of large-scale conformational changes within the protein and identifies the energy threshold, beyond which relevant information on the protein-binding segments of heparin chains is unlikely to be obtained. Testing this approach using a 1 : 1 complex formed by a recombinant form of an acidic fibroblast growth factor (FGF-1) and a synthetic pentasaccharide GlcNS,6S-GlcA-GlcNS,3S,6S-IdoA2S-GlcNS,6S-Me as a model system indicated that a tri-saccharide fragment is the minimal-length FGF-binding segment. Extension of this approach to a decameric heparin chain (dp10) allowed meaningful binding data to be obtained for a 1 : 1 protein/dp10 complex, while the ions representing the higher stoichiometry complex (2 : 1) underwent dissociation via asymmetric charge partitioning without generating truncated heparin chains that remain bound to the protein.


Assuntos
Fator 1 de Crescimento de Fibroblastos/metabolismo , Heparina/metabolismo , Oligossacarídeos/metabolismo , Sítios de Ligação , Sequência de Carboidratos , Fator 1 de Crescimento de Fibroblastos/química , Heparina/química , Espectrometria de Mobilidade Iônica , Espectrometria de Massas , Oligossacarídeos/química , Ligação Proteica , Desdobramento de Proteína
7.
Biomed Eng Online ; 18(1): 97, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578149

RESUMO

BACKGROUND: Silk fibroin hydrogel, derived from Bombyx mori cocoons, has been shown to have potential effects on wound healing due to its excellent biocompatibility and less immunogenic and biodegradable properties. Many studies suggest silk fibroin as a promising material of wound dressing and it can support the adhesion and proliferation of a variety of human cells in vitro. However, lack of translational evidence has hampered its clinical applications for skin repair. Herein, a heparin-immobilized fibroin hydrogel was fabricated to deliver FGF1 (human acidic fibroblast growth factor 1) on top of wound in rats with full-thickness skin excision by performing comprehensive preclinical studies to fully evaluate its safety and effectiveness. The wound-healing efficiency of developed fibroin hydrogels was evaluated in full-thickness wound model of rats, compared with the chitosan used clinically. RESULTS: The water absorption, swelling ratio, accumulative FGF1 releasing rate and biodegradation ratio of fabricated hydrogels were measured. The regenerated fibroin hydrogels with good water uptake properties rapidly swelled to a 17.3-fold maximum swelling behavior over 12 h and a total amount of 40.48 ± 1.28% hydrogels was lost within 15 days. Furthermore, accumulative releasing data suggested that heparinized hydrogels possessed effective release behavior of FGF1. Then full-thickness skin excision was created in rats and left untreated or covered with heparinized fibroin hydrogels-immobilized recombinant human FGF1. The histological evaluation using hematoxylin and eosin (HE) and Masson's trichrome (MT) staining was performed to observe the dermic formation and collagen deposition on the wound-healing site. To evaluate the wound-healing mechanisms induced by fibroin hydrogel treatment, wound-healing scratch and cell proliferation assay were performed. it was found that both fibroin hydrogels and FGF1 can facilitate the migration of fibroblast L929 cells proliferation and migration. CONCLUSION: This study provides systematic preclinical evidence that the silk fibroin promotes wound healing as a wound-healing dressing, thereby establishing a foundation toward its further application for new treatment options of wound repair and regeneration.


Assuntos
Portadores de Fármacos/metabolismo , Fator 1 de Crescimento de Fibroblastos/farmacologia , Fibroínas/metabolismo , Heparina/metabolismo , Hidrogéis/química , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Bombyx , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Portadores de Fármacos/química , Fator 1 de Crescimento de Fibroblastos/química , Fibroínas/química , Regulação da Expressão Gênica/efeitos dos fármacos , Ratos , Regeneração/efeitos dos fármacos , Pele/metabolismo , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Engenharia Tecidual
8.
Biochem Biophys Res Commun ; 518(2): 191-196, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31420170

RESUMO

Acidic fibroblast growth factors (FGF1s) are heparin binding proteins that regulate a wide array of key cellular processes and are also candidates for promising biomedical applications. FGF1-based therapeutic applications are currently limited due to their inherent thermal instability and susceptibility to proteases. Using a wide range of biophysical and biochemical techniques, we demonstrate that reversal of charge on a well-conserved positively charged amino acid, R136, in the heparin binding pocket drastically increases the resistance to proteases, thermal stability, and cell proliferation activity of the human acidic fibroblast growth factor (hFGF1). Two-dimensional NMR data suggest that the single point mutations at position-136 (R136G, R136L, R136Q, R136K, and R136E) did not perturb the backbone folding of hFGF1. Results of the differential scanning calorimetry experiments show that of all the designed R136 mutations only the charge reversal mutation, R136E, significantly increases (ΔTm = 7 °C) the thermal stability of the protein. Limited trypsin and thrombin digestion results reveal that the R136E mutation drastically increases the resistance of hFGF1 to the action of the serine proteases. Isothermal titration calorimetry data show that the R136E mutation markedly decreases the heparin binding affinity of hFGF1. Interestingly, despite lower heparin binding affinity, the cell proliferation activity of the R136E variant is more than double of that exhibited by either the wild type or the other R136 variants. The R136E variant due to its increased thermal stability, resistance to proteases, and enhanced cell proliferation activity are expected to provide valuable clues for the development of hFGF1- based therapeutics for the management of chronic diabetic wounds.


Assuntos
Proliferação de Células , Fator 1 de Crescimento de Fibroblastos/metabolismo , Trombina/metabolismo , Animais , Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/genética , Humanos , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Células NIH 3T3 , Mutação Puntual , Conformação Proteica
9.
Gene ; 717: 144047, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31421190

RESUMO

BACKGROUND: Vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) signaling pathways play important roles in the formation of the blood vascular system and nervous system across animal phyla. We have earlier reported VEGF and FGF from Hydra vulgaris Ind-Pune, a cnidarian with a defined body axis, an organized nervous system and a remarkable ability of regeneration. We have now identified three more components of VEGF and FGF signaling pathways from hydra. These include FGF-1, FGF receptor 1 (FGFR-1) and VEGF receptor 2 (VEGFR-2) with a view to deciphering their possible roles in regeneration. METHODS: In silico analysis of proteins was performed using Clustal omega, Swiss model, MEGA 7.0, etc. Gene expression was studied by whole mount in situ hybridization. VEGF and FGF signaling was inhibited using specific pharmacological inhibitors and their effects on head regeneration were studied. RESULTS: Expression patterns of the genes indicate a possible interaction between FGF-1 and FGFR-1 and also VEGF and VEGFR-2. Upon treatment of decapitated hydra with pharmacological inhibitor of FGFR-1 or VEGFR-2 for 48 h, head regeneration was delayed in treated as compared to untreated, control regenerates. When we studied the expression of head specific genes HyBra1 and HyKs1 and tentacle specific gene HyAlx in control and treated regenerates using whole mount in situ hybridization, expression of all the three genes was found to be adversely affected in treated regenerates. CONCLUSIONS: The results suggest that VEGF and FGF signaling play important roles in regeneration of hypostome and tentacles in hydra.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Cabeça/fisiologia , Hydra/fisiologia , Regeneração/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Simulação por Computador , Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Hydra/efeitos dos fármacos , Indóis/farmacologia , Domínios Proteicos , Pirróis/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Regeneração/efeitos dos fármacos , Transdução de Sinais , Homologia Estrutural de Proteína , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Cells ; 8(8)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443196

RESUMO

Fibroblast growth factor 1 (FGF1) has been shown to interact with integrin αvß3 through a specific binding site, involving Arg35 residue. The FGF1 mutant (R35E) with impaired integrin binding was found to be defective in its proliferative response, although it was still able to interact with FGF receptors (FGFR) and heparin and induce the activation of downstream signaling pathways. Here, we demonstrate that the lack of mitogenic potential of R35E mutant is directly caused by its decreased thermodynamic stability and susceptibility to proteolytic degradation. Introduction of three stabilizing mutations into R35E variant compensated the effect of destabilizing R35E mutation and restored the proliferation potential of FGF1. Moreover, the stabilized R35E variant regained both anti-apoptotic and wound healing activities, while remaining defective in binding to integrin αvß3. Our results suggest that the thermodynamic stability and resistance to degradation, rather than the interaction with integrin are required for mitogenic response of FGF1.


Assuntos
Fator 1 de Crescimento de Fibroblastos/química , Integrina alfaVbeta3/metabolismo , Estabilidade Proteica , Proteólise , Animais , Sítios de Ligação , Fator 1 de Crescimento de Fibroblastos/genética , Heparina/química , Humanos , Integrina alfaVbeta3/química , Cinética , Camundongos , Mutação , Células NIH 3T3 , Ligação Proteica , Receptores de Fatores de Crescimento de Fibroblastos/química
11.
Biopolymers ; 110(7): e23252, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30667535

RESUMO

Heparin is a key player in cell signaling via its physical interactions with protein targets in the extracellular matrix. However, basic molecular level understanding of these highly biologically relevant intermolecular interactions is still incomplete. In this study, for the first time, microsecond-scale MD simulations are reported for a complex between fibroblast growth factor 1 and heparin. We rigorously analyze this molecular system in terms of the conformational space, structural, energetic, and dynamic characteristics. We reveal that the conformational selection mechanism of binding denotes a recognition specificity determinant. We conclude that the length of the simulation could be crucial for evaluation of some of the analyzed parameters. Our data provide novel significant insights into the interactions in the fibroblast growth factor 1 complex with heparin, in particular, and into the physical-chemical nature of protein-glycosaminoglycan systems in general, which have potential applicability for biomaterials development in the area of regenerative medicine.


Assuntos
Fator 1 de Crescimento de Fibroblastos/química , Heparina/química , Simulação de Dinâmica Molecular , Sítios de Ligação , Fator 1 de Crescimento de Fibroblastos/metabolismo , Heparina/metabolismo , Humanos , Cinética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Termodinâmica
12.
Acta Biomater ; 79: 239-252, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30149211

RESUMO

Sericin, as the major component of Bombyx mori silk, is a useful biomaterial for tissue engineering due to its hydrophilicity, biocompatibility and biodegradability. Here, we report the fabrication of a human acidic fibroblast growth factor (FGF1)-functionalized sericin hydrogel using a transgenic silkworm spun silk with FGF1 incorporated in its sericin layer. Sericin, together with FGF1, were simultaneously extracted from the silk fiber and then exposed to cold-induced hydrogel formation without additional crosslinking. The fabricated FGF1 sericin hydrogels demonstrated injectability, useful mechanical properties and a porous microstructure, which contributed to cell adhesion and survival. In addition, FGF1 achieved long-term storage in the sericin hydrogels over a wide range of temperatures. Further, the sericin-FGF1 demonstrated sustained release to promote cell proliferation and wound healing. Furthermore, cellular inflammatory responses showed that the FGF1 sericin hydrogels exhibited biocompatibility and no immunogenicity. This study revealed the successful exploration of FGF1-functionalized sericin hydrogels as a new protein-based biomaterial to expand applications of FGF1 and sericin in tissue and medical engineering. Further, we demonstrated a strategy for the predesign of exogenous protein-functionalized sericin hydrogels through genetically modifying silk fibers as sources for their cost effective production at a large scale. STATEMENT OF SIGNIFICANCE: Sericin from the Bombyx mori silk, is regarded as a desirable biomaterial for tissue engineering due to its hydrophilicity, biocompatibility and biodegradability. Genetically engineering the sericin with functional exogenous proteins would enhance its biofunctions and further expand its application in tissue engineering. In this study, we demonstrated a method to fabricate a human acidic fibroblast growth factor (FGF1)-functionalized sericin hydrogel using a transgenic silkworm spun silk with FGF1 incorporated in its sericin layer. The fabricated FGF1 sericin hydrogels demonstrated injectability, porous microstructure, biocompatibility and no immunogenicity which contributed to cell adhesion and survival. Remarkably, FGF1 could achieve a long-term stability in the sericin hydrogels over a wide range of temperatures and sustained release to promote cell proliferation and wound healing. This study revealed the successful exploration of FGF1-functionalized sericin hydrogels as a new protein-based biomaterial in tissue and medical engineering application, and provided a strategy for the predesign of exogenous protein-functionalized sericin hydrogels through genetically modifying silk fibers as sources for their cost effective production at a large scale.


Assuntos
Bombyx/genética , Proliferação de Células/efeitos dos fármacos , Fator 1 de Crescimento de Fibroblastos/farmacologia , Engenharia Genética/métodos , Hidrogéis/farmacologia , Sericinas/farmacologia , Animais , Animais Geneticamente Modificados , Adesão Celular/efeitos dos fármacos , Preparações de Ação Retardada/farmacologia , Fator 1 de Crescimento de Fibroblastos/química , Inflamação/patologia , Camundongos , Células NIH 3T3 , Estrutura Secundária de Proteína , Células RAW 264.7 , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Arch Biochem Biophys ; 654: 115-125, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30031837

RESUMO

Human acidic fibroblast growth factor 1 (hFGF1) is a protein intricately involved in cell growth and tissue repair. In this study, we investigate the effect(s) of understanding the role of a conserved proline (P135), located in the heparin binding pocket, on the structure, stability, heparin binding affinity, and cell proliferation activity of hFGF1. Substitution of proline-135 with a positively charged lysine (P135K) resulted in partial destabilization of the protein; however, the overall structural integrity of the protein was maintained upon substitution of proline-135 with either a negative charge (P135E) or a polar amino acid (P135Q). Interestingly, upon heparin binding, an increase in thermal stability equivalent to that of wt-hFGF1 was observed when P135 was replaced with a positive (P135K) or a negative charge (P135E), or with a polar amino acid (P135Q). Surprisingly, introduction of negative charge in the heparin-binding pocket at position 135 (P135E) increased hFGF1's affinity for heparin by 3-fold, while the P135K mutation, did not alter the heparin-binding affinity. However, the enhanced heparin-binding affinity of mutant P135E did not translate to an increase in cell proliferation activity. Interestingly, the P135K and P135E double mutations, P135K/R136E and P135/R136E, reduced the heparin binding affinity by ∼3-fold. Furthermore, the cell proliferation activity was increased when the charge reversal mutation R136E was paired with both P135E (P135E/R136E) and P135K (P135K/R136E). Overall, the results of this study suggest that while heparin is useful for stabilizing hFGF1 on the cell surface, this interaction is not mandatory for activation of the FGF receptor.


Assuntos
Proliferação de Células/fisiologia , Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/fisiologia , Prolina/fisiologia , Fator 1 de Crescimento de Fibroblastos/genética , Heparina/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Espectroscopia de Prótons por Ressonância Magnética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo
14.
Biochemistry ; 57(26): 3807-3816, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29812912

RESUMO

Fibroblast growth factor 1 (FGF1) binds to specific FGF receptors (FGFRs) at the surface of target cells to initiate intracellular signaling. While heparan sulfate proteoglycans (HSPGs) are well-described coreceptors, it is uncertain whether there are additional binding sites for FGF1 at the cell surface. To address this, we devised and tested a method to identify novel binding sites for FGF1 at the cell surface, which may also be applicable for other protein ligands. We constructed an APEX2-FGF1 fusion protein to perform proximal biotin labeling of proteins following binding of the fusion protein to the cell surface. After functional validation of the fusion protein by a signaling assay, we used this method to identify binding sites for FGF1 on cell surfaces of living cells. We confirmed the feasibility of our approach by detection of FGFR4, a well-known and specific receptor for FGF1. We subsequently screened for novel interactors using RPE1 cells and identified the proteoglycans CSPG4 (NG2) and CD44. We found that FGF1 binds CD44 through its heparin-binding moiety. Moreover, we found that FGF1 was colocalized with both CSPG4 and CD44 at the cell surface, suggesting that these receptors act as storage molecules that create a reservoir of FGF1. Importantly, our data demonstrate that recombinant ligand-APEX2 fusion proteins can be used to identify novel receptor interactions on the cell surface.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Fator 1 de Crescimento de Fibroblastos/química , Receptores de Hialuronatos/química , Proteínas de Membrana/química , Proteínas Recombinantes de Fusão/química , Proteoglicanas de Sulfatos de Condroitina/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Endonucleases , Fator 1 de Crescimento de Fibroblastos/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Proteínas de Membrana/metabolismo , Enzimas Multifuncionais , Proteínas Recombinantes de Fusão/metabolismo , Coloração e Rotulagem
15.
Protein Sci ; 27(6): 1068-1082, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29645318

RESUMO

In this study, we examined the local dynamics of acidic fibroblast growth factor (FGF-1) as well as the binding sites of various polyanions including poly-sulfates (heparin and low MW heparin) and poly-phosphates (phytic acid and ATP) using hydrogen-deuterium exchange mass spectrometry (HX-MS). For local dynamics, results are analyzed at the peptide level as well as in terms of buried amides employing crystallographic B-factors and compared with a residue level heat map generated from HX-MS results. Results show that strand 4 and 5 and the turn between them to be the most flexible regions as was previously seen by NMR. On the other hand, the C-terminal strands 8, 9, and 10 appear to be more rigid which is also consistent with crystallographic B-factors as well as local dynamics studies conducted by NMR. Crystal structures of FGF-1 in complex with heparin have shown that heparin binds to N-terminal Asn18 and to C-terminal Lys105, Tryp107, Lys112, Lys113, Arg119, Pro121, Arg122, Gln127, and Lys128 indicating electrostatic forces as dominant interactions. Heparin binding as determined by HX-MS is consistent with crystallography data. Previous studies have also shown that other polyanions including low MW heparin, phytic acid and ATP dramatically increase the thermal stability of FGF-1. Using HX-MS, we find other poly anions tested bind in a similar manner to heparin, primarily targeting the turns in the lysine rich C-terminal region of FGF-1 along with two distinct N-terminal regions that contains lysines and arginines/histidines. This confirms the interactions between FGF-1 and polyanions are primary directed by electrostatics.


Assuntos
Fator 1 de Crescimento de Fibroblastos/química , Polímeros/química , Sítios de Ligação , Deutério , Medição da Troca de Deutério , Hidrogênio , Cinética , Espectrometria de Massas , Modelos Moleculares , Polieletrólitos , Ligação Proteica
16.
J Cell Mol Med ; 22(6): 3259-3263, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29575613

RESUMO

Single-chain variable fragment (scFv) antibodies are the smallest immunoglobulins with high antigen-binding affinity. We have previously reported that fibroblast growth factor 1 played pivotal roles in cancer development and generated a mouse scFv (mscFv1C9) could effectively prohibit cancer cell proliferation in vitro and in vivo. Here, we further humanized this scFv (hscFv1C9) using a structure-guided complementarity determining region grafting strategy. The purified hscFv1C9 maintained similar antigen-binding affinity and specificity as mscFv1C9, and it was capable of inhibiting growth of different tumours in vitro and in vivo. These data strongly suggested that hscFv1C9 has antitumour potentials.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Fator 1 de Crescimento de Fibroblastos/antagonistas & inibidores , Glioma/tratamento farmacológico , Anticorpos de Cadeia Única/farmacologia , Sequência de Aminoácidos/genética , Animais , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Feminino , Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/imunologia , Glioma/genética , Glioma/patologia , Xenoenxertos , Humanos , Camundongos , Anticorpos de Cadeia Única/imunologia
17.
Protein Sci ; 27(2): 431-440, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29076579

RESUMO

An efficient protein-folding pathway leading to target structure, and the avoidance of aggregation, is essential to protein evolution and de novo design; however, design details to achieve efficient folding and avoid aggregation are poorly understood. We report characterization of the thermally-induced aggregate of fibroblast growth factor-1 (FGF-1), a small globular protein, by solid-state NMR. NMR spectra are consistent with residual structure in the aggregate and provide evidence of a structured region that corresponds to the region of the folding nucleus. NMR data on aggregated FGF-1 also indicate the presence of unstructured regions that exhibit hydration-dependent dynamics and suggest that unstructured regions of aggregated FGF-1 lie outside the folding nucleus. Since it is known that regions outside the folding nucleus fold late in the folding pathway, we postulate that these regions unfold early in the unfolding pathway and that the partially folded state is more prone to intermolecular aggregation. This interpretation is further supported by comparison with a designed protein that shares the same FGF-1 folding nucleus sequence, but has different 1° structure outside the folding nucleus, and does not thermally aggregate. The results suggest that design of an efficient folding nucleus, and the avoidance of aggregation in the folding pathway, are potentially separable design criteria - the latter of which could principally focus upon the physicochemical properties of 1° structure outside the folding nucleus.


Assuntos
Fator 1 de Crescimento de Fibroblastos/química , Agregados Proteicos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Desnaturação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Termodinâmica
18.
Cell Rep ; 20(7): 1717-1728, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813681

RESUMO

The recent discovery of metabolic roles for fibroblast growth factor 1 (FGF1) in glucose homeostasis has expanded the functions of this classically known mitogen. To dissect the molecular basis for this functional pleiotropy, we engineered an FGF1 partial agonist carrying triple mutations (FGF1ΔHBS) that diminished its ability to induce heparan sulfate (HS)-assisted FGF receptor (FGFR) dimerization and activation. FGF1ΔHBS exhibited a severely reduced proliferative potential, while preserving the full metabolic activity of wild-type FGF1 in vitro and in vivo. Hence, suboptimal FGFR activation by a weak FGF1-FGFR dimer is sufficient to evoke a metabolic response, whereas full FGFR activation by stable and sustained dimerization is required to elicit a mitogenic response. In addition to providing a physical basis for the diverse activities of FGF1, our findings will impact ongoing drug discoveries targeting FGF1 and related FGFs for the treatment of a variety of human diseases.


Assuntos
Fator 1 de Crescimento de Fibroblastos/química , Hepatócitos/efeitos dos fármacos , Mitógenos/química , Receptores de Fatores de Crescimento de Fibroblastos/química , Células 3T3-L1 , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 1 de Crescimento de Fibroblastos/farmacologia , Expressão Gênica , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitógenos/genética , Mitógenos/metabolismo , Mitógenos/farmacologia , Modelos Moleculares , Células NIH 3T3 , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estabilidade Proteica , Ratos , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
J Biotechnol ; 259: 30-38, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28827102

RESUMO

BACKGROUND: Human fibroblast growth factor-1 (FGF-1) has powerful mitogenic activities in a variety of cell types and plays significant roles in many physiological processes e.g. angiogenesis and wound healing. There is increasing demand for large scale production of recombinant human FGF-1 (rhFGF-1), in order to investigate the potential medical use. In the present study, we explored SHuffle™ T7 strain for production of rhFGF-1. METHODS: A synthetic gene encoding Met-140 amino acid form of human FGF-1 was utilized for expression of the protein in three different E. coli hosts (BL21 (DE3), Rosetta-gami™ 2(DE3), SHuffle™ T7). Total expressions and soluble/insoluble expression ratios of rhFGF-1 in different hosts were analyzed and compared. Soluble rhFGF-1 produced in SHuffle™ T7 cells was purified using one-step heparin-Sepharose affinity chromatography and characterized by a variety of methods for physicochemical and biological properties. RESULTS: The highest level of rhFGF-1 expression and maximum soluble/insoluble ratio were achieved in SHuffle™ T7 strain. Using a single-step heparin-Sepharose chromatography, about 1500mg of purified rhFGF-1 was obtained from one liter of the culture, representing purification yield of ∼70%. The purified protein was reactive toward anti-FGF-1 ployclonal antibody in immunoblotting. Mass spectrometry confirmed the protein had expected amino acid sequence and molecular weight. In reverse-phase high-performance liquid chromatography (RP-HPLC), the protein displayed the same retention time with the human FGF-1 standard, and purity of 94%. Less than 0.3% of the purified protein was comprised of oligomers and/or aggregates as judged by high-performance size-exclusion chromatography (HP-SEC). Secondary and tertiary structures of the protein, investigated by circular dichroism and intrinsic fluorescence spectroscopy methods, respectively, represented native folding of the protein. The purified rhFGF-1 was bioactive and stimulated proliferation of NIH 3T3 cells with EC50 of 0.84ng/mL. CONCLUSION: Although SHuffle™ T7 has been introduced for production of disulfide-bonded proteins in cytoplasm, we herein successfully recruited it for high yield production of soluble and bioactive rhFGF-1, a protein with 3 free cysteine and no disulfide bond. To our knowledge, this is the highest-level of rhFGF-1 expression in E. coli reported so far. Extensive physicochemical and biological analysis showed the protein had similar characteristic to authentic FGF-1.


Assuntos
Bacteriófago T7/genética , Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Animais , Bacteriófago T7/metabolismo , Proliferação de Células/efeitos dos fármacos , Escherichia coli/genética , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/farmacologia , Humanos , Camundongos , Células NIH 3T3 , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
20.
Int J Mol Sci ; 18(6)2017 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-28629128

RESUMO

FGF-1 is a potent mitogen that, by interacting simultaneously with Heparan Sulfate Glycosaminoglycan HSGAG and the extracellular domains of its membrane receptor (FGFR), generates an intracellular signal that finally leads to cell division. The overall structure of the ternary complex Heparin:FGF-1:FGFR has been finally elucidated after some controversy and the interactions within the ternary complex have been deeply described. However, since the structure of the ternary complex was described, not much attention has been given to the molecular basis of the interaction between FGF-1 and the HSGAG. It is known that within the complex, the carbohydrate maintains the same helical structure of free heparin that leads to sulfate groups directed towards opposite directions along the molecular axis. The precise role of single individual interactions remains unclear, as sliding and/or rotating of the saccharide along the binding pocket are possibilities difficult to discard. The HSGAG binding pocket can be subdivided into two regions, the main one can accommodate a trisaccharide, while the other binds a disaccharide. We have studied and analyzed the interaction between FGF-1 and a library of trisaccharides by STD-NMR and selective longitudinal relaxation rates. The library of trisaccharides corresponds to the heparin backbone and it has been designed to interact with the main subsite of the protein.


Assuntos
Fator 1 de Crescimento de Fibroblastos/química , Heparina/química , Imageamento por Ressonância Magnética/métodos , Trissacarídeos/química , Sítios de Ligação , Fenômenos Biofísicos , Cristalografia por Raios X , Dissacarídeos , Heparitina Sulfato/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...