Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 631
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732031

RESUMO

Skeletal muscle myogenesis hinges on gene regulation, meticulously orchestrated by molecular mechanisms. While the roles of transcription factors and non-coding RNAs in myogenesis are widely known, the contribution of RNA-binding proteins (RBPs) has remained unclear until now. Therefore, to investigate the functions of post-transcriptional regulators in myogenesis and uncover new functional RBPs regulating myogenesis, we employed CRISPR high-throughput RBP-KO (RBP-wide knockout) library screening. Through this approach, we successfully identified Eef1a1 as a novel regulatory factor in myogenesis. Using CRISPR knockout (CRISPRko) and CRISPR interference (CRISPRi) technologies, we successfully established cellular models for both CRISPRko and CRISPRi. Our findings demonstrated that Eef1a1 plays a crucial role in promoting proliferation in C2C12 myoblasts. Through siRNA inhibition and overexpression methods, we further elucidated the involvement of Eef1a1 in promoting proliferation and suppressing differentiation processes. RIP (RNA immunoprecipitation), miRNA pull-down, and Dual-luciferase reporter assays confirmed that miR-133a-3p targets Eef1a1. Co-transfection experiments indicated that miR-133a-3p can rescue the effect of Eef1a1 on C2C12 myoblasts. In summary, our study utilized CRISPR library high-throughput screening to unveil a novel RBP, Eef1a1, involved in regulating myogenesis. Eef1a1 promotes the proliferation of myoblasts while inhibiting the differentiation process. Additionally, it acts as an antagonist to miR-133a-3p, thus modulating the process of myogenesis.


Assuntos
Diferenciação Celular , Proliferação de Células , Desenvolvimento Muscular , Mioblastos , Fator 1 de Elongação de Peptídeos , Desenvolvimento Muscular/genética , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Animais , Camundongos , Proliferação de Células/genética , Diferenciação Celular/genética , Mioblastos/metabolismo , Mioblastos/citologia , Sistemas CRISPR-Cas , Linhagem Celular , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
2.
Plant Physiol Biochem ; 210: 108649, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653099

RESUMO

The translation elongation factor 1α (EF1α) protein is a highly conserved G protein that is crucial for protein translation in all eukaryotic organisms. EF1α quickly became insoluble at temperatures 42 °C treatment for 2h in vitro, but generally remained soluble in vivo even after being exposed to temperatures as high as 45 °C for an extended period, which suggests that protective mechanisms exist for keeping EF1α soluble in plant cells under heat stress. EF1α had fast in vivo insolubilization when exposed to 45 °C, resulting in about 40% of the protein aggregating after 9 h. Given its established role in protein translation, heat-induced aggregation is most likely to impact the function of the elongation factor. Overexpression of constitutive mutants in both GTP-bound and GDP-bound forms of EF1α resulted in significantly decreased heat tolerance. These findings provide evidence to support the critical role of EF1α, a thermosensitive protein, in the heat tolerance of plants.


Assuntos
Fator 1 de Elongação de Peptídeos , Termotolerância , Fator 1 de Elongação de Peptídeos/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Termotolerância/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Temperatura Alta , Agregados Proteicos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Resposta ao Choque Térmico/fisiologia
3.
Cancer Res ; 84(9): 1460-1474, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38593213

RESUMO

Patients with triple-negative breast cancer (TNBC) have a poor prognosis due to the lack of effective molecular targets for therapeutic intervention. Here we found that the long noncoding RNA (lncRNA) MILIP supports TNBC cell survival, proliferation, and tumorigenicity by complexing with transfer RNAs (tRNA) to promote protein production, thus representing a potential therapeutic target in TNBC. MILIP was expressed at high levels in TNBC cells that commonly harbor loss-of-function mutations of the tumor suppressor p53, and MILIP silencing suppressed TNBC cell viability and xenograft growth, indicating that MILIP functions distinctively in TNBC beyond its established role in repressing p53 in other types of cancers. Mechanistic investigations revealed that MILIP interacted with eukaryotic translation elongation factor 1 alpha 1 (eEF1α1) and formed an RNA-RNA duplex with the type II tRNAs tRNALeu and tRNASer through their variable loops, which facilitated the binding of eEF1α1 to these tRNAs. Disrupting the interaction between MILIP and eEF1α1 or tRNAs diminished protein synthesis and cell viability. Targeting MILIP inhibited TNBC growth and cooperated with the clinically available protein synthesis inhibitor omacetaxine mepesuccinate in vivo. Collectively, these results identify MILIP as an RNA translation elongation factor that promotes protein production in TNBC cells and reveal the therapeutic potential of targeting MILIP, alone and in combination with other types of protein synthesis inhibitors, for TNBC treatment. SIGNIFICANCE: LncRNA MILIP plays a key role in supporting protein production in TNBC by forming complexes with tRNAs and eEF1α1, which confers sensitivity to combined MILIP targeting and protein synthesis inhibitors.


Assuntos
Proliferação de Células , Fator 1 de Elongação de Peptídeos , Biossíntese de Proteínas , RNA Longo não Codificante , RNA de Transferência , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Humanos , Feminino , RNA de Transferência/genética , RNA de Transferência/metabolismo , Animais , Camundongos , Fator 1 de Elongação de Peptídeos/metabolismo , Fator 1 de Elongação de Peptídeos/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Regulação Neoplásica da Expressão Gênica
4.
Phytomedicine ; 128: 155455, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513376

RESUMO

BACKGROUND: Ischemic stroke (IS) is a serious cerebrovascular disease characterized by significantly elevated mortality and disability rates, and the treatments available for this disease are limited. Neuroinflammation and oxidative stress are deemed the major causes of cerebral ischemic injury. N-Cinnamoylpyrrole alkaloids form a small group of natural products from the genus Piper and have not been extensively analyzed pharmacologically. Thus, identifying the effect and mechanism of N-cinnamoylpyrrole-derived alkaloids on IS is worthwhile. PURPOSE: The present research aimed to explore the antineuroinflammatory and antioxidative stress effects of N-cinnamoylpyrrole-derived alkaloids isolated from the genus Piper and to explain the effects and mechanism on IS. METHODS: N-cinnamoylpyrrole-derived alkaloids were isolated from Piper boehmeriaefolium var. tonkinense and Piper sarmentosum and identified by various chromatographic methods. Lipopolysaccharide (LPS)-induced BV-2 microglia and a mouse model intracerebroventricularly injected with LPS were used to evaluate the antineuroinflammatory and antioxidative stress effects. Oxygen‒glucose deprivation/reperfusion (OGD/R) and transient middle cerebral artery occlusion (tMCAO) models were used to evaluate the effect of PB-1 on IS. To elucidate the fundamental mechanism, the functional target of PB-1 was identified by affinity-based protein profiling (ABPP) strategy and verified by cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS), and circular dichroism (CD) analyses. The effect of PB-1 on the NF-κB and NRF2 signaling pathways was subsequently evaluated via western blotting and immunofluorescence staining. RESULTS: The results showed that N-cinnamoylpyrrole-derived alkaloids significantly affected neuroinflammation and oxidative stress. The representative compound, PB-1 not only inhibited neuroinflammation and oxidative stress induced by LPS or OGD/R insult, but also alleviated cerebral ischemic injury induced by tMCAO. Further molecular mechanism research found that PB-1 promoted antineuroinflammatory and antioxidative stress activities via the NF-κB and NRF2 signaling pathways by targeting eEF1A1. CONCLUSION: Our research initially unveiled that the therapeutic impact of PB-1 on cerebral ischemic injury might rely on its ability to target eEF1A1, leading to antineuroinflammatory and antioxidative stress effects. The novel discovery highlights eEF1A1 as a potential target for IS treatment and shows that PB-1, as a lead compound that targets eEF1A1, may be a promising therapeutic agent for IS.


Assuntos
Alcaloides , AVC Isquêmico , Piper , Pirróis , Animais , Masculino , Camundongos , Alcaloides/farmacologia , Alcaloides/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Antioxidantes/farmacologia , Antioxidantes/química , Modelos Animais de Doenças , AVC Isquêmico/tratamento farmacológico , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Piper/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Pirróis/farmacologia , Pirróis/química , Cinamatos/química , Cinamatos/farmacologia , Fator 1 de Elongação de Peptídeos/antagonistas & inibidores , Fator 1 de Elongação de Peptídeos/metabolismo
5.
Sci Signal ; 17(826): eadh4475, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442201

RESUMO

The translation elongation factor eEF1A promotes protein synthesis. Its methylation by METTL13 increases its activity, supporting tumor growth. However, in some cancers, a high abundance of eEF1A isoforms is associated with a good prognosis. Here, we found that eEF1A2 exhibited oncogenic or tumor-suppressor functions depending on its interaction with METTL13 or the phosphatase PTEN, respectively. METTL13 and PTEN competed for interaction with eEF1A2 in the same structural domain. PTEN-bound eEF1A2 promoted the ubiquitination and degradation of the mitosis-promoting Aurora kinase A in the S and G2 phases of the cell cycle. eEF1A2 bridged the interactions between the SKP1-CUL1-FBXW7 (SCF) ubiquitin ligase complex, the kinase GSK3ß, and Aurora-A, thereby facilitating the phosphorylation of Aurora-A in a degron site that was recognized by FBXW7. Genetic ablation of Eef1a2 or Pten in mice resulted in a greater abundance of Aurora-A and increased cell cycling in mammary tumors, which was corroborated in breast cancer tissues from patients. Reactivating this pathway using fimepinostat, which relieves inhibitory signaling directed at PTEN and increases FBXW7 expression, combined with inhibiting Aurora-A with alisertib, suppressed breast cancer cell proliferation in culture and tumor growth in vivo. The findings demonstrate a therapeutically exploitable, tumor-suppressive role for eEF1A2 in breast cancer.


Assuntos
Aurora Quinase A , Neoplasias da Mama , Neoplasias Mamárias Animais , PTEN Fosfo-Hidrolase , Fator 1 de Elongação de Peptídeos , Animais , Feminino , Humanos , Camundongos , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteína 7 com Repetições F-Box-WD/genética , Glicogênio Sintase Quinase 3 beta , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo
6.
Nat Commun ; 15(1): 1382, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360885

RESUMO

Cotranslational protein folding depends on general chaperones that engage highly diverse nascent chains at the ribosomes. Here we discover a dedicated ribosome-associated chaperone, Chp1, that rewires the cotranslational folding machinery to assist in the challenging biogenesis of abundantly expressed eukaryotic translation elongation factor 1A (eEF1A). Our results indicate that during eEF1A synthesis, Chp1 is recruited to the ribosome with the help of the nascent polypeptide-associated complex (NAC), where it safeguards eEF1A biogenesis. Aberrant eEF1A production in the absence of Chp1 triggers instant proteolysis, widespread protein aggregation, activation of Hsf1 stress transcription and compromises cellular fitness. The expression of pathogenic eEF1A2 variants linked to epileptic-dyskinetic encephalopathy is protected by Chp1. Thus, eEF1A is a difficult-to-fold protein that necessitates a biogenesis pathway starting with dedicated folding factor Chp1 at the ribosome to protect the eukaryotic cell from proteostasis collapse.


Assuntos
Proteínas de Ligação ao Cálcio , Chaperonas Moleculares , Fator 1 de Elongação de Peptídeos , Dobramento de Proteína , Ribossomos , Biossíntese de Proteínas , Proteostase , Ribossomos/genética , Ribossomos/metabolismo , Humanos , Proteínas de Ligação ao Cálcio/metabolismo , Chaperonas Moleculares/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo
7.
J Biol Chem ; 300(3): 105684, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272231

RESUMO

Eukaryotic elongation factor 1A1 (EEF1A1) is canonically involved in protein synthesis but also has noncanonical functions in diverse cellular processes. Previously, we identified EEF1A1 as a mediator of lipotoxicity and demonstrated that chemical inhibition of EEF1A1 activity reduced mouse liver lipid accumulation. These findings suggested a link between EEF1A1 and metabolism. Therefore, we investigated its role in regulating metabolic substrate preference. EEF1A1-deficient Chinese hamster ovary (2E2) cells displayed reduced media lactate accumulation. These effects were also observed with EEF1A1 knockdown in human hepatocyte-like HepG2 cells and in WT Chinese hamster ovary and HepG2 cells treated with selective EEF1A inhibitors, didemnin B, or plitidepsin. Extracellular flux analyses revealed decreased glycolytic ATP production and increased mitochondrial-to-glycolytic ATP production ratio in 2E2 cells, suggesting a more oxidative metabolic phenotype. Correspondingly, fatty acid oxidation was increased in 2E2 cells. Both 2E2 cells and HepG2 cells treated with didemnin B exhibited increased neutral lipid content, which may be required to support elevated oxidative metabolism. RNA-seq revealed a >90-fold downregulation of a rate-limiting glycolytic enzyme, hexokinase 2, which we confirmed through immunoblotting and enzyme activity assays. Pathway enrichment analysis identified downregulations in TNFA signaling via NFKB and MYC targets. Correspondingly, nuclear abundances of RELB and MYC were reduced in 2E2 cells. Thus, EEF1A1 deficiency may perturb glycolysis by limiting NFKB- and MYC-mediated gene expression, leading to decreased hexokinase expression and activity. This is the first evidence of a role for a translation elongation factor, EEF1A1, in regulating metabolic substrate utilization in mammalian cells.


Assuntos
Hexoquinase , Fator 1 de Elongação de Peptídeos , Animais , Cricetinae , Humanos , Trifosfato de Adenosina , Linhagem Celular , Cricetulus , Hexoquinase/genética , Hexoquinase/metabolismo , Lipídeos , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/metabolismo , Glicólise , Oxirredução , Movimento Celular , Proliferação de Células , Metabolismo dos Lipídeos
8.
J Biol Chem ; 300(2): 105639, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199565

RESUMO

Translation elongation factor 1A (eEF1A) is an essential and highly conserved protein required for protein synthesis in eukaryotes. In both Saccharomyces cerevisiae and human, five different methyltransferases methylate specific residues on eEF1A, making eEF1A the eukaryotic protein targeted by the highest number of dedicated methyltransferases after histone H3. eEF1A methyltransferases are highly selective enzymes, only targeting eEF1A and each targeting just one or two specific residues in eEF1A. However, the mechanism of this selectivity remains poorly understood. To reveal how S. cerevisiae elongation factor methyltransferase 4 (Efm4) specifically methylates eEF1A at K316, we have used AlphaFold-Multimer modeling in combination with crosslinking mass spectrometry (XL-MS) and enzyme mutagenesis. We find that a unique beta-hairpin motif, which extends out from the core methyltransferase fold, is important for the methylation of eEF1A K316 in vitro. An alanine mutation of a single residue on this beta-hairpin, F212, significantly reduces Efm4 activity in vitro and in yeast cells. We show that the equivalent residue in human eEF1A-KMT2 (METTL10), F220, is also important for its activity towards eEF1A in vitro. We further show that the eEF1A guanine nucleotide exchange factor, eEF1Bα, inhibits Efm4 methylation of eEF1A in vitro, likely due to competitive binding. Lastly, we find that phosphorylation of eEF1A at S314 negatively crosstalks with Efm4-mediated methylation of K316. Our findings demonstrate how protein methyltransferases can be highly selective towards a single residue on a single protein in the cell.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Metilação , Metiltransferases/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/metabolismo , Fosforilação , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Estrutura Quaternária de Proteína
9.
Cell Mol Biol Lett ; 29(1): 6, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172654

RESUMO

Protein synthesis via translation is a central process involving several essential proteins called translation factors. Although traditionally described as cellular "housekeepers," multiple studies have now supported that protein initiation and elongation factors regulate cell growth, apoptosis, and tumorigenesis. One such translation factor is eukaryotic elongation factor 1 alpha 2 (EEF1A2), a member of the eukaryotic elongation factor family, which has a canonical role in the delivery of aminoacyl-tRNA to the A-site of the ribosome in a guanosine 5'-triphosphate (GTP)-dependent manner. EEF1A2 differs from its closely related isoform, EEF1A1, in tissue distribution. While EEF1A1 is present ubiquitously, EEF1A2 replaces it in specialized tissues. The reason why certain specialized tissues need to essentially switch EEF1A1 expression altogether with EEF1A2 remains to be answered. Abnormal "switch on" of the EEF1A2 gene in normal tissues is witnessed and is seen as a cause of oncogenic transformation in a wide variety of solid tumors. This review presents the journey of finding increased expression of EEF1A2 in multiple cancers, establishing molecular mechanism, and exploring it as a target for cancer therapy. More precisely, we have compiled studies in seven types of cancers that have reported EEF1A2 overexpression. We have discussed the effect of aberrant EEF1A2 expression on the oncogenic properties of cells, signaling pathways, and interacting partners of EEF1A2. More importantly, in the last part, we have discussed the unique potential of EEF1A2 as a therapeutic target. This review article gives an up-to-date account of EEF1A2 as an oncogene and can draw the attention of the scientific community, attracting more research.


Assuntos
Neoplasias , Fator 1 de Elongação de Peptídeos , Humanos , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Oncogenes , Isoformas de Proteínas/genética , Transdução de Sinais , Neoplasias/genética
10.
Nat Commun ; 15(1): 515, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225278

RESUMO

The archaeal ancestor of eukaryotes apparently belonged to the phylum Asgardarchaeota, but the ecology and evolution of Asgard archaea are poorly understood. The optimal GDP-binding temperature of a translation elongation factor (EF-1A or EF-Tu) has been previously shown to correlate with the optimal growth temperature of diverse prokaryotes. Here, we reconstruct ancestral EF-1A sequences and experimentally measure the optimal GDP-binding temperature of EF-1A from ancient and extant Asgard archaea, to infer the evolution of optimal growth temperatures in Asgardarchaeota. Our results suggest that the Asgard ancestor of eukaryotes was a moderate thermophile, with an optimal growth temperature around 53 °C. The origin of eukaryotes appears to coincide with a transition from thermophilic to mesophilic lifestyle during the evolution of Asgard archaea.


Assuntos
Archaea , Guanosina Difosfato , Fator 1 de Elongação de Peptídeos , Archaea/crescimento & desenvolvimento , Filogenia , Temperatura , Guanosina Difosfato/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo
11.
Br J Cancer ; 130(2): 184-200, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38012382

RESUMO

BACKGROUND: The eukaryotic elongation factor, EEF1A2, has been identified as an oncogene in various solid tumors. Here, we have identified a novel function of EEF1A2 in angiogenesis. METHODS: Chick chorioallantoic membrane, tubulogenesis, aortic ring, Matrigel plug, and skin wound healing assays established EEF1A2's role in angiogenesis. RESULT: Higher EEF1A2 levels in breast cancer cells enhanced cell growth, movement, blood vessel function, and tubule formation in HUVECs, as confirmed by ex-ovo and in-vivo tests. The overexpression of EEF1A2 could be counteracted by Plitidepsin. Under normoxic conditions, EEF1A2 triggered HIF1A expression via ERK-Myc and mTOR signaling in TNBC and ER/PR positive cells. Hypoxia induced the expression of EEF1A2, leading to a positive feedback loop between EEF1A2 and HIF1A. Luciferase assay and EMSA confirmed HIF1A binding on the EEF1A2 promoter, which induced its transcription. RT-PCR and polysome profiling validated that EEF1A2 affected VEGF transcription and translation positively. This led to increased VEGF release from breast cancer cells, activating ERK and PI3K-AKT signaling in endothelial cells. Breast cancer tissues with elevated EEF1A2 showed higher microvessel density. CONCLUSION: EEF1A2 exhibits angiogenic potential in both normoxic and hypoxic conditions, underscoring its dual role in promoting EMT and angiogenesis, rendering it a promising target for cancer therapy.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Retroalimentação , Fosfatidilinositol 3-Quinases/metabolismo , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Angiogênese , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo
12.
J Virol ; 97(11): e0122623, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37861337

RESUMO

IMPORTANCE: Although a virus can regulate many cellular responses to facilitate its replication by interacting with host proteins, the host can also restrict virus infection through these interactions. In the present study, we showed that the host eukaryotic translation elongation factor 1 alpha (eEF1A), an essential protein in the translation machinery, interacted with two proteins of a fish rhabdovirus, Siniperca chuatsi rhabdovirus (SCRV), and inhibited virus infection via two different mechanisms: (i) inhibiting the formation of crucial viral protein complexes required for virus transcription and replication and (ii) promoting the ubiquitin-proteasome degradation of viral protein. We also revealed the functional regions of eEF1A that are involved in the two processes. Such a host protein inhibiting a rhabdovirus infection in two ways is rarely reported. These findings provided new information for the interactions between host and fish rhabdovirus.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Fator 1 de Elongação de Peptídeos , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Peixes , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/metabolismo , Infecções por Rhabdoviridae/veterinária , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas de Peixes/metabolismo , Doenças dos Peixes/metabolismo
13.
J Cancer Res Clin Oncol ; 149(18): 16691-16703, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37725244

RESUMO

PURPOSE: Uveal melanoma (UVM) is a rare yet malignant ocular tumor that metastases in approximately half of all patients, with the majority of those developing metastasis typically succumbing to the disease within a year. Hitherto, no effective treatment for UVM has been identified. Autophagy is a cellular mechanism that has been suggested as an emerging regulatory process for cancer-targeted therapy. Thus, identifying novel prognostic biomarkers of autophagy may help improve future treatment. METHODS: Consensus clustering and similarity network fusion approaches were performed for classifying UVM patient subgroups. Weighted correlation network analysis was performed for gene module screening and network construction. Gene set variation analysis was used to evaluate the autophagy activity of the UVM subgroups. Kaplan-Meier survival curves (Log-rank test) were performed to analyze patient prognosis. Gene set cancer analysis was used to estimate the level of immune cell infiltration. RESULTS: In this study, we employed multi-omics approaches to classify UVM patient subgroups by molecular and clinical characteristics, ultimately identifying HTR2B, EEF1A2, FEZ1, GRID1, HAP1, and SPHK1 as potential prognostic biomarkers of autophagy in UVM. High expression levels of these markers were associated with poorer patient prognosis and led to reshaping the tumor microenvironment (TME) that promotes tumor progression. CONCLUSION: We identified six novel potential prognostic biomarkers in UVM, all of which are associated with autophagy and TME. These findings will shed new light on UVM therapy with inhibitors targeting these biomarkers expected to regulate autophagy and reshape the TME, significantly improving UVM treatment outcomes.


Assuntos
Melanoma , Neoplasias Uveais , Humanos , Prognóstico , Multiômica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Melanoma/patologia , Neoplasias Uveais/patologia , Autofagia/genética , Microambiente Tumoral , Fator 1 de Elongação de Peptídeos/metabolismo
14.
Mol Cell Neurosci ; 126: 103879, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37429391

RESUMO

All vertebrate species express two independently-encoded forms of translation elongation factor eEF1A. In humans and mice eEF1A1 and eEF1A2 are 92 % identical at the amino acid level, but the well conserved developmental switch between the two variants in specific tissues suggests the existence of important functional differences. Heterozygous mutations in eEF1A2 result in neurodevelopmental disorders in humans; the mechanism of pathogenicity is unclear, but one hypothesis is that there is a dominant negative effect on eEF1A1 during development. The high degree of similarity between the eEF1A proteins has complicated expression analysis in the past; here we describe a gene edited mouse line in which we have introduced a V5 tag in the gene encoding eEF1A2. Expression analysis using anti-V5 and anti-eEF1A1 antibodies demonstrates that, in contrast to the prevailing view that eEF1A2 is only expressed postnatally, it is expressed from as early as E11.5 in the developing neural tube. Two colour immunofluorescence also reveals coordinated switching between eEF1A1 and eEF1A2 in different regions of postnatal brain. Completely reciprocal expression of the two variants is seen in post-weaning mouse brain with eEF1A1 expressed in oligodendrocytes and astrocytes and eEF1A2 in neuronal soma. Although eEF1A1 is absent from neuronal cell bodies after development, it is widely expressed in axons. This expression does not appear to coincide with myelin sheaths originating from oligodendrocytes but rather results from localised translation within the axon, suggesting that both variants are transcribed in neurons but show completely distinct subcellular localisation at the protein level. These findings will form an underlying framework for understanding how missense mutations in eEF1A2 result in neurodevelopmental disorders.


Assuntos
Transtornos do Neurodesenvolvimento , Fator 1 de Elongação de Peptídeos , Animais , Humanos , Camundongos , Mutação , Mutação de Sentido Incorreto , Neurônios/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/metabolismo
15.
Cell Death Dis ; 14(6): 364, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328464

RESUMO

T-LAK-originated protein kinase (TOPK), a dual specificity serine/threonine kinase, is up-regulated and related to poor prognosis in many types of cancers. Y-box binding protein 1 (YB1) is a DNA/RNA binding protein and serves important roles in multiple cellular processes. Here, we reported that TOPK and YB1 were both highly expressed in esophageal cancer (EC) and correlated with poor prognosis. TOPK knockout effectively suppressed EC cell proliferation and these effects were reversible by rescuing YB1 expression. Notably, TOPK phosphorylated YB1 at Thr 89 (T89) and Ser 209 (S209) amino acid residues, then the phosphorylated YB1 bound with the promoter of the eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) to activate its transcription. Consequently, the AKT/mTOR signal pathway was activated by up-regulated eEF1A1 protein. Importantly, TOPK inhibitor HI-TOPK-032 suppressed the EC cell proliferation and tumor growth by TOPK/YB1/eEF1A1 signal pathway in vitro and in vivo. Taken together, our study reveals that TOPK and YB1 are essential for the growth of EC, and TOPK inhibitors may be applied to retard cell proliferation in EC. This study highlights the promising therapeutic potential of TOPK as a target for treatment of EC.


Assuntos
Neoplasias Esofágicas , Quinases de Proteína Quinase Ativadas por Mitógeno , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Esofágicas/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Fator 1 de Elongação de Peptídeos/farmacologia , Transdução de Sinais
16.
Antiviral Res ; 215: 105621, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37156267

RESUMO

Group B Coxsackieviruses (CVB) are non-enveloped small RNA viruses in the genus Enterovirus, family Picornaviridae. CVB infection causes diverse conditions from common cold to myocarditis, encephalitis, and pancreatitis. No specific antiviral is available for the treatment of CVB infection. Anisomycin, a pyrrolidine-containing antibiotic and translation inhibitor, was reported to inhibit the replication of some picornaviruses. However, it is unknown if anisomycin can act as an antiviral against CVB infection. Here we observed that anisomycin showed potent inhibition on CVB type 3 (CVB3) infection with negligible cytotoxicity when applied at the early stage of virus infection. Mice infected with CVB3 showed markedly alleviated myocarditis with reduced viral replication. We found that CVB3 infection significantly increased the transcription of eukaryotic translation elongation factor 1 alpha 1 (eEF1A1). CVB3 replication was suppressed by EEF1A1 knockdown, while elevated by EEF1A1 overexpression. Similar to the effect of CVB3 infection, EEF1A1 transcription was increased in response to anisomycin treatment. However, eEF1A1 protein level was decreased with anisomycin treatment in a dose-dependent manner in CVB3-infected cells. Moreover, anisomycin promoted eEF1A1 degradation, which was inhibited by the treatment of chloroquine but not MG132. We demonstrated that eEF1A1 interacted with the heat shock cognate protein 70 (HSP70), and eEF1A1 degradation was inhibited by LAMP2A knockdown, implicating that eEF1A1 is degraded through chaperone-mediated autophagy. Taken together, we demonstrated that anisomycin, which inhibits CVB replication through promoting the lysosomal degradation of eEF1A1, could be a potential antiviral candidate for the treatment of CVB infection.


Assuntos
Infecções por Coxsackievirus , Miocardite , Camundongos , Animais , Humanos , Anisomicina/farmacologia , Fator 1 de Elongação de Peptídeos/metabolismo , Fator 1 de Elongação de Peptídeos/farmacologia , Antivirais/farmacologia , Antivirais/metabolismo , Enterovirus Humano B , Lisossomos/metabolismo , Replicação Viral , Infecções por Coxsackievirus/tratamento farmacológico , Células HeLa
17.
Adv Sci (Weinh) ; 10(17): e2206584, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37075745

RESUMO

Epigenetic dysregulation is reported in multiple cancers including Ewing sarcoma (EwS). However, the epigenetic networks underlying the maintenance of oncogenic signaling and therapeutic response remain unclear. Using a series of epigenetics- and complex-focused CRISPR screens, RUVBL1, the ATPase component of NuA4 histone acetyltransferase complex, is identified to be essential for EwS tumor progression. Suppression of RUVBL1 leads to attenuated tumor growth, loss of histone H4 acetylation, and ablated MYC signaling. Mechanistically, RUVBL1 controls MYC chromatin binding and modulates the MYC-driven EEF1A1 expression and thus protein synthesis. High-density CRISPR gene body scan pinpoints the critical MYC interacting residue in RUVBL1. Finally, this study reveals the synergism between RUVBL1 suppression and pharmacological inhibition of MYC in EwS xenografts and patient-derived samples. These results indicate that the dynamic interplay between chromatin remodelers, oncogenic transcription factors, and protein translation machinery can provide novel opportunities for combination cancer therapy.


Assuntos
Proteínas Proto-Oncogênicas c-myc , Sarcoma de Ewing , Humanos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína EWS de Ligação a RNA/genética , Linhagem Celular Tumoral , Transdução de Sinais/genética , Sarcoma de Ewing/genética , Cromatina , Epigênese Genética/genética , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Fator 1 de Elongação de Peptídeos/uso terapêutico , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Transporte/genética , DNA Helicases/genética , DNA Helicases/metabolismo
18.
J Biol Chem ; 299(6): 104747, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37094697

RESUMO

Protein synthesis is a fundamental step in gene expression, with modulation of mRNA translation at the elongation step emerging as an important regulatory node in shaping cellular proteomes. In this context, five distinct lysine methylation events on eukaryotic elongation factor 1A (eEF1A), a fundamental nonribosomal elongation factor, are proposed to influence mRNA translation elongation dynamics. However, a lack of affinity tools has hindered progress in fully understanding how eEF1A lysine methylation impacts protein synthesis. Here we develop and characterize a suite of selective antibodies to investigate eEF1A methylation and provide evidence that methylation levels decline in aged tissue. Determination of the methyl state and stoichiometry on eEF1A in various cell lines by mass spectrometry shows modest cell-to-cell variability. We also find by Western blot analysis that knockdown of individual eEF1A-specific lysine methyltransferases leads to depletion of the cognate lysine methylation event and indicates active crosstalk between different sites. Further, we find that the antibodies are specific in immunohistochemistry applications. Finally, application of the antibody toolkit suggests that several eEF1A methylation events decrease in aged muscle tissue. Together, our study provides a roadmap for leveraging methyl state and sequence-selective antibody reagents to accelerate discovery of eEF1A methylation-related functions and suggests a role for eEF1A methylation, via protein synthesis regulation, in aging biology.


Assuntos
Lisina , Elongação Traducional da Cadeia Peptídica , Fator 1 de Elongação de Peptídeos , Anticorpos/metabolismo , Lisina/metabolismo , Metilação , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/metabolismo
19.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982256

RESUMO

Eukaryotic elongation factor 1A (eEF1A) canonically delivers amino acyl tRNA to the ribosomal A site during the elongation stage of protein biosynthesis. Yet paradoxically, the oncogenic nature of this instrumental protein has long been recognized. Consistently, eEF1A has proven to be targeted by a wide assortment of small molecules with excellent anticancer activity, among which plitidepsin has been granted approval for the treatment of multiple myeloma. Meanwhile, metarrestin is currently under clinical development for metastatic cancers. Bearing these exciting advances in mind, it would be desirable to present a systematic up-to-date account of the title topic, which, to the best of our knowledge, has thus far been unavailable in the literature. The present review summarizes recent advances in eEF1A-targeting anticancer agents, both naturally occurring and synthetically crafted, with regard to their discovery or design, target identification, structure-activity relationship, and mode of action. Their structural diversity and differential eEF1A-targeting mechanisms warrant continuing research in pursuit of curing eEF1A-driven malignancy.


Assuntos
Antineoplásicos , Fator 1 de Elongação de Peptídeos , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas , Saccharomyces cerevisiae/metabolismo , Ribossomos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo
20.
J Chem Inf Model ; 63(6): 1656-1667, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36897766

RESUMO

The recently developed AlphaFold2 (AF2) algorithm predicts proteins' 3D structures from amino acid sequences. The open AlphaFold protein structure database covers the complete human proteome. Using an industry-leading molecular docking method (Glide), we investigated the virtual screening performance of 37 common drug targets, each with an AF2 structure and known holo and apo structures from the DUD-E data set. In a subset of 27 targets where the AF2 structures are suitable for refinement, the AF2 structures show comparable early enrichment of known active compounds (avg. EF 1%: 13.0) to apo structures (avg. EF 1%: 11.4) while falling behind early enrichment of the holo structures (avg. EF 1%: 24.2). With an induced-fit protocol (IFD-MD), we can refine the AF2 structures using an aligned known binding ligand as the template to improve the performance in structure-based virtual screening (avg. EF 1%: 18.9). Glide-generated docking poses of known binding ligands can also be used as templates for IFD-MD, achieving similar improvements (avg. EF 1% 18.0). Thus, with proper preparation and refinement, AF2 structures show considerable promise for in silico hit identification.


Assuntos
Benchmarking , Furilfuramida , Humanos , Sítios de Ligação , Simulação de Acoplamento Molecular , Ligação Proteica , Fator 1 de Elongação de Peptídeos/metabolismo , Proteínas/química , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...