Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Elife ; 92020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32662771

RESUMO

Mutations in the gene encoding Ras-associated binding protein 23 (RAB23) cause Carpenter Syndrome, which is characterized by multiple developmental abnormalities including polysyndactyly and defects in skull morphogenesis. To understand how RAB23 regulates skull development, we generated Rab23-deficient mice that survive to an age where skeletal development can be studied. Along with polysyndactyly, these mice exhibit premature fusion of multiple sutures resultant from aberrant osteoprogenitor proliferation and elevated osteogenesis in the suture. FGF10-driven FGFR1 signaling is elevated in Rab23-/-sutures with a consequent imbalance in MAPK, Hedgehog signaling and RUNX2 expression. Inhibition of elevated pERK1/2 signaling results in the normalization of osteoprogenitor proliferation with a concomitant reduction of osteogenic gene expression, and prevention of craniosynostosis. Our results suggest a novel role for RAB23 as an upstream negative regulator of both FGFR and canonical Hh-GLI1 signaling, and additionally in the non-canonical regulation of GLI1 through pERK1/2.


In many animals, the skull is made of several separate bones that are loosely joined during childhood and only fuse into one piece when the animal stops growing. A genetic disease called Carpenter syndrome causes the bones of the skull to fuse early in life, stopping it from growing correctly. Carpenter syndrome is often caused by changes to the gene responsible for making a protein called RAB23. RAB23 helps move other molecules and cell components between different parts of the cell, and is therefore involved in a number of cellular processes. Previous studies suggest that RAB23 has a role in many parts of the body during development. Yet, it is unclear which cells in the skull depend on RAB23 activity and how this protein is controlled. To answer this question, Hasan et al. grew pieces of developing skull bones that had been taken from mice lacking the RAB23 protein in the laboratory. Examining these samples revealed that RAB23 is active in cells called osteoblasts that add new bone to the edge of each piece of the skull as it grows. Hasan et al. also found that RAB23 regulates two cellular signaling pathways ­ called the hedgehog pathway and the fibroblast growth factor pathway ­ that interact with one another and co-ordinate skull development. These findings show how RAB23 controls the growth and fusion of skull bones in developing animals. This could improve our understanding of the role RAB23 plays in other processes during development. It also sheds light on the mechanisms of Carpenter syndrome which may inform new approaches for treating patients.


Assuntos
Embrião de Mamíferos/embriologia , Camundongos/embriologia , Osteogênese/genética , Proteínas rab de Ligação ao GTP/genética , Animais , Fator 10 de Crescimento de Fibroblastos/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Proteína GLI1 em Dedos de Zinco/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo
2.
Dev Cell ; 52(4): 477-491.e8, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32097653

RESUMO

Most adult neurons and glia originate from radial glial progenitors (RGs), a type of stem cell typically extending from the apical to the basal side of the developing cortex. Precise regulation of the choice between RG self-renewal and differentiation is critical for normal development, but the mechanisms underlying this transition remain elusive. We show that the non-canonical tubulin Tuba8, transiently expressed in cortical progenitors, drives differentiation of RGs into apical intermediate progenitors, a more restricted progenitor type lacking attachment to the basal lamina. This effect depends on the unique C-terminal sequence of Tuba8 that antagonizes tubulin tyrosination and Δ2 cleavage, two post-translational modifications (PTMs) essential for RG fiber maintenance and the switch between direct and indirect neurogenesis and ultimately distinct neuronal lineage outcomes. Our work uncovers an instructive role of a developmentally regulated tubulin isotype in progenitor differentiation and provides new insights into biological functions of the cellular tubulin PTM "code."


Assuntos
Diferenciação Celular , Córtex Cerebral/citologia , Fator 10 de Crescimento de Fibroblastos/fisiologia , Células-Tronco Neurais/citologia , Neuroglia/citologia , Neurônios/citologia , Tubulina (Proteína)/fisiologia , Animais , Linhagem da Célula , Células Cultivadas , Córtex Cerebral/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Neurogênese , Neuroglia/metabolismo , Neurônios/metabolismo , Tirosina/metabolismo
3.
J Cell Physiol ; 234(10): 17677-17689, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30807658

RESUMO

The fusion of sperm and oocytes determines the fertilization competence and subsequent development of embryos, which, in turn, can be affected by various proteins and DNA methylation. However, several factors in this whole regulation process remain unknown, especially in yaks. Here, we report that fibroblast growth factor 10 (FGF10) is an important growth factor that can enhance the maturation rate of yak oocytes and the motility of frozen spermatozoa. Subsequent blastocyst quality was also improved by increasing the total cell number and level of pregnancy-associated protein in blastocysts. These effects were significantly high in the group that received the 5 ng/ml FGF10 treatment, during both in vitro maturation (IVM) and capacitation. Our data show that the effects of FGF10 were dose-dependent at vital steps of embryogenesis in vitro. Furthermore, quantitative polymerase chain reaction, western blot analysis, and immunofluorescence demonstrated that the levels of CD9, CD81, DNMT1, and DNMT3B in both mature cumulus-oocyte complexes and capacitated sperms were regulated by FGF10, which was also highly expressed in the group treated with 5 ng/ml FGF10 during both IVM and capacitation. From our present study, we concluded that FGF10 promotes yak oocyte fertilization competence and subsequent blastocyst quality, and could also regulate CD9, CD81, DNMT1, and DNMT3B to optimize sperm-oocyte interactions and DNA methylation during fertilization.


Assuntos
Bovinos/fisiologia , Fator 10 de Crescimento de Fibroblastos/fisiologia , Oócitos/fisiologia , Animais , Blastocisto/efeitos dos fármacos , Blastocisto/fisiologia , Bovinos/embriologia , Bovinos/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Feminino , Fertilização/efeitos dos fármacos , Fertilização/genética , Fertilização/fisiologia , Fertilização in vitro/veterinária , Fator 10 de Crescimento de Fibroblastos/administração & dosagem , Técnicas de Maturação in Vitro de Oócitos/veterinária , Masculino , Oócitos/efeitos dos fármacos , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Tetraspanina 29/genética , Tetraspanina 29/metabolismo , DNA Metiltransferase 3B
4.
Mol Biol Rep ; 45(6): 1881-1888, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30250994

RESUMO

Fibroblast growth factor 10 (FGF10) is an adipokine that is found to participate in the regulation of adipogenesis. However, its function remains to be elucidated in intramuscular fat (IMF) deposition of goat. The purpose of this study was to explore the role of FGF10 in goat IMF deposition. Here, we investigated the expression of FGF10 in goat intramuscular adipocytes inducing 0, 2, 4, 6 and 8 days. Effect of FGF10 on adipogenesis was investigated by gaining and losing function of FGF10 in vitro. And then, we examined several lipid metabolism-related genes, including peroxisome proliferator activated receptor γ (PPARγ), sterol regulatory element binding protein 1 (SREBP1), preadipocyte factor-1 (Pref-1), CCAAT/enhancer binding protein-α (C/EBPα) and CCAAT/enhancer binding protein-ß (C/EBPß), as well as, Krüppel-like factor (KLF) family. We found that the sharp expression of FGF10 appeared at 2 days. Overexpression of FGF10 mediated by adenovirus promotes lipid accumulation, accompanied by up-regulating of LPL and C/EBPα with the down-regulating of C/EBPß. Conversely, the expression of LPL, C/EBPα and SREBP1 was significantly decreased by the siRNAs of FGF10. Meanwhile, we showed that FGF10 regulated the expression of many KLFs members and interacted synergistically or antagonistically with them. Thus, our results demonstrated a key role of FGF10 as a positively factor in the regulation of adipogenic differentiation of intramuscular preadipocyte in goat.


Assuntos
Fator 10 de Crescimento de Fibroblastos/fisiologia , Cabras/genética , Adipócitos/metabolismo , Adipócitos/fisiologia , Adipogenia/genética , Adipogenia/fisiologia , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular , Células Cultivadas , Cabras/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Metabolismo dos Lipídeos/genética , PPAR gama/genética , PPAR gama/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Ativação Transcricional
5.
Lab Invest ; 98(6): 825-838, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29467455

RESUMO

Loss of cystic fibrosis transmembrane conductance regulator (CFTR) function causes cystic fibrosis (CF), predisposing the lungs to chronic infection and inflammation. In young infants with CF, structural airway defects are increasingly recognized before the onset of significant lung disease, which suggests a developmental origin and a possible role in lung disease pathogenesis. The role(s) of CFTR in lung development is unclear and developmental studies in humans with CF are not feasible. Young CF pigs have structural airway changes and develop spontaneous postnatal lung disease similar to humans; therefore, we studied lung development in the pig model (non-CF and CF). CF trachea and proximal airways had structural lesions detectable as early as pseudoglandular development. At this early developmental stage, budding CF airways had smaller, hypo-distended lumens compared to non-CF airways. Non-CF lung explants exhibited airway lumen distension in response to forskolin/IBMX as well as to fibroblast growth factor (FGF)-10, consistent with CFTR-dependent anion transport/secretion, but this was lacking in CF airways. We studied primary pig airway epithelial cell cultures and found that FGF10 increased cellular proliferation (non-CF and CF) and CFTR expression/function (in non-CF only). In pseudoglandular stage lung tissue, CFTR protein was exclusively localized to the leading edges of budding airways in non-CF (but not CF) lungs. This discreet microanatomic localization of CFTR is consistent with the site, during branching morphogenesis, where airway epithelia are responsive to FGF10 regulation. In summary, our results suggest that the CF proximal airway defects originate during branching morphogenesis and that the lack of CFTR-dependent anion transport/liquid secretion likely contributes to these hypo-distended airways.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Pulmão/embriologia , Animais , Células Cultivadas , AMP Cíclico/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Feminino , Fator 10 de Crescimento de Fibroblastos/fisiologia , Humanos , Morfogênese , Suínos , Traqueia/anormalidades
6.
Dev Cell ; 44(3): 297-312.e5, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29408236

RESUMO

The differentiation of alveolar epithelial type I (AT1) and type II (AT2) cells is essential for the lung gas exchange function. Disruption of this process results in neonatal death or in severe lung diseases that last into adulthood. We developed live imaging techniques to characterize the mechanisms that control alveolar epithelial cell differentiation. We discovered that mechanical forces generated from the inhalation of amniotic fluid by fetal breathing movements are essential for AT1 cell differentiation. We found that a large subset of alveolar progenitor cells is able to protrude from the airway epithelium toward the mesenchyme in an FGF10/FGFR2 signaling-dependent manner. The cell protrusion process results in enrichment of myosin in the apical region of protruded cells; this myosin prevents these cells from being flattened by mechanical forces, thereby ensuring their AT2 cell fate. Our study demonstrates that mechanical forces and local growth factors synergistically control alveolar epithelial cell differentiation.


Assuntos
Células Epiteliais Alveolares/citologia , Diferenciação Celular , Movimento Celular/fisiologia , Embrião de Mamíferos/citologia , Fator 10 de Crescimento de Fibroblastos/fisiologia , Fenômenos Mecânicos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/fisiologia , Células Epiteliais Alveolares/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos/metabolismo , Feminino , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Transdução de Sinais
7.
Am J Orthod Dentofacial Orthop ; 151(4): 700-707, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28364893

RESUMO

INTRODUCTION: Our goal was to verify the association between candidate polymorphisms and skeletal Class III malocclusion in a well-characterized homogeneous sample set. METHODS: Thirty-five single-nucleotide polymorphisms were studied from 10 candidate loci in 54 Class III subjects and 120 controls. Skeletal Class III characteristics included ANB angle less than 0°, SNB angle greater than 83° (mandibular prognathism), SNA angle less than 79° (maxillary deficiency), Class III molar relationship, and negative overjet. Inclusion criteria for the controls were ANB angle between 0° and 4°, Class I molar relationship, and normal overjet. Chi-square and Fisher exact tests and principal component (PC) analysis were used to determine overrepresentation of marker alleles with alpha of 0.05. Odds ratios and 95% confidence intervals were calculated. RESULTS: MYO1H (rs10850110 AG) (P = 0.001) with PC2 and between FGF10 (rs593307 A

Assuntos
Má Oclusão Classe III de Angle/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Estudos de Casos e Controles , Feminino , Fator 10 de Crescimento de Fibroblastos/genética , Fator 10 de Crescimento de Fibroblastos/fisiologia , Estudos de Associação Genética , Humanos , Masculino , Miosina Tipo I/genética , Miosina Tipo I/fisiologia , Polimorfismo de Nucleotídeo Único/fisiologia , Adulto Jovem
8.
Dev Biol ; 419(2): 348-356, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27590203

RESUMO

Hypertrophy, hyperplasia and altered mucus secretion from the respiratory submucosal glands (SMG) are characteristics of airway diseases such as cystic fibrosis, asthma and chronic bronchitis. More commonly, hyper-secretion of the nasal SMGs contributes to allergic rhinitis and upper airway infection. Considering the role of these glands in disease states, there is a significant dearth in understanding the molecular signals that regulate SMG development and patterning. Due to the imperative role of FGF signalling during the development of other branched structures, we investigated the role of Fgf10 during initiation and branching morphogenesis of murine nasal SMGs. Fgf10 is expressed in the mesenchyme around developing SMGs while expression of its receptor Fgfr2 is seen within glandular epithelial cells. In the Fgf10 null embryo, Steno's gland and the maxillary sinus gland were completely absent while other neighbouring nasal glands showed normal duct elongation but defective branching. Interestingly, the medial nasal glands were present in Fgf10 homozygotes but missing in Fgfr2b mutants, with expression of Fgf7 specifically expressed around these developing glands, indicating that Fgf7 might compensate for loss of Fgf10 in this group of glands. Intriguingly the lateral nasal glands were only mildly affected by loss of FGF signalling, while these glands were missing in Eda mutant mice, where the Steno's and maxillary sinus gland developed as normal. This analysis reveals that regulation of nasal gland development is complex with different subsets of glands being regulated by different signalling pathways. This analysis helps shed light on the nasal gland defects observed in patients with hypohidrotic ectodermal dysplasia (HED) (defect EDA pathway) and LADD syndrome (defect FGFR2b pathway).


Assuntos
Ectodisplasinas/fisiologia , Glândulas Exócrinas/embriologia , Fator 10 de Crescimento de Fibroblastos/fisiologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/fisiologia , Transdução de Sinais/fisiologia , Animais , Ectodisplasinas/deficiência , Ectodisplasinas/genética , Ressecção Endoscópica de Mucosa , Glândulas Exócrinas/metabolismo , Glândulas Exócrinas/ultraestrutura , Feminino , Fator 10 de Crescimento de Fibroblastos/deficiência , Fator 10 de Crescimento de Fibroblastos/genética , Fator 7 de Crescimento de Fibroblastos/fisiologia , Masculino , Seio Maxilar/embriologia , Seio Maxilar/ultraestrutura , Mesoderma/metabolismo , Camundongos , Morfogênese , Mucosa Nasal/embriologia , Mucosa Nasal/ultraestrutura , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/deficiência , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética
9.
Sci Rep ; 6: 27402, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27273653

RESUMO

5-aminolevulinic acid-photodynamic therapy (ALA-PDT) is known to be effective in several skin diseases such as acne, actinic keratoses, condyloma acuminata. However, some detailed mechanisms of ALA-PDT to treat these skin diseases still remain elusive. In this study, we aimed to investigate mechanism of ALA-PDT in in-vitro and in-vivo models. For in vitro, we use human keratinocyte cell line (HaCaT) cells. CCK-8 was used to detect cell proliferation activity, immunofluorescence and western blotting method to detect the content of keratin (K)1, K6, K16, protein kinase C (PKC), fibroblast growth factor receptor-2b (FGFR2b) protein, ELISA and RT-PCR to detect expression of interleukin (IL) 1α in the cell supernatant, and detect reactive oxygen species (ROS). For in vivo, we use 20 rabbits to induce hyperkeratosis acne model in their ear. Dermatoscope was used to see follicle hyperkeratosis and skin biopsy to analyze histology and immunohistochemical of PKC, FGFR2b, K1, K6 and K16. Results from this study suggest that ROS stimulated by ALA-PDT lead to inhibition of FGFR2b pathway in PKC downstream to cause reduction of IL1α expression, and eventually, keratinocytes differentiation and proliferation. Our data thus reveal a treatment mechanism of ALA-PDT underlying hyperkeratosis related dermatoses.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Fator 10 de Crescimento de Fibroblastos/fisiologia , Queratinócitos/citologia , Fotoquimioterapia , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Linhagem Celular , Humanos , Fármacos Fotossensibilizantes/farmacologia , Proteína Quinase C/metabolismo , Coelhos
10.
Cytokine Growth Factor Rev ; 28: 63-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26559461

RESUMO

The FGF family comprises 22 members with diverse functions in development and health. FGF10 specifically activates FGFR2b in a paracrine manner with heparan sulfate as a co-factor. FGF10and FGFR2b are preferentially expressed in the mesenchyme and epithelium, respectively. FGF10 is a mesenchymal signaling molecule in the epithelium. FGF10 knockout mice die shortly after birth due to the complete absence of lungs as well as fore- and hindlimbs. FGF10 is also essential for the development of multiple organs. The phenotypes of Fgf10 knockout mice are very similar to those of FGFR2b knockout mice, indicating that FGF10 acts as a ligand that is specific to FGFR2b in mouse multi-organ development. FGF10 also plays roles in epithelial-mesenchymal transition, the repair of tissue injury, and embryonic stem cell differentiation. In humans, FGF10 loss-of-function mutations result in inherited diseases including aplasia of lacrimal and salivary gland, lacrimo-auriculo-dento-digital syndrome, and chronic obstructive pulmonary disease. FGF10 is also involved in the oncogenicity of pancreatic and breast cancers. Single nucleotide polymorphisms in FGF10 are also potential risk factors for limb deficiencies, cleft lip and palate, and extreme myopia. These findings indicate that FGF10 is a crucial paracrine signal from the mesenchyme to epithelium for development, health, and disease.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Fator 10 de Crescimento de Fibroblastos/fisiologia , Mesoderma/metabolismo , Animais , Diferenciação Celular/fisiologia , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Humanos , Mesoderma/citologia , Camundongos , Camundongos Knockout , Comunicação Parácrina , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/imunologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia
11.
J Endocrinol ; 228(2): R31-43, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26542145

RESUMO

Fibroblast growth factors (FGFs) have been shown to alter growth and differentiation of reproductive tissues in a variety of species. Within the female reproductive tract, the effects of FGFs have been focused on the ovary, and the most studied one is FGF2, which stimulates granulosa cell proliferation and decreases differentiation (decreased steroidogenesis). Other FGFs have also been implicated in ovarian function, and this review summarizes the effects of members of two subfamilies on ovarian function; the FGF7 subfamily that also contains FGF10, and the FGF8 subfamily that also contains FGF18. There are data to suggest that FGF8 and FGF18 have distinct actions on granulosa cells, despite their apparent similar receptor binding properties. Studies of non-reproductive developmental biology also indicate that FGF8 is distinct from FGF18, and that FGF7 is also distinct from FGF10 despite similar receptor binding properties. In this review, the potential mechanisms of differential action of FGF7/FGF10 and FGF8/FGF18 during organogenesis will be reviewed and placed in the context of follicle development. A model is proposed in which FGF8 and FGF18 differentially activate receptors depending on the properties of the extracellular matrix in the follicle.


Assuntos
Fatores de Crescimento de Fibroblastos/fisiologia , Folículo Ovariano/fisiologia , Transdução de Sinais/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Células Epiteliais/fisiologia , Feminino , Fator 10 de Crescimento de Fibroblastos/fisiologia , Fator 2 de Crescimento de Fibroblastos/fisiologia , Fator 7 de Crescimento de Fibroblastos/fisiologia , Fator 8 de Crescimento de Fibroblasto/fisiologia , Células da Granulosa/fisiologia , Humanos , Mesoderma/fisiologia , Organogênese , Folículo Ovariano/crescimento & desenvolvimento
12.
Cardiovasc Res ; 104(3): 432-42, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25344367

RESUMO

AIMS: Cardiomyocyte proliferation gradually declines during embryogenesis resulting in severely limited regenerative capacities in the adult heart. Understanding the developmental processes controlling cardiomyocyte proliferation may thus identify new therapeutic targets to modulate the cell-cycle activity of cardiomyocytes in the adult heart. This study aims to determine the mechanism by which fibroblast growth factor 10 (FGF10) controls foetal cardiomyocyte proliferation and to test the hypothesis that FGF10 promotes the proliferative capacity of adult cardiomyocytes. METHODS AND RESULTS: Analysis of Fgf10(-/-) hearts and primary cardiomyocyte cultures reveals that altered ventricular morphology is associated with impaired proliferation of right but not left-ventricular myocytes. Decreased FOXO3 phosphorylation associated with up-regulated p27(kip) (1) levels was observed specifically in the right ventricle of Fgf10(-/-) hearts. In addition, cell-type-specific expression analysis revealed that Fgf10 and its receptor, Fgfr2b, are expressed in cardiomyocytes and not cardiac fibroblasts, consistent with a cell-type autonomous role of FGF10 in regulating regional specific myocyte proliferation in the foetal heart. Furthermore, we demonstrate that in vivo overexpression of Fgf10 in adult mice promotes cardiomyocyte but not cardiac fibroblast cell-cycle re-entry. CONCLUSION: FGF10 regulates regional cardiomyocyte proliferation in the foetal heart through a FOXO3/p27(kip1) pathway. In addition, FGF10 triggers cell-cycle re-entry of adult cardiomyocytes and is thus a potential target for cardiac repair.


Assuntos
Fator 10 de Crescimento de Fibroblastos/fisiologia , Coração/embriologia , Miócitos Cardíacos/fisiologia , Animais , Ciclo Celular , Proliferação de Células , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/metabolismo , Camundongos
13.
Curr Mol Med ; 14(4): 504-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24730525

RESUMO

The Fgf family comprises 22 members with diverse functions in development, repair, metabolism, and neuronal activities. Fgf10 mediates biological responses by activating Fgf receptor 2b (Fgfr2b) with heparin/heparan sulfate in a paracrine manner. Fgf10 and Fgfr2b are expressed in mesenchymal and epithelial tissues, respectively. Fgf10 is an epithelial-mesenchymal signaling molecule. Fgf10 knockout mice show severe phenotypes with complete truncation of the fore- and hindlimbs and die shortly after birth due to impaired lung development, indicating that Fgf10 serves as an essential regulator of lung and limb formation. Fgf10 also has roles in the development of white adipose tissue, heart, liver, brain, kidney, cecum, ocular glands, thymus, inner ear, tongue, trachea, eye, stomach, prostate, salivary gland, mammary gland, and whiskers. The diverse phenotypes of Fgf10 knockout mice are closely related to those of Fgfr2 knockout mice, suggesting that Fgf10 acts as a major ligand for Fgfr2b in mouse multi-organ development. Aplasia of lacrimal and salivary glands and lacrimo-auriculo-dento-digital syndrome are caused by Fgf10 mutations in humans. Variants in Fgf10 may be involved in an increased risk for limb deficiencies and cleft lip and palate. Patients with Fgf10 haploinsufficiency have lung function parameters indicating chronic obstructive pulmonary disease. Fgf10 induces migration and invasion in pancreatic cancer cells. Fgf10 signaling may be involved in an increased risk for breast cancer. Fgf10 also induces the differentiation of embryonic stem cells into a gut-like structure, cardiomyocytes, and hepatocytes. These findings indicate the crucial roles of Fgf10 in development, disease, and regenerative medicine.


Assuntos
Fator 10 de Crescimento de Fibroblastos/fisiologia , Animais , Humanos , Camundongos , Família Multigênica , Comunicação Parácrina , Regeneração , Medicina Regenerativa , Transdução de Sinais , Células-Tronco/metabolismo
14.
Dev Dyn ; 243(10): 1275-85, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24677486

RESUMO

BACKGROUND: Vertebrate otic and epibranchial placodes develop in close proximity in response to localized fibroblast growth factor (Fgf) signaling. Although less is known about epibranchial induction, the process of otic induction in highly conserved, with important roles for Fgf3 and Fgf8 reported in all species examined. Fgf10 is also critical for otic induction in mouse, but the only zebrafish ortholog examined to date, fgf10a, is not expressed early enough to play such a role. A second zebrafish ortholog, fgf10b, has not been previously examined. RESULTS: We find that zebrafish fgf10b is expressed at tailbud stage in paraxial cephalic mesoderm beneath prospective epibranchial tissue, lateral to the developing otic placode. Knockdown of fgf10b does not affect initial otic induction but impairs subsequent accumulation of otic cells. Formation of epibranchial placodes and ganglia are also moderately impaired. Combinatorial disruption of fgf10b and fgf3 exacerbates the deficiency of otic cells and eliminates epibranchial induction entirely. Disruption of fgf10b and fgf24 also strongly reduces, but does not eliminate, epibranchial induction. CONCLUSIONS: fgf10b participates in a late phase of otic induction and, in combination with fgf3, is especially critical for epibranchial induction.


Assuntos
Região Branquial/embriologia , Orelha/embriologia , Indução Embrionária/genética , Fator 3 de Crescimento de Fibroblastos/fisiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Mesoderma/metabolismo , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Região Branquial/metabolismo , Embrião não Mamífero , Fator 10 de Crescimento de Fibroblastos/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética
15.
Stem Cells Dev ; 23(13): 1491-500, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24564535

RESUMO

The T-box transcriptional factor (Tbx) family of transcriptional factors has distinct roles in a wide range of embryonic differentiation or response pathways. Tbx1, a T-box transcription factor, is an important gene for the human congenital disorder 22q11.2 deletion syndrome. Induced pluripotent stem cell (iPSC) technology offers new opportunities for both elucidation of the pathogenesis of diseases and the development of stem-cell-based therapies. In this study, we generated iPSCs from Tbx1(-/-) and Tbx1(+/+) fibroblasts and investigated the spontaneous differentiation potential of iPSCs by detailed lineage analysis of the iPSC-derived embryoid bodies. Undifferentiated Tbx1(-/-) and Tbx1(+/+) iPSCs showed similar expression levels of pluripotent markers. The ability of the Tbx1(-/-) iPSCs to generate endodermal and mesodermal lineages was compromised upon spontaneous differentiation into embryonic bodies. Restoration of Tbx1 expression in the Tbx1(-/-) iPSCs to normal levels using an inducible lentiviral system rescued these cells from the potential of defective differentiation. Interestingly, overexpression of Tbx1 in the Tbx1(-/-) iPSCs to higher levels than in the Tbx1(+/+) iPSCs again led to a defective differentiation potential. Additionally, we observed that expression of fibroblast growth factor (FGF) 10 and FGF8 was downregulated in the Tbx1(-/-) iPSC-derived cells, which suggests that Tbx1 regulates the expression of FGFs. Taken together, our results implicated the Tbx1 level as an important determinant of endodermal and mesodermal lineage differentiation during embryonic development.


Assuntos
Endoderma/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Mesoderma/citologia , Proteínas com Domínio T/fisiologia , Animais , Diferenciação Celular , Desenvolvimento Embrionário , Fator 10 de Crescimento de Fibroblastos/fisiologia , Fator 8 de Crescimento de Fibroblasto/fisiologia , Expressão Gênica , Técnicas de Inativação de Genes , Camundongos
16.
Reproduction ; 146(1): 27-35, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23641036

RESUMO

Oocyte-secreted factors (OSFs) regulate differentiation of cumulus cells and are of pivotal relevance for fertility. Bone morphogenetic protein 15 (BMP15) and fibroblast growth factor 10 (FGF10) are OSFs and enhance oocyte competence by unknown mechanisms. We tested the hypothesis that BMP15 and FGF10, alone or combined in the maturation medium, enhance cumulus expansion and expression of genes in the preovulatory cascade and regulate glucose metabolism favouring hyaluronic acid production in bovine cumulus-oocyte complexes (COCs). BMP15 or FGF10 increased the percentage of fully expanded COCs, but the combination did not further stimulate it. BMP15 increased cumulus cell levels of mRNA encoding a disintegrin and metalloprotease 10 (ADAM10), ADAM17, amphiregulin (AREG), and epiregulin (EREG) at 12 h of culture and of prostaglandin (PG)-endoperoxide synthase 2 (PTGS2), pentraxin 3 (PTX3) and tumor necrosis factor alpha-induced protein 6 (TNFAIP6 (TSG6)) at 22 h of culture. FGF10 did not alter the expression of epidermal growth factor-like factors but enhanced the mRNA expression of PTGS2 at 4 h, PTX3 at 12 h, and TNFAIP6 at 22 h. FGF10 and BMP15 stimulated glucose consumption by cumulus cells but did not affect lactate production or levels of mRNA encoding glycolytic enzymes phosphofructokinase and lactate dehydrogenase A. Each growth factor increased mRNA encoding glucosamine:fructose-6-PO4 transaminases, key enzymes in the hexosamine pathway leading to hyaluronic acid production, and BMP15 also stimulated hyaluronan synthase 2 (HAS2) mRNA expression. This study provides evidence that BMP15 and FGF10 stimulate expansion of in vitro-matured bovine COCs by driving glucose metabolism toward hyaluronic acid production and controlling the expression of genes in the ovulatory cascade, the first acting upon ADAM10, ADAM17, AREG, and EREG and the second on downstream genes, particularly PTGS2.


Assuntos
Proteína Morfogenética Óssea 15/fisiologia , Células do Cúmulo/fisiologia , Fator 10 de Crescimento de Fibroblastos/fisiologia , Oócitos/fisiologia , Ovulação , Animais , Bovinos , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Glucose/metabolismo
17.
Development ; 140(5): 1111-22, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23404108

RESUMO

The neurohypophysis is a crucial component of the hypothalamo-pituitary axis, serving as the site of release of hypothalamic neurohormones into a plexus of hypophyseal capillaries. The growth of hypothalamic axons and capillaries to the forming neurohypophysis in embryogenesis is therefore crucial to future adult homeostasis. Using ex vivo analyses in chick and in vivo analyses in mutant and transgenic zebrafish, we show that Fgf10 and Fgf3 secreted from the forming neurohypophysis exert direct guidance effects on hypothalamic neurosecretory axons. Simultaneously, they promote hypophyseal vascularisation, exerting early direct effects on endothelial cells that are subsequently complemented by indirect effects. Together, our studies suggest a model for the integrated neurohemal wiring of the hypothalamo-neurohypophyseal axis.


Assuntos
Fator 10 de Crescimento de Fibroblastos/fisiologia , Fator 3 de Crescimento de Fibroblastos/fisiologia , Neovascularização Fisiológica/genética , Neuro-Hipófise/irrigação sanguínea , Neuro-Hipófise/inervação , Proteínas de Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Axônios/fisiologia , Células Cultivadas , Embrião de Galinha/irrigação sanguínea , Embrião de Galinha/inervação , Embrião de Galinha/metabolismo , Embrião não Mamífero/irrigação sanguínea , Embrião não Mamífero/inervação , Embrião não Mamífero/metabolismo , Fator 10 de Crescimento de Fibroblastos/genética , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fator 3 de Crescimento de Fibroblastos/genética , Fator 3 de Crescimento de Fibroblastos/metabolismo , Sistema Hipotálamo-Hipofisário/irrigação sanguínea , Sistema Hipotálamo-Hipofisário/embriologia , Sistema Hipotálamo-Hipofisário/metabolismo , Modelos Biológicos , Neovascularização Fisiológica/fisiologia , Neuro-Hipófise/embriologia , Vertebrados/embriologia , Vertebrados/genética , Vertebrados/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
18.
Nat Commun ; 3: 1302, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23250432

RESUMO

By acquiring wings, bats are the only mammalian lineage to have achieved flight. To be capable of powered flight, they have unique muscles associated with their wing. However, the developmental origins of bat wing muscles, and the underlying molecular and cellular mechanisms are unknown. Here we report, first, that the wing muscles are derived from multiple myogenic sources with different embryonic origins, and second, that there is a spatiotemporal correlation between the outgrowth of wing membranes and the expansion of wing muscles into them. Together, these findings imply that the wing membrane itself may regulate the patterning of wing muscles. Last, through comparative gene expression analysis, we show Fgf10 signalling is uniquely activated in the primordia of wing membranes. Our results demonstrate how components of Fgf signalling are likely to be involved in the development and evolution of novel complex adaptive traits.


Assuntos
Quirópteros/crescimento & desenvolvimento , Músculo Esquelético/crescimento & desenvolvimento , Asas de Animais/crescimento & desenvolvimento , Animais , Sequência de Bases , Quirópteros/anatomia & histologia , Quirópteros/embriologia , Quirópteros/genética , Fator 10 de Crescimento de Fibroblastos/fisiologia , Humanos , Camundongos/embriologia , Dados de Sequência Molecular , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/embriologia , Músculo Esquelético/inervação , Asas de Animais/anatomia & histologia , Asas de Animais/embriologia , Asas de Animais/inervação
19.
Front Oral Biol ; 16: 52-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22759669

RESUMO

The Sonic hedgehog (Shh) gene encodes a secreted signalling molecule that plays an important role during numerous aspects of vertebrate development. In the developing palate, Shh is strongly expressed in the epithelium on the oral surface, in a series of stripes corresponding to the future rugae palatini. There is now good evidence that Shh is involved in a number of signalling interactions that take place between the epithelium and mesenchyme during normal palatogenesis. In particular, being able to induce Fgf10 in mesenchyme of the anterior palate which, via Fgfr2, is able to induce Shh in the epithelium. These interactions are essential for normal growth and development of this region; in the absence of normal Shh signalling, mice develop a cleft of the secondary palate. Growth and patterning of the secondary palate are closely linked, with successive rugae forming within a mid-palatal growth zone. Shh also plays a key role during this early patterning process, along the anteroposterior axis of the secondary palate. Specifically, acting as an inhibitor within a reaction-diffusion mechanism that is responsible for establishing primary architecture of the rugae.


Assuntos
Proteínas Hedgehog/fisiologia , Palato/embriologia , Transdução de Sinais/fisiologia , Animais , Padronização Corporal/fisiologia , Fissura Palatina/embriologia , Fissura Palatina/etiologia , Desenvolvimento Embrionário/fisiologia , Epitélio/embriologia , Fator 10 de Crescimento de Fibroblastos/fisiologia , Mesoderma/embriologia , Camundongos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/fisiologia
20.
Mol Biol Cell ; 23(5): 945-54, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22219376

RESUMO

In vertebrates, pancreas and liver arise from bipotential progenitors located in the embryonic gut endoderm. Bone morphogenic protein (BMP) and fibroblast growth factor (FGF) signaling pathways have been shown to induce hepatic specification while repressing pancreatic fate. Here we show that BMP and FGF factors also play crucial function, at slightly later stages, in the specification of the ventral pancreas. By analyzing the pancreatic markers pdx1, ptf1a, and hlxb9la in different zebrafish models of BMP loss of function, we demonstrate that the BMP pathway is required between 20 and 24 h postfertilization to specify the ventral pancreatic bud. Knockdown experiments show that bmp2a, expressed in the lateral plate mesoderm at these stages, is essential for ventral pancreas specification. Bmp2a action is not restricted to the pancreatic domain and is also required for the proper expression of hepatic markers. By contrast, through the analysis of fgf10(-/-); fgf24(-/-) embryos, we reveal the specific role of these two FGF ligands in the induction of the ventral pancreas and in the repression of the hepatic fate. These mutants display ventral pancreas agenesis and ectopic masses of hepatocytes. Overall, these data highlight the dynamic role of BMP and FGF in the patterning of the hepatopancreatic region.


Assuntos
Proteína Morfogenética Óssea 2/fisiologia , Fator 10 de Crescimento de Fibroblastos/fisiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Pâncreas/embriologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Proteína Morfogenética Óssea 2/genética , Fator 10 de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/genética , Técnicas de Silenciamento de Genes , Fígado/embriologia , Transdução de Sinais , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...