Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Theor Biol ; 454: 345-356, 2018 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-29653160

RESUMO

Joints connect the skeletal components and enable movement. The appearance and development of articulations is due to different genetic, biochemical, and mechanical factors. In the embryonic stage, controlled biochemical processes are critical for organized growth. We developed a computational model, which predicts the appearance, location, and development of joints in the embryonic stage. Biochemical events are modeled with reaction diffusion equations with generic molecules representing molecules that 1) determine the site where the articulation will appear, 2) promote proliferation, and matrix synthesis, and 3) define articular cartilage. Our model accounts for cell differentiation from mesenchymal cells to pre-cartilaginous cells, then cartilaginous cells, and lastly articular cartilage. These reaction-diffusion equations were solved using the finite elements method. From a mesenchymal 'bud' of a phalanx, the model predicts growth, joint cleavage, joint morphology, and articular cartilage formation. Our prediction of the gene expression during development agrees with molecular expression profiles of joint development reported in literature. Our computational model suggests that initial rudiment dimensions affect diffusion profiles result in Turing patterns that dictate sites of cleavage thereby determining the number of joints in a rudiment.


Assuntos
Desenvolvimento Ósseo/fisiologia , Cartilagem Articular/embriologia , Simulação por Computador , Articulações/embriologia , Animais , Biomarcadores/metabolismo , Osso e Ossos/embriologia , Osso e Ossos/metabolismo , Cartilagem Articular/crescimento & desenvolvimento , Cartilagem Articular/fisiologia , Comunicação Celular/fisiologia , Diferenciação Celular , Proliferação de Células , Condrogênese/fisiologia , Biologia Computacional , Falanges dos Dedos da Mão/embriologia , Falanges dos Dedos da Mão/crescimento & desenvolvimento , Falanges dos Dedos da Mão/metabolismo , Fator 5 de Diferenciação de Crescimento/administração & dosagem , Fator 5 de Diferenciação de Crescimento/farmacocinética , Humanos , Articulações/citologia , Articulações/crescimento & desenvolvimento , Articulações/metabolismo , Modelos Teóricos , Morfogênese/fisiologia
2.
Acta Biomater ; 72: 150-166, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29550439

RESUMO

The tendon/ligament-to-bone transition (enthesis) is a highly specialized interphase tissue with structural gradients of extracellular matrix composition, collagen molecule alignment and mineralization. These structural features are essential for enthesis function, but are often not regenerated after injury. Tissue engineering is a promising strategy for enthesis repair. Engineering of complex tissue interphases such as the enthesis is likely to require a combination of biophysical, biological and chemical cues to achieve functional tissue regeneration. In this study, we cultured human primary adipose-derived mesenchymal stem cells (AdMCs) on biphasic silk fibroin scaffolds with integrated anisotropic (tendon/ligament-like) and isotropic (bone/cartilage like) pore alignment. We functionalized those scaffolds with heparin and explored their ability to deliver transforming growth factor ß2 (TGF-ß2) and growth/differentiation factor 5 (GDF5). Heparin functionalization increased the amount of TGF-ß2 and GDF5 remaining attached to the scaffold matrix and resulted in biological effects at low growth factor doses. We analyzed the combined impact of pore alignment and growth factors on AdMSCs. TGF-ß2 and pore anisotropy synergistically increased the expression of tendon/ligament markers and collagen I protein content. In addition, the combined delivery of TGF-ß2 and GDF5 enhanced the expression of cartilage markers and collagen II protein content on substrates with isotropic porosity, whereas enthesis markers were enhanced in areas of mixed anisotropic/isotropic porosity. Altogether, the data obtained in this study improves current understanding on the combined effects of biological and structural cues on stem cell fate and presents a promising strategy for tendon/ligament-to-bone regeneration. STATEMENT OF SIGNIFICANCE: Regeneration of the tendon/ligament-to-bone interphase (enthesis) is of significance in the repair of ruptured tendons/ligaments to bone to improve implant integration and clinical outcome. This study proposes a novel approach for enthesis regeneration based on a biomimetic and integrated tendon/ligament-to-bone construct, stem cells and heparin-based delivery of growth factors. We show that heparin can keep growth factors local and biologically active at low doses, which is critical to avoid supraphysiological doses and associated side effects. In addition, we identify synergistic effects of biological (growth factors) and structural (pore alignment) cues on stem cells. These results improve current understanding on the combined impact of biological and structural cues on the multi-lineage differentiation capacity of stem cells for regenerating complex tissue interphases.


Assuntos
Tecido Adiposo/metabolismo , Fibroínas/química , Fator 5 de Diferenciação de Crescimento , Ligamentos , Células-Tronco Mesenquimais/metabolismo , Tendões , Alicerces Teciduais/química , Fator de Crescimento Transformador beta2 , Tecido Adiposo/citologia , Fator 5 de Diferenciação de Crescimento/química , Fator 5 de Diferenciação de Crescimento/farmacocinética , Fator 5 de Diferenciação de Crescimento/farmacologia , Humanos , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual , Fator de Crescimento Transformador beta2/química , Fator de Crescimento Transformador beta2/farmacocinética , Fator de Crescimento Transformador beta2/farmacologia
3.
J Biomater Appl ; 29(1): 72-80, 2014 07.
Artigo em Inglês | MEDLINE | ID: mdl-24327349

RESUMO

PURPOSE: The objective of this study was to investigate the therapeutic potential of poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with recombinant human growth and differentiation factor-5 (rhGDF-5) on the disc degeneration induced by needle puncture in a rat caudal disc model. METHODS: The rhGDF-5-loaded PLGA microspheres were prepared by the water-oil-water double-emulsion solvent evaporation method, and release kinetics was determined over 42 days. Rats that underwent 21-G needle puncture at rat tail discs were injected with rhGDF-5/PLGA microspheres at four weeks after needle injury. At eight weeks after the injection, disc height, glycosaminoglycans content, and DNA content of the discs were evaluated. In addition, gene expression analysis of aggrecan, collagen type I, and collagen type II in the rat nucleus pulposus was measured by real-time polymerase chain reaction. Rat discs were also assessed by histology using hematoxylin and eosin stain. RESULTS: Encapsulation of rhGDF-5 in PLGA microspheres guaranteed a sustained release of active rhGDF-5 for more than 42 days. The injection of GDF-5/PLGA microspheres resulted in a statistically significant restoration of disc height (p < 0.01), improvement of sulfated glycosaminoglycan (p < 0.05), DNA content (p < 0.05), and significantly increased mRNA levels of collagen type II (p < 0.01), and the differentiation index (the ratio of collagen type II to collagen type I, p < 0.01). In addition, rhGDF-5/PLGA microspheres treatment also improved histological changes induced by needle puncture. CONCLUSIONS: The results of this study suggest that injection of rhGDF-5 loaded in PLGA microspheres into rat tail discs may be as a promising therapy strategy to regenerate or repair the degenerative disc.


Assuntos
Fator 5 de Diferenciação de Crescimento/administração & dosagem , Degeneração do Disco Intervertebral/tratamento farmacológico , Agrecanas/genética , Animais , Materiais Biocompatíveis , Colágeno/genética , Preparações de Ação Retardada , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Fator 5 de Diferenciação de Crescimento/farmacocinética , Humanos , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Ácido Láctico , Masculino , Teste de Materiais , Microesferas , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA