Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Dis Model Mech ; 15(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35833364

RESUMO

Fibroblast growth factor 8 (FGF8), acting through the fibroblast growth factor receptor 1 (FGFR1), has an important role in the development of gonadotropin-releasing hormone-expressing neurons (GnRH neurons). We hypothesized that FGF8 regulates differentiation of human GnRH neurons in a time- and dose-dependent manner via FGFR1. To investigate this further, human pluripotent stem cells were differentiated during 10 days of dual-SMAD inhibition into neural progenitor cells, followed either by treatment with FGF8 at different concentrations (25 ng/ml, 50 ng/ml or 100 ng/ml) for 10 days or by treatment with 100 ng/ml FGF8 for different durations (2, 4, 6 or 10 days); cells were then matured through DAPT-induced inhibition of Notch signaling for 5 days into GnRH neurons. FGF8 induced expression of GNRH1 in a dose-dependent fashion and the duration of FGF8 exposure correlated positively with gene expression of GNRH1 (P<0.05, Rs=0.49). However, cells treated with 100 ng/ml FGF8 for 2 days induced the expression of genes, such as FOXG1, ETV5 and SPRY2, and continued FGF8 treatment induced the dynamic expression of several other genes. Moreover, during exposure to FGF8, FGFR1 localized to the cell surface and its specific inhibition with the FGFR1 inhibitor PD166866 reduced expression of GNRH1 (P<0.05). In neurons, FGFR1 also localized to the nucleus. Our results suggest that dose- and time-dependent FGF8 signaling via FGFR1 is indispensable for human GnRH neuron ontogeny. This article has an associated First Person interview with the first author of the paper.


Assuntos
Hormônio Liberador de Gonadotropina , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Fator 8 de Crescimento de Fibroblasto/metabolismo , Fator 8 de Crescimento de Fibroblasto/farmacologia , Fatores de Transcrição Forkhead/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Neurônios/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo
2.
Med Mol Morphol ; 55(3): 199-209, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35578118

RESUMO

We investigated whether BMP4, FGF8, and/or WNT3a on neural crest-like cells (NCLC) derived from mouse induced pluripotent stem (miPS) cells will promote differentiation of odontoblasts-like cells. After the miPS cells matured into embryonic body (EB) cells, they were cultured in a neural induction medium to produce NCLC. As the differentiation of NCLC were confirmed by RT-qPCR, they were then disassociated and cultured with a medium containing, BMP4, FGF8, and/or WNT3a for 7 and 14 days. The effect of these stimuli on NCLC were assessed by RT-qPCR, ALP staining, and immunocytochemistry. The cultured EB cells presented a significant increase of Snai1, Slug, and Sox 10 substantiating the differentiation of NCLC. NCLC stimulated with more than two stimuli significantly increased the odontoblast markers Dmp-1, Dspp, Nestin, Alp, and Runx2 expression compared to control with no stimulus. The expression of Dmp-1 and Dspp upregulated more when FGF8 was combined with WNT3a. ALP staining was positive in groups containing BMP4 and fluorescence was observed in immunocytochemistry of the common significant groups between Dmp-1 and Dspp. After stimulation, the cell morphology demonstrated a spindle-shaped cells with long projections resembling odontoblasts. Simultaneous BMP4, FGF8, and WNT3a stimuli significantly differentiated NCLC into odontoblast-like cells.


Assuntos
Proteína Morfogenética Óssea 4 , Fator 8 de Crescimento de Fibroblasto , Células-Tronco Pluripotentes Induzidas , Odontoblastos , Animais , Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular , Células Cultivadas , Fator 8 de Crescimento de Fibroblasto/farmacologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Camundongos , Crista Neural , Odontoblastos/metabolismo , Proteína Wnt3A/farmacologia
3.
Endocrinology ; 162(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34125902

RESUMO

Gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus play a key role in the regulation of reproductive function. In this study, we sought an efficient method for generating GnRH neurons from human embryonic and induced pluripotent stem cells (hESC and hiPSC, respectively). First, we found that exposure of primitive neuroepithelial cells, rather than neuroprogenitor cells, to fibroblast growth factor 8 (FGF8), was more effective in generating GnRH neurons. Second, addition of kisspeptin to FGF8 further increased the efficiency rates of GnRH neurogeneration. Third, we generated a fluorescent marker mCherry labeled human embryonic GnRH cell line (mCh-hESC) using a CRISPR-Cas9 targeting approach. Fourth, we examined physiological characteristics of GnRH (mCh-hESC) neurons: similar to GnRH neurons in vivo, they released the GnRH peptide in a pulsatile manner at ~60 min intervals; GnRH release increased in response to high potassium, kisspeptin, estradiol, and neurokinin B challenges; and injection of depolarizing current induced action potentials. Finally, we characterized developmental changes in transcriptomes of GnRH neurons using hESC, hiPSC, and mCh-hESC. The developmental pattern of transcriptomes was remarkably similar among the 3 cell lines. Collectively, human stem cell-derived GnRH neurons will be an important tool for establishing disease models to understand diseases, such as idiopathic hypothalamic hypogonadism, and testing contraceptive drugs.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Células-Tronco Embrionárias Humanas/fisiologia , Neurogênese/genética , Neurônios/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Fator 8 de Crescimento de Fibroblasto/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transcriptoma/efeitos dos fármacos
4.
Dis Model Mech ; 13(3)2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31996360

RESUMO

Gonadotropin-releasing hormone (GnRH) neurons provide a fundamental signal for the onset of puberty and subsequent reproductive functions by secretion of gonadotropin-releasing hormone. Their disrupted development or function leads to congenital hypogonadotropic hypogonadism (CHH). To model the development of human GnRH neurons, we generated a stable GNRH1-TdTomato reporter cell line in human pluripotent stem cells (hPSCs) using CRISPR-Cas9 genome editing. RNA-sequencing of the reporter clone, differentiated into GnRH neurons by dual SMAD inhibition and FGF8 treatment, revealed 6461 differentially expressed genes between progenitors and GnRH neurons. Expression of the transcription factor ISL1, one of the top 50 most upregulated genes in the TdTomato-expressing GnRH neurons, was confirmed in 10.5 gestational week-old human fetal GnRH neurons. Among the differentially expressed genes, we detected 15 genes that are implicated in CHH and several genes that are implicated in human puberty timing. Finally, FGF8 treatment in the neuronal progenitor pool led to upregulation of 37 genes expressed both in progenitors and in TdTomato-expressing GnRH neurons, which suggests upstream regulation of these genes by FGF8 signaling during GnRH neuron differentiation. These results illustrate how hPSC-derived human GnRH neuron transcriptomic analysis can be utilized to dissect signaling pathways and gene regulatory networks involved in human GnRH neuron development.This article has an associated First Person interview with the first author of the paper.


Assuntos
Genes Reporter , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Células-Tronco Pluripotentes/metabolismo , Transcriptoma/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular , Feto/citologia , Fator 8 de Crescimento de Fibroblasto/farmacologia , Humanos , Hipogonadismo/genética , Proteínas com Homeodomínio LIM/metabolismo , Neurônios/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
5.
Exp Eye Res ; 173: 129-137, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29753729

RESUMO

Emerging therapies have begun to evaluate the abilities of Müller glial cells (MGCs) to protect and/or regenerate neurons following retina injury. The migration of donor cells is central to many reparative strategies, where cells must achieve appropriate positioning to facilitate localized repair. Although chemical cues have been implicated in the MGC migratory responses of numerous retinopathies, MGC-based therapies have yet to explore the extent to which external biochemical stimuli can direct MGC behavior. The current study uses a microfluidics-based assay to evaluate the migration of cultured rMC-1 cells (as model MGC) in response to quantitatively-controlled microenvironments of signaling factors implicated in retinal regeneration: basic Fibroblast Growth factor (bFGF or FGF2); Fibroblast Growth factor 8 (FGF8); Vascular Endothelial Growth Factor (VEGF); and Epidermal Growth Factor (EGF). Findings indicate that rMC-1 cells exhibited minimal motility in response to FGF2, FGF8 and VEGF, but highly-directional migration in response to EGF. Further, the responses were blocked by inhibitors of EGF-R and of the MAPK signaling pathway. Significantly, microfluidics data demonstrate that changes in the EGF gradient (i.e. change in EGF concentration over distance) resulted in the directional chemotactic migration of the cells. By contrast, small increases in EGF concentration, alone, resulted in non-directional cell motility, or chemokinesis. This microfluidics-enhanced approach, incorporating the ability both to modulate and asses the responses of motile donor cells to a range of potential chemotactic stimuli, can be applied to potential donor cell populations obtained directly from human specimens, and readily expanded to incorporate drug-eluting biomaterials and combinations of desired ligands.


Assuntos
Quimiotaxia/fisiologia , Células Ependimogliais/fisiologia , Animais , Proliferação de Células/fisiologia , Células Cultivadas , Microambiente Celular , Células Ependimogliais/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 8 de Crescimento de Fibroblasto/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Técnicas Analíticas Microfluídicas , Nestina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Fatores de Crescimento/genética , Fator A de Crescimento do Endotélio Vascular/farmacologia
6.
J Proteomics ; 183: 14-24, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29758290

RESUMO

FGF8 specifies early tooth development by directing the migration of the early tooth founder cells to the site of tooth emergence. To date the effect of the FGF8 in adult dental pulp has not been studied. We have assessed the regenerative potential of FGF8 by evaluating changes in the proteome landscape of dental pulp following short- and long-term exposure to recombinant FGF8 protein. In addition, we carried out qRT PCR analysis to determine extracellular/adhesion gene marker expression and assessed cell proliferation and mineralization in response to FGF8 treatment. 2D and mass spectrometry data showed differential expression of proteins implicated in cytoskeleton/ECM remodeling and migration, cell proliferation and odontogenic differentiation as evidenced by the upregulation of gelsolin, moesin, LMNA, WDR1, PLOD2, COPS5 and downregulation of P4HB. qRT PCR showed downregulation of proteins involved in cell-matrix adhesion such as ADAMTS8, LAMB3 and ANOS1 and increased expression of the angiogenesis marker PECAM1. We have observed that, FGF8 treatment was able to boost dental pulp cell proliferation and to enhance dental pulp mineralization. Collectively, our data suggest that, FGF8 treatment could promote endogenous healing of the dental pulp via recruitment of dental pulp progenitors as well as by promoting their angiogenic and odontogenic differentiation. SIGNIFICANCE: Dental pulp cells (DP) have been studied extensively for the purposes of mineralized tissue repair, particularly for the reconstruction of hard and soft tissue maxillofacial defects. Canonical FGF signaling has been implicated throughout multiple stages of tooth development by regulating cell proliferation, differentiation, survival as well as cellular migration. FGF8 expression is indispensible for normal tooth development and particularly for the migration of early tooth progenitors to the sites of tooth emergence. The present study provides proteome and qRT PCR data with regard to the future application and biological relevance of FGF8 in dental regenerative medicine. AUTHORS WITH ORCID: Rozaliya Tsikandelova - 0000-0003-0178-3767 Zornitsa Mihaylova - 0000-0003-1748-4489 Sébastien Planchon - 0000-0002-0455-0574 Nikolay Ishkitiev - 0000-0002-4351-5579.


Assuntos
Polpa Dentária/citologia , Fator 8 de Crescimento de Fibroblasto/farmacologia , Proteoma/metabolismo , Regeneração/efeitos dos fármacos , Adulto , Diferenciação Celular , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/fisiologia , Regulação da Expressão Gênica , Humanos , Minerais/metabolismo , Reação em Cadeia da Polimerase , Proteoma/efeitos dos fármacos , Proteoma/fisiologia
7.
Mol Cell Endocrinol ; 476: 96-102, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29723542

RESUMO

The theca cell layer of the ovarian follicle secretes growth factors that impact the function of granulosa cells. One such factor is fibroblast growth factor 18 (FGF18) that causes apoptosis of granulosa cells, however it is not known if FGF18 induces apoptosis also in theca cells. Addition of recombinant FGF18 to bovine theca cells in vitro inhibited steroidogenesis but, in contrast to previous data in granulosa cells, decreased the incidence of apoptosis. FGF18 activated typical FGF signaling pathways in theca cells, which was not previously observed in granulosa cells. The transcription factor Early Growth Response-1 (EGR1) was a target of FGF18 action; overexpression and knock-down experiments demonstrated that EGR1 is a major upstream component of FGF signaling in theca cells and that it directs cell fate toward proliferation. These data suggest that FGF18 is mitogenic for theca cells while being pro-apoptotic in granulosa cells.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Células Tecais/metabolismo , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Fator 8 de Crescimento de Fibroblasto/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas de Membrana/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Esteroides/biossíntese , Células Tecais/efeitos dos fármacos
8.
Tumour Biol ; 39(3): 1010428317695969, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28345462

RESUMO

Fibroblast growth factor 8b and androgen play important roles in cell proliferation of prostate cancer. We investigated the effects of fibroblast growth factor 8b and androgen on the proliferation of prostate cell lines and the corresponding intracellular mechanisms. It is found that dihydrotestosterone and fibroblast growth factor 8b stimulated Lncap cell mitosis in a concentration-responsive manner, with 30 ng/mL as the most suitable concentration, respectively. Dihydrotestosterone treatment alone did not enhance the expression and phosphorylation level of fibroblast growth factor receptor but significantly enhanced the level of fibroblast growth factor receptor phosphorylation elicited by fibroblast growth factor 8b. Phosphorylations of extracellular signal-regulated kinase, p38, and c-Jun NH2-terminal kinase were stimulated by dihydrotestosterone or fibroblast growth factor 8b. Among these major downstream pathways for mitogen-activated protein kinase, c-Jun NH2-terminal kinase signaling was most significantly enhanced. Protein kinase C phosphorylation was higher than AKT by the combined stimulation of dihydrotestosterone and fibroblast growth factor 8b. The phosphorylation of CDC2 was significantly induced by dihydrotestosterone and fibroblast growth factor 8b synergetically, and Smad underwent the same induction as CDC2. So the promoting effect of fibroblast growth factor 8b on cell cycle might contribute to the G2/M transition. This study indicated that the functional interaction between fibroblast growth factor 8b and androgen was essential for the prostate cancer cell proliferation.


Assuntos
Proliferação de Células/efeitos dos fármacos , Di-Hidrotestosterona/farmacologia , Fator 8 de Crescimento de Fibroblasto/farmacologia , Fase G2/efeitos dos fármacos , Neoplasias da Próstata/patologia , Proteína Quinase CDC2 , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator 8 de Crescimento de Fibroblasto/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Fosforilação/efeitos dos fármacos , Proteínas Smad/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Mol Cell Biochem ; 425(1-2): 77-84, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27804049

RESUMO

Fibroblast growth factors (FGFs) comprise a large family of signaling molecules that involve cell patterning, mobilization, differentiation, and proliferation. Various FGFs, including FGF-1, FGF-2, and FGF-5, have been shown to play a role in cytoprotection during adverse cardiac events; however, whether FGF-8 is a cytoprotective remains unclear. The current study was designed to evaluate the effect of FGF-8 treatment on oxidative stress-induced apoptosis in H9c2 cells. Cells were divided into three groups: control, H2O2 (400 µm H2O2), and H2O2 + FGF-8 (4 ng/ml FGF-8). Our results suggest apoptosis was significantly (p < 0.05) enhanced in the H2O2 group relative to control. Moreover, a significant (p < 0.05) decline in apoptosis was observed in the H2O2 + FGF-8 group compared to H2O2-treated cells as evidenced by TUNEL staining, a cell death detection ELISA, and cell viability. Levels of downstream apoptotic mediators, caspase-3 and caspase-9, were significantly (p < 0.05) upregulated following H2O2 treatment but were abrogated following FGF-8 application. Expression levels of Forkhead box protein O1 (FoxO-1), MnSOD, catalase, pAKT, and p-mTOR were significantly (p < 0.05) reduced in the H2O2 group (p < 0.05). Notably, these levels were significantly (p < 0.05) reversed following FGF-8 treatment. Our data, for the first time, suggest FGF-8 is an anti-apoptotic mediator in oxidative-stressed H9c2 cells. Furthermore, our data demonstrate that apoptotic inhibition by FGF-8 is consequent to FoxO-1 oxidative detoxification as well as augmentation to the PI3K/AKT cell survival pathway.


Assuntos
Apoptose/efeitos dos fármacos , Fator 8 de Crescimento de Fibroblasto/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Proteínas do Tecido Nervoso/biossíntese , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
10.
Stem Cell Reports ; 7(2): 149-57, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27426041

RESUMO

Gonadotropin-releasing hormone (GnRH) neurons regulate human puberty and reproduction. Modeling their development and function in vitro would be of interest for both basic research and clinical translation. Here, we report a three-step protocol to differentiate human pluripotent stem cells (hPSCs) into GnRH-secreting neurons. Firstly, hPSCs were differentiated to FOXG1, EMX2, and PAX6 expressing anterior neural progenitor cells (NPCs) by dual SMAD inhibition. Secondly, NPCs were treated for 10 days with FGF8, which is a key ligand implicated in GnRH neuron ontogeny, and finally, the cells were matured with Notch inhibitor to bipolar TUJ1-positive neurons that robustly expressed GNRH1 and secreted GnRH decapeptide into the culture medium. The protocol was reproducible both in human embryonic stem cells and induced pluripotent stem cells, and thus provides a translational tool for investigating the mechanisms of human puberty and its disorders.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Células-Tronco Pluripotentes/citologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fator 8 de Crescimento de Fibroblasto/farmacologia , Fatores de Transcrição Forkhead/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurônios/efeitos dos fármacos , Nariz/citologia , Células-Tronco Pluripotentes/metabolismo , Receptores Notch/metabolismo , Proteínas Smad/antagonistas & inibidores , Proteínas Smad/metabolismo
11.
Appl Microbiol Biotechnol ; 100(2): 625-35, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26411459

RESUMO

Human fibroblast growth factor 8b (FGF8b) was expressed based on a baculovirus expression vector system (BEVS) and identified as having a protective effect on Parkinson's disease. Immunoblotting demonstrated that rhFGF8b proteins were recognized by a human anti-FGF8b antibody. The multiplicity of infection and timing of harvest had a significant effect on protein yield and protein quality. Our results indicated that the rhFGF8b was first detectable at 36 h postinfection and reached a maximum at 60 h. A multiplicity of infection (MOI) of 8 pfu/mL was suitable for harvest. The target protein was purified by heparin-affinity chromatography. In vitro methylthiazol tetrazolium (MTT) assays demonstrated that the purified rhFGF8b could significantly stimulate proliferation of NIH3T3 cells. Furthermore, to elucidate the effect of rhFGF8b on Parkinson's disease, we used FGF8b pretreatment on a cell model of Parkinson's disease. The results indicated that rhFGF8b prevented necrosis and apoptosis of 1-METHYL-4-phenyl pyridine (MPP(+)) treated PC12 cells. Moreover, the effect of FGF8b on messenger RNA (mRNA) levels of apoptosis and ERS genes was investigated to clarify the molecular mechanisms of FGF8b. The results suggest that FGF8b exerts neuroprotective effects by alleviating endoplasmic reticulum (ER) stress during PD. These results suggest that FGF8b may be a promising candidate therapeutic drug for neurodegenerative diseases related to ER stress.


Assuntos
Fator 8 de Crescimento de Fibroblasto/genética , Fator 8 de Crescimento de Fibroblasto/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Apoptose/efeitos dos fármacos , Baculoviridae/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia de Afinidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fator 8 de Crescimento de Fibroblasto/biossíntese , Fator 8 de Crescimento de Fibroblasto/isolamento & purificação , Humanos , Camundongos , Células NIH 3T3 , Fármacos Neuroprotetores/isolamento & purificação , Células PC12 , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Sais de Tetrazólio , Tiazóis
12.
Peptides ; 73: 88-94, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26409788

RESUMO

BMP induces osteoblast differentiation, whereas a key proinflammatory cytokine, TNF-α, causes inflammatory bone damage shown in rheumatoid arthritis. FGF molecules are known to be involved in bone homeostasis. However, the effects of FGF-8 on osteoblast differentiation and the interaction between FGF-8, BMPs and TNF-α have yet to be clarified. Here we investigated the effects of FGF-8 in relation to TNF-α actions on BMP-2-induced osteoblast marker expression using myoblast cell line C2C12, osteoblast precursor cell line MC3T3-E1 and rat calvarial osteoblasts. It was revealed that FGF-8 inhibited BMP-2-induced expression of osteoblast differentiation markers, including Runx2, osteocalcin, alkaline phosphatase, type-1 collagen and osterix, in a concentration-dependent manner. The inhibitory effects of FGF-8 on BMP-induced osteoblast differentiation and Smad1/5/8 activation were enhanced in the presence of TNF-α action. FGF-8 also inhibited BMP-2-induced expression of Wnt5a, which activates a non-canonical Wnt signaling pathway. FGF-8 had no significant influence on the expression levels of TNF receptors, while FGF-8 suppressed the expression of inhibitory Smad6 and Smad7, suggesting a possible feedback activity through FGF to BMP receptor (BMPR) signaling. Of note, inhibition of ERK activity and FGF receptor (FGFR)-dependent protein kinase, but not JNK or NFκB pathway, suppressed the FGF-8 actions on BMP-induced osteoblast differentiation. FGF-8 was revealed to suppress BMP-induced osteoblast differentiation through the ERK pathway and the effects were enhanced by TNF-α. Given the finding that FGF-8 expression was increased in synovial tissues of rheumatoid arthritis, the functional interaction between FGFR and BMPR signaling may be involved in the development process of inflammatory bone damage.


Assuntos
Antígenos de Diferenciação/biossíntese , Proteína Morfogenética Óssea 2/metabolismo , Fator 8 de Crescimento de Fibroblasto/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Osteoblastos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Proteína Morfogenética Óssea 2/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Fator 8 de Crescimento de Fibroblasto/farmacologia , Humanos , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Osteoblastos/citologia , Ratos , Proteínas Smad/metabolismo
13.
Dev Growth Differ ; 57(6): 421-429, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26100345

RESUMO

Limb regeneration ability, which can be observed in amphibians, has been investigated as a representative phenomenon of organ regeneration. Recently, an alternative experimental system called the accessory limb model was developed to investigate early regulation of amphibian limb regeneration. The accessory limb model contributed to identification of limb regeneration inducers in urodele amphibians. Furthermore, the accessory limb model may be applied to other species to explore universality of regeneration mechanisms. This review aims to connect the insights recently gained to emboss universality of regeneration mechanisms among species. The defined molecules (BMP7 (or2) + FGF2 + FGF8) can transform skin wound healing to organ (limb) regeneration responses. The same molecules can initiate regeneration responses in some species.


Assuntos
Proteína Morfogenética Óssea 7/farmacologia , Extremidades/fisiologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 8 de Crescimento de Fibroblasto/farmacologia , Regeneração/efeitos dos fármacos , Ambystoma mexicanum/fisiologia , Anfíbios/fisiologia , Animais , Extremidades/crescimento & desenvolvimento , Regeneração/fisiologia , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia , Xenopus/fisiologia
14.
Int J Mol Med ; 36(1): 255-62, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25976705

RESUMO

Spermatogonial stem cells (SSCs) are adult male germ cells that develop after birth. Throughout the lifetime of an organism, SSCs sustain spermatogenesis through self-renewal and produce daughter cells that differentiate into spermatozoa. Several studies have demonstrated that SSCs can acquire pluripotency under appropriate culture conditions, thus becoming multipotent germline stem cells (mGSCs) that express markers of pluripotency in culture and form teratomas following transplantation into immunodeficient mice. In the present study, we generated neural precursor cells expressing CD24, a neural precursor marker, from pluripotent stem cell lines and demonstrated that these cells effectively differentiated along a neural lineage in vitro. In addition, we found that paracrine factors promoted CD24 expression during the neural differentiation of mGSCs. Our results indicated that the expression of CD24, enhanced by a combination of retinoic acid (RA), noggin and fibroblast growth factor 8 (FGF8) under serum-free conditions promoted neural precursor differentiation. Using a simple cell sorting method, we were able to collect neural precursor cells with the potential to differentiate from mGSCs into mature neurons and astrocytes in vitro.


Assuntos
Células-Tronco Adultas/citologia , Antígeno CD24/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Neurogênese/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Animais , Astrócitos/citologia , Proteína Morfogenética Óssea 4/farmacologia , Proteínas de Transporte/farmacologia , Células Cultivadas , Fator 8 de Crescimento de Fibroblasto/farmacologia , Fibroblastos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Proteínas Hedgehog/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco Neurais/citologia , Neurônios/citologia , Células-Tronco Pluripotentes/metabolismo , Espermatogônias/citologia , Tretinoína/farmacologia
15.
J Biosci Bioeng ; 119(3): 260-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25239070

RESUMO

Expression of the LIM homeodomain transcription factor Lhx8 is restricted to and up-regulated in the mesenchyme of the upper face prominence before lip fusion. Msx1/2 acts in early development to control cell proliferation and differentiation. Deficiency of these genes is associated with nonsyndromic cleft lip with/without cleft palate. Since retinoid is a potential patterning influence on the developing face, we have examined whether retinoic acid (RA) signaling regulated Lhx8, Msx1 and Msx2 transcription through fibroblast growth factor (FGF) signals in the maxillary prominence. Application of exogenous RA caused severe defects of the maxilla. Citral also induced a specific loss of derivatives from the maxillary prominences by blocking RA synthesis. Real-time RT-PCR and semi-quantitative RT-PCR analysis of the maxillary mesenchyme revealed that the expressions of Lhx8, Msx1 and Msx2 were significantly down-regulated by RA as well as by citral. The downregulated Lhx8 was rescued by combined treatment with FGF-8b, which indicated a downstream of RA signaling. FGF-8b induced up-regulated Lhx8 expression whereas SU5402, a pan-FGF family antagonist, down-regulated and caused defective maxillary morphogenesis and cleft lip. Our data suggest that Lhx8 is regulated by RA signaling through FGF signals and the level window of RA and FGF-8b could control the upper jaw morphogenesis.


Assuntos
Fator 8 de Crescimento de Fibroblasto/metabolismo , Arcada Osseodentária/efeitos dos fármacos , Arcada Osseodentária/embriologia , Proteínas com Homeodomínio LIM/metabolismo , Fatores de Transcrição/metabolismo , Tretinoína/farmacologia , Monoterpenos Acíclicos , Animais , Diferenciação Celular/efeitos dos fármacos , Embrião de Galinha , Regulação para Baixo/efeitos dos fármacos , Fator 8 de Crescimento de Fibroblasto/antagonistas & inibidores , Fator 8 de Crescimento de Fibroblasto/farmacologia , Proteínas de Homeodomínio/metabolismo , Arcada Osseodentária/metabolismo , Fator de Transcrição MSX1/metabolismo , Mesoderma/efeitos dos fármacos , Mesoderma/metabolismo , Monoterpenos/farmacologia , Morfogênese/efeitos dos fármacos , Pirróis/farmacologia , Transdução de Sinais/efeitos dos fármacos
16.
Oncotarget ; 6(2): 935-52, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25473897

RESUMO

Colorectal cancer (CRC) is a major cause of cancer-related death worldwide. The poor prognosis of CRC is mainly due to uncontrolled tumor growth and distant metastases. In this study, we found that the level of FGF8 was elevated in the great majority of CRC cases and high FGF8 expression was significantly correlated with lymph nodes metastasis and worse overall survival. Functional studies showed that FGF8 can induce a more aggressive phenotype displaying epithelial-to-mesenchymal transition (EMT) and enhanced invasion and growth in CRC cells. Consistent with this, FGF8 can also promote tumor growth and metastasis in mouse models. Bioinformatics and pathological analysis suggested that YAP1 is a potential downstream target of FGF8 in CRC cells. Molecular validation demonstrated that FGF8 fully induced nuclear localization of YAP1 and enhanced transcriptional outcomes such as the expression of CTGF and CYR61, while decreasing YAP1 expression impeded FGF-8-induced cell growth, EMT, migration and invasion, revealing that YAP1 is required for FGF8-mediated CRC growth and metastasis. Taken together, these results demonstrate that FGF8 contributes to the proliferative and metastatic capacity of CRC cells and may represent a novel candidate for intervention in tumor growth and metastasis formation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Fator 8 de Crescimento de Fibroblasto/genética , Regulação Neoplásica da Expressão Gênica , Fosfoproteínas/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Idoso , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Feminino , Fator 8 de Crescimento de Fibroblasto/metabolismo , Fator 8 de Crescimento de Fibroblasto/farmacologia , Células HCT116 , Humanos , Imuno-Histoquímica , Metástase Linfática , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Fosfoproteínas/metabolismo , Prognóstico , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Análise de Sobrevida , Fatores de Transcrição , Transplante Heterólogo , Carga Tumoral/genética , Proteínas de Sinalização YAP
17.
PLoS One ; 9(9): e108241, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25259688

RESUMO

Fibroblast growth factor 8 (FGF8) is a key molecular signal that is necessary for early embryonic development of the central nervous system, quickly disappearing past this point. It is known to be one of the primary morphogenetic signals required for cell fate and survival processes in structures such as the cerebellum, telencephalic and isthmic organizers, while its absence causes severe abnormalities in the nervous system and the embryo usually dies in early stages of development. In this work, we have observed a new possible therapeutic role for this factor in demyelinating disorders, such as leukodystrophy or multiple sclerosis. In vitro, oligodendrocyte progenitor cells were cultured with differentiating medium and in the presence of FGF8. Differentiation and proliferation studies were performed by immunocytochemistry and PCR. Also, migration studies were performed in matrigel cultures, where oligodendrocyte progenitor cells were placed at a certain distance of a FGF8-soaked heparin bead. The results showed that both migration and proliferation was induced by FGF8. Furthermore, a similar effect was observed in an in vivo demyelinating mouse model, where oligodendrocyte progenitor cells were observed migrating towards the FGF8-soaked heparin beads where they were grafted. In conclusion, the results shown here demonstrate that FGF8 is a novel factor to induce oligodendrocyte progenitor cell activation, migration and proliferation in vitro, which can be extrapolated in vivo in demyelinated animal models.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Fator 8 de Crescimento de Fibroblasto/farmacologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Oligodendroglia/citologia , Animais , Animais Recém-Nascidos , Biomarcadores , Diferenciação Celular/genética , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Doenças Desmielinizantes/terapia , Camundongos , Células-Tronco Neurais/metabolismo , Oligodendroglia/metabolismo , Transplante de Células-Tronco
18.
J Neurosci Methods ; 227: 100-6, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24583076

RESUMO

BACKGROUND: P19 mouse embryonic carcinoma cells are conventionally induced to differentiate into neural cells by suspension culture in the presence of retinoic acid to form cell aggregates, followed by adhesion culture in a poly-l-lysine-coated dish. Drawbacks of this procedure include it taking more than 10 days to obtain mature neurons, and non-neuronal proliferating cells occupying the majority of the cell population with time. NEW METHOD: Here, we show a novel method for the rapid and efficient neurogenesis of P19 cells, without aggregate formation in a suspension culture. The new approach is based on an adherent serum-free culture in a laminin-coated dish in the presence of FGF8, a γ-secretase inhibitor, and cytosine arabinoside. RESULTS: The new method efficiently induced P19 cells to differentiate into neurons within 4 days, and subsequently into mature neurons that were responsive to several neurotransmitters, giving spontaneous neuronal network activity within 6 days. COMPARISON WITH EXISTING METHOD: The novel method accelerated neuritogenesis and enhanced population of neuron selectively compared to the conventional method. Proliferating non-neuronal cells were eliminated by adding cytosine arabinoside during neuronal maturation. CONCLUSIONS: The method is useful for studying neuronal differentiation or activities.


Assuntos
Diferenciação Celular/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Animais , Cálcio/metabolismo , Carcinoma Embrionário/patologia , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Meios de Cultura Livres de Soro/farmacologia , Fator 8 de Crescimento de Fibroblasto/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Laminina/metabolismo , Laminina/farmacologia , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/efeitos dos fármacos , Neurotransmissores/farmacologia , Cloreto de Potássio/farmacologia , Fatores de Tempo
19.
Int Endod J ; 47(4): 346-55, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24033427

RESUMO

AIM: The aim of this study was to differentiate human embryonic stem cells (hESCs) into odontoblastic lineage in an optimized culture milieu. METHODOLOGY: In Phase 1, hESCs were differentiated into mesenchymal stem cells (H9-MSCs). In Phase 2, H9-MSCs were then differentiated into odontoblast-like cells (H9-Odont) under the stimulation of FGF-8 and BMP-4. Alternatively, H9-MSCs were differentiated into osteogenic lineage (H9-Osteo). In Phase 3, H9-Odont were seeded on 17% EDTA-treated dentine substrates in the presence of FGF-8 and BMP-4 for further differentiation. All experiments were performed in triplicate (n = 3). One-way anova was used to test hESC differentiation into different cell types. Post hoc Tukey's test was used to compare between groups. P < 0.05 was considered statistically significant. RESULTS: H9-Odont expressed the odontoblastic marker DSPP gene 125.47 ± 0.1 (SD)-folds higher compared with H9-MSCs at mRNA level (real-time RT-PCR). Additionally, the flow cytometry results revealed 53.1 ± 3.4 (SD) % of DSP (+) cells in H9-Odont. Alternatively, H9-Osteo expressed 5.9 ± 2.2 (SD) % of DSP (+) cells. Moreover, the SEM results demonstrated that H9-Odont were found to undergo morphological changes from a fibroblast-like shape into more rounded shapes with cytoplasmic extensions into the dentinal tubules when seeded on 17% EDTA-treated dentine substrate in the presence of FGF-8 and BMP-4. However, H9-Osteo and H9-MSCs did not show similar morphological changes under similar culture milieu. CONCLUSION: This study supports the potential of hESCs as a stable, consistent, unlimited and 'off-the-shelf' cell source to obtain odontoblastic cells for future clinical and research applications.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias Humanas/citologia , Odontoblastos/citologia , Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Fator 8 de Crescimento de Fibroblasto/farmacologia , Citometria de Fluxo , Humanos , Técnicas In Vitro , Microscopia Eletrônica de Varredura , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Stem Cell Res ; 12(1): 60-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24145188

RESUMO

The direct lineage reprogramming of somatic cells to other lineages by defined factors has led to innovative cell-fate-change approaches for providing patient-specific cells. Recent reports have demonstrated that four pluripotency factors (Oct4, Sox2, Klf4, and c-Myc) are sufficient to directly reprogram fibroblasts to other specific cells, including induced neural stem cells (iNSCs). Here, we show that mouse fibroblasts can be directly reprogrammed into midbrain dopaminergic neuronal progenitors (DPs) by temporal expression of the pluripotency factors and environment containing sonic hedgehog and fibroblast growth factor 8. Within thirteen days, self-renewing and functional induced DPs (iDPs) were generated. Interestingly, the inhibition of both Jak and Gsk3ß notably enhanced the iDP reprogramming efficiency. We confirmed the functionality of the iDPs by showing that the dopaminergic neurons generated from iDPs express midbrain markers, release dopamine, and show typical electrophysiological profiles. Our results demonstrate that the pluripotency factors-mediated direct reprogramming is an invaluable strategy for supplying functional and proliferating iDPs and may be useful for other neural progenitors required for disease modeling and cell therapies for neurodegenerative disorders.


Assuntos
Diferenciação Celular , Reprogramação Celular , Neurônios Dopaminérgicos/citologia , Fibroblastos/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem da Célula , Reprogramação Celular/efeitos dos fármacos , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Fator 8 de Crescimento de Fibroblasto/farmacologia , Fibroblastos/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Proteínas Hedgehog/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo , Fator 4 Semelhante a Kruppel , Mesencéfalo/citologia , Camundongos , Piridinas/farmacologia , Pirimidinas/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...