Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
1.
Dev Biol ; 511: 39-52, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38548147

RESUMO

The fovea is a small region within the central retina that is responsible for our high acuity daylight vision. Chickens also have a high acuity area (HAA), and are one of the few species that enables studies of the mechanisms of HAA development, due to accessible embryonic tissue and methods to readily perturb gene expression. To enable such studies, we characterized the development of the chick HAA using single molecule fluorescent in situ hybridization (smFISH), along with more classical methods. We found that Fgf8 provides a molecular marker for the HAA throughout development and into adult stages, allowing studies of the cellular composition of this area over time. The radial dimension of the ganglion cell layer (GCL) was seen to be the greatest at the HAA throughout development, beginning during the period of neurogenesis, suggesting that genesis, rather than cell death, creates a higher level of retinal ganglion cells (RGCs) in this area. In contrast, the HAA acquired its characteristic high density of cone photoreceptors post-hatching, which is well after the period of neurogenesis. We also confirmed that rod photoreceptors are not present in the HAA. Analyses of cell death in the developing photoreceptor layer, where rods would reside, did not show apoptotic cells, suggesting that lack of genesis, rather than death, created the "rod-free zone" (RFZ). Quantification of each cone photoreceptor subtype showed an ordered mosaic of most cone subtypes. The changes in cellular densities and cell subtypes between the developing and mature HAA provide some answers to the overarching strategy used by the retina to create this area and provide a framework for future studies of the mechanisms underlying its formation.


Assuntos
Retina , Células Ganglionares da Retina , Animais , Embrião de Galinha , Células Ganglionares da Retina/citologia , Retina/embriologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Galinhas , Neurogênese/fisiologia , Fator 8 de Crescimento de Fibroblasto/metabolismo , Fator 8 de Crescimento de Fibroblasto/genética , Hibridização in Situ Fluorescente , Fóvea Central/embriologia , Acuidade Visual , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/citologia , Regulação da Expressão Gênica no Desenvolvimento
2.
Stem Cell Reports ; 18(11): 2240-2253, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37922914

RESUMO

In early vertebrate development, organizer regions-groups of cells that signal to and thereby influence neighboring cells by secreted morphogens-play pivotal roles in the establishment and maintenance of cell identities within defined tissue territories. The midbrain-hindbrain organizer drives regionalization of neural tissue into midbrain and hindbrain territories with fibroblast growth factor 8 (FGF8) acting as a key morphogen. This organizer has been extensively studied in chicken, mouse, and zebrafish. Here, we demonstrate the enrichment of FGF8-expressing cells from human pluripotent stem cells (hPSCs), cultured as attached embryoid bodies using antibodies that recognize "Similar Expression to Fgf" (SEF) and Frizzled proteins. The arrangement of cells in embryoid body subsets of these cultures and the gene expression profile of the FGF8-expressing population show certain similarities to the midbrain-hindbrain organizer in animal models. In the embryonic chick brain, the enriched cell population induces formation of midbrain structures, consistent with FGF8-organizing capability.


Assuntos
Proteínas de Homeodomínio , Células-Tronco Pluripotentes , Humanos , Animais , Camundongos , Proteínas de Homeodomínio/metabolismo , Peixe-Zebra/metabolismo , Fator 8 de Crescimento de Fibroblasto/genética , Galinhas/metabolismo , Mesencéfalo/metabolismo , Células-Tronco Pluripotentes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Crescimento de Fibroblastos/metabolismo , Padronização Corporal
3.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762545

RESUMO

The asymptomatic nature, high rate of disease recurrence, and resistance to platinum-based chemotherapy highlight the need to identify and characterize novel target molecules for ovarian cancer. Fibroblast growth factor 8 (FGF8) aids in the development and metastasis of ovarian cancer; however, its definite role is not clear. We employed ELISA and IHC to examine the expression of FGF8 in the saliva and tissue samples of epithelial ovarian cancer (EOC) patients and controls. Furthermore, various cell assays were conducted to determine how FGF8 silencing influences ovarian cancer cell survival, adhesion, migration, and invasion to learn more about the functions of FGF8. In saliva samples, from controls through low-grade to high-grade EOC, a stepped overexpression of FGF8 was observed. Similar expression trends were seen in tissue samples, both at protein and mRNA levels. FGF8 gene silencing in SKOV3 cells adversely affected various cell properties essential for cancer cell survival and metastasis. A substantial reduction was observed in the cell survival, cell adhesion to the extracellular matrix, migration, and adhesion properties of SKOV3 cells, suggesting that FGF8 plays a crucial role in the development of EOC. Conclusively, this study suggests a pro-metastatic function of FGF8 in EOC.


Assuntos
Recidiva Local de Neoplasia , Neoplasias Ovarianas , Humanos , Feminino , Fator 8 de Crescimento de Fibroblasto/genética , Fator 8 de Crescimento de Fibroblasto/metabolismo , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/genética , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células
4.
Dev Biol ; 499: 10-21, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37060937

RESUMO

Development of the outflow tract of the heart requires specification, proliferation and deployment of a progenitor cell population from the second heart field to generate the myocardium at the arterial pole of the heart. Disruption of these processes leads to lethal defects in rotation and septation of the outflow tract. We previously showed that Fibroblast Growth Factor 8 (FGF8) directs a signaling cascade in the second heart field that regulates critical aspects of OFT morphogenesis. Here we show that in addition to the survival and proliferation cues previously described, FGF8 provides instructive and patterning information to OFT myocardial cells and their progenitors that prevents their aberrant differentiation along a working myocardial program.


Assuntos
Coração , Miocárdio , Diferenciação Celular/fisiologia , Fator 8 de Crescimento de Fibroblasto/genética , Fator 8 de Crescimento de Fibroblasto/metabolismo , Mesoderma/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos , Animais , Camundongos
5.
Aging (Albany NY) ; 15(1): 53-69, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36629518

RESUMO

BACKGROUND: microRNAs (miRNAs) are involved in the progression of Lung adenocarcinoma (LUAD), however, the functions of miR-6742-5p in LUAD remains unknown, thereby this study was carried on. METHODS: The mRNA and miRNA expression data from the LUAD and normal control were obtained from Gene Expression Omnibus (GEO) database, TargetScan and mirDIP were applied to predict the relationship between miR-6742-5p and FGF8.Q-PCR, western blot, dual-luciferase, wound Healing and transwell assays were performed to test the functions of miR-6742-5p in LUAD. RESULTS: Bioinformatics analysis and dual-luciferase identified FGF8 is the target-gene of miR-6742-5p, which is declined in LUAD of human tissues and cell lines, and miR-6742-5P OE suppressed the progression of LUAD in nude mice. MiR-6742-5p OE and KD suppressed or increased the abilities of LUAD' metastasis tested by wound healing and transwell assays H522 and PC-9 cells, these effects about miR-6742-5p OE were reversed by FGF8; miR-6742-5p OE, KD inhibited and increased the expression of FGF8 as its downstream p-ERK1/2, MMP-2/-9, these results were corrected by ERK1/2 inhibitor: Ro 67-7476; the miR-6742-5p KD increased the migrated and invaded cells and suppressed by MMPs inhibitor: S3304. These results identified the negative correlation of miR-6742-5p with FGF8-ERK1/2 signal pathway in LUAD progression. CONCLUSIONS: We conclude that miR-6742-5p might be a regulator of LUAD progression by targeting FGF8/ERK1/2/MMPs signaling pathway, which provides a novel therapeutic target for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Animais , Camundongos , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Fator 8 de Crescimento de Fibroblasto/genética , Fator 8 de Crescimento de Fibroblasto/metabolismo
6.
Development ; 149(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36205075

RESUMO

Kidneys develop via iterative branching of the ureteric epithelial tree and subsequent nephrogenesis at the branch points. Nephrons form in the cap mesenchyme as the metanephric mesenchyme (MM) condenses around the epithelial ureteric buds (UBs). Previous work has demonstrated that FGF8 is important for the survival of nephron progenitor cells (NPCs), and early deletion of Fgf8 leads to the cessation of nephron formation, which results in post-natal lethality. We now reveal a previously unreported function of FGF8. By combining transgenic mouse models, quantitative imaging assays and data-driven computational modelling, we show that FGF8 has a strong chemokinetic effect and that this chemokinetic effect is important for the condensation of NPCs to the UB. The computational model shows that the motility must be lower close to the UB to achieve NPC attachment. We conclude that the FGF8 signalling pathway is crucial for the coordination of NPC condensation at the UB. Chemokinetic effects have also been described for other FGFs and may be generally important for the formation of mesenchymal condensates.


Assuntos
Rim , Néfrons , Camundongos , Animais , Néfrons/metabolismo , Rim/metabolismo , Organogênese , Fatores de Crescimento de Fibroblastos/metabolismo , Células-Tronco/metabolismo , Camundongos Transgênicos , Fator 8 de Crescimento de Fibroblasto/genética , Fator 8 de Crescimento de Fibroblasto/metabolismo
7.
Dev Dyn ; 251(10): 1711-1727, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35618654

RESUMO

BACKGROUND: Asymmetries in craniofacial anomalies are commonly observed. In the facial skeleton, the left side is more commonly and/or severely affected than the right. Such asymmetries complicate treatment options. Mechanisms underlying variation in disease severity between individuals as well as within individuals (asymmetries) are still relatively unknown. RESULTS: Developmental reductions in fibroblast growth factor 8 (Fgf8) have a dosage dependent effect on jaw size, shape, and symmetry. Further, Fgf8 mutants have directionally asymmetric jaws with the left side being more affected than the right. Defects in lower jaw development begin with disruption to Meckel's cartilage, which is discontinuous. All skeletal elements associated with the proximal condensation are dysmorphic, exemplified by a malformed and misoriented malleus. At later stages, Fgf8 mutants exhibit syngnathia, which falls into two broad categories: bony fusion of the maxillary and mandibular alveolar ridges and zygomatico-mandibular fusion. All of these morphological defects exhibit both inter- and intra-specimen variation. CONCLUSIONS: We hypothesize that these asymmetries are linked to heart development resulting in higher levels of Fgf8 on the right side of the face, which may buffer the right side to developmental perturbations. This mouse model may facilitate future investigations of mechanisms underlying human syngnathia and facial asymmetry.


Assuntos
Região Branquial , Coração , Animais , Fator 8 de Crescimento de Fibroblasto/genética , Humanos , Anormalidades Maxilomandibulares , Maxila , Camundongos , Anormalidades da Boca
8.
Elife ; 112022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35587651

RESUMO

The expression of fibroblast growth factors (Fgf) ligands in a specialized epithelial compartment, the Apical Ectodermal Ridge (AER), is a conserved feature of limb development across vertebrate species. In vertebrates, Fgf 4, 8, 9, and 17 are all expressed in the AER. An exception to this paradigm is the salamander (axolotl) developing and regenerating limb, where key Fgf ligands are expressed in the mesenchyme. The mesenchymal expression of Amex.Fgf8 in axolotl has been suggested to be critical for regeneration. To date, there is little knowledge regarding what controls Amex.Fgf8 expression in the axolotl limb mesenchyme. A large body of mouse and chick studies have defined a set of transcription factors and canonical Wnt signaling as the main regulators of epidermal Fgf8 expression in these organisms. In this study, we address the hypothesis that alterations to one or more of these components during evolution has resulted in mesenchymal Amex.Fgf8 expression in the axolotl. To sensitively quantify gene expression with spatial precision, we combined optical clearing of whole-mount axolotl limb tissue with single molecule fluorescent in situ hybridization and a semiautomated quantification pipeline. Several candidate upstream components were found expressed in the axolotl ectoderm, indicating that they are not direct regulators of Amex.Fgf8 expression. We found that Amex.Wnt3a is expressed in axolotl limb epidermis, similar to chicken and mouse. However, unlike in amniotes, Wnt target genes are activated preferentially in limb mesenchyme rather than in epidermis. Inhibition and activation of Wnt signaling results in downregulation and upregulation of mesenchymal Amex.Fgf8 expression, respectively. These results implicate a shift in tissue responsiveness to canonical Wnt signaling from epidermis to mesenchyme as one step contributing to the unique mesenchymal Amex.Fgf8 expression seen in the axolotl.


Assuntos
Ambystoma mexicanum , Via de Sinalização Wnt , Ambystoma mexicanum/genética , Animais , Galinhas/genética , Extremidades/fisiologia , Fator 8 de Crescimento de Fibroblasto/genética , Fator 8 de Crescimento de Fibroblasto/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hibridização in Situ Fluorescente , Ligantes , Vertebrados/genética
9.
Commun Biol ; 5(1): 113, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132142

RESUMO

Somitogenesis, the segmentation of the antero-posterior axis in vertebrates, is thought to result from the interactions between a genetic oscillator and a posterior-moving determination wavefront. The segment (somite) size is set by the product of the oscillator period and the velocity of the determination wavefront. Surprisingly, while the segmentation period can vary by a factor three between 20 °C and 32 °C, the somite size is constant. How this temperature independence is achieved is a mystery that we address in this study. Using RT-qPCR we show that the endogenous fgf8 mRNA concentration decreases during somitogenesis and correlates with the exponent of the shrinking pre-somitic mesoderm (PSM) size. As the temperature decreases, the dynamics of fgf8 and many other gene transcripts, as well as the segmentation frequency and the PSM shortening and tail growth rates slows down as T-Tc (with Tc = 14.4 °C). This behavior characteristic of a system near a critical point may account for the temperature independence of somitogenesis in zebrafish.


Assuntos
Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/fisiologia , Fator 8 de Crescimento de Fibroblasto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Animais , Desenvolvimento Embrionário/genética , Fator 8 de Crescimento de Fibroblasto/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixe-Zebra , p-Aminoazobenzeno/análogos & derivados , p-Aminoazobenzeno/farmacologia
10.
J Genet Genomics ; 49(1): 40-53, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34500094

RESUMO

The developing human and mouse teeth constitute an ideal model system to study the regulatory mechanism underlying organ growth control since their teeth share highly conserved and well-characterized developmental processes, and their developmental tempo varies notably. In the current study, we manipulated heterogenous recombination between human and mouse dental tissues and demonstrated that the dental mesenchyme dominates the tooth developmental tempo and FGF8 could be a critical player during this developmental process. Forced activation of FGF8 signaling in the dental mesenchyme of mice promoted cell proliferation, prevented cell apoptosis via p38 and perhaps PI3K-Akt intracellular signaling, and impelled the transition of the cell cycle from G1- to S-phase in the tooth germ, resulting in the slowdown of the tooth developmental pace. Our results provide compelling evidence that extrinsic signals can profoundly affect tooth developmental tempo, and the dental mesenchymal FGF8 could be a pivotal factor in controlling the developmental pace in a non-cell-autonomous manner during mammalian odontogenesis.


Assuntos
Fosfatidilinositol 3-Quinases , Dente , Animais , Fator 8 de Crescimento de Fibroblasto/genética , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos , Camundongos , Odontogênese/genética , Transdução de Sinais , Germe de Dente
11.
J Dent Res ; 101(4): 458-464, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34706590

RESUMO

FGF8, which is specifically expressed in the dental epithelium prior to the E12.5 bud stage, is a key player during odontogenesis, being responsible for the initiation of tooth development. Here, to investigate the impact of persistent FGF8 signaling on tooth development, we forcibly activated FGF8 signaling in the dental epithelium after the bud stage by generating K14-Cre;R26R-Fg8 mice. We found that a unique type of fused supernumerary incisors is formed, although morphologically resembling the features of type II dens invaginatus in humans. Further analysis revealed that ectopically activated epithelial FGF8 alters the cell fate of the incisor lingual outer enamel epithelium, endowing it with odontogenic potential by the activation of several key tooth genes, including Pitx2, Sox2, Lef-1, p38, and Erk1/2, and induces de novo formation of an extra incisor crown lingually in parallel to the original one, leading to the formation of an extra incisor crown and fused with the original incisor eventually. Meanwhile, the overdosed epithelial FGF8 signaling dramatically downregulates the expression of mesenchymal Bmp4, leading to severely impaired enamel mineralization. Based on the location of the extra incisors, we propose that they are likely to be rescued replacement teeth. Our results further demonstrate the essential role of FGF8 signaling for tooth initiation and the establishment of progenitor cells of dental epithelial stem cells during development.


Assuntos
Incisivo , Odontogênese , Amelogênese/genética , Animais , Anodontia , Fator 8 de Crescimento de Fibroblasto/genética , Fator 8 de Crescimento de Fibroblasto/metabolismo , Incisivo/anormalidades , Camundongos , Odontogênese/genética , Germe de Dente
12.
Am J Hum Genet ; 108(9): 1725-1734, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34433009

RESUMO

Copy-number variations (CNVs) are a common cause of congenital limb malformations and are interpreted primarily on the basis of their effect on gene dosage. However, recent studies show that CNVs also influence the 3D genome chromatin organization. The functional interpretation of whether a phenotype is the result of gene dosage or a regulatory position effect remains challenging. Here, we report on two unrelated families with individuals affected by bilateral hypoplasia of the femoral bones, both harboring de novo duplications on chromosome 10q24.32. The ∼0.5 Mb duplications include FGF8, a key regulator of limb development and several limb enhancer elements. To functionally characterize these variants, we analyzed the local chromatin architecture in the affected individuals' cells and re-engineered the duplications in mice by using CRISPR-Cas9 genome editing. We found that the duplications were associated with ectopic chromatin contacts and increased FGF8 expression. Transgenic mice carrying the heterozygous tandem duplication including Fgf8 exhibited proximal shortening of the limbs, resembling the human phenotype. To evaluate whether the phenotype was a result of gene dosage, we generated another transgenic mice line, carrying the duplication on one allele and a concurrent Fgf8 deletion on the other allele, as a control. Surprisingly, the same malformations were observed. Capture Hi-C experiments revealed ectopic interaction with the duplicated region and Fgf8, indicating a position effect. In summary, we show that duplications at the FGF8 locus are associated with femoral hypoplasia and that the phenotype is most likely the result of position effects altering FGF8 expression rather than gene dosage effects.


Assuntos
Duplicação Cromossômica , Cromossomos Humanos Par 10/química , Variações do Número de Cópias de DNA , Fator 8 de Crescimento de Fibroblasto/genética , Deformidades Congênitas das Extremidades Inferiores/genética , Adolescente , Alelos , Animais , Sistemas CRISPR-Cas , Pré-Escolar , Cromatina/química , Cromatina/metabolismo , Cromossomos Humanos Par 10/metabolismo , Elementos Facilitadores Genéticos , Família , Feminino , Fêmur/anormalidades , Fêmur/diagnóstico por imagem , Fêmur/metabolismo , Fator 8 de Crescimento de Fibroblasto/metabolismo , Edição de Genes , Heterozigoto , Humanos , Lactente , Deformidades Congênitas das Extremidades Inferiores/diagnóstico por imagem , Deformidades Congênitas das Extremidades Inferiores/metabolismo , Deformidades Congênitas das Extremidades Inferiores/patologia , Masculino , Camundongos , Camundongos Transgênicos , Linhagem , Fenótipo
13.
FASEB J ; 35(5): e21572, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33826782

RESUMO

High uncoupling protein 1 (Ucp1) expression is a characteristic of differentiated brown adipocytes and is linked to adipogenic differentiation. Paracrine fibroblast growth factor 8b (FGF8b) strongly induces Ucp1 transcription in white adipocytes independent of adipogenesis. Here, we report that FGF8b and other paracrine FGFs act on brown and white preadipocytes to upregulate Ucp1 expression via a FGFR1-MEK1/2-ERK1/2 axis, independent of adipogenesis. Transcriptomic analysis revealed an upregulation of prostaglandin biosynthesis and glycolysis upon Fgf8b treatment of preadipocytes. Oxylipin measurement by LC-MS/MS in FGF8b conditioned media identified prostaglandin E2 as a putative mediator of FGF8b induced Ucp1 transcription. RNA interference and pharmacological inhibition of the prostaglandin E2 biosynthetic pathway confirmed that PGE2 is causally involved in the control over Ucp1 transcription. Importantly, impairment of or failure to induce glycolytic flux blunted the induction of Ucp1, even in the presence of PGE2 . Lastly, a screening of transcription factors identified Nrf1 and Hes1 as required regulators of FGF8b induced Ucp1 expression. Thus, we conclude that paracrine FGFs co-regulate prostaglandin and glucose metabolism to induce Ucp1 expression in a Nrf1/Hes1-dependent manner in preadipocytes, revealing a novel regulatory network in control of Ucp1 expression in a formerly unrecognized cell type.


Assuntos
Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Dinoprostona/metabolismo , Fator 8 de Crescimento de Fibroblasto/metabolismo , Regulação da Expressão Gênica , Glicólise , Proteína Desacopladora 1/fisiologia , Adipócitos Marrons/citologia , Adipócitos Brancos/citologia , Adipogenia , Animais , Células Cultivadas , Fator 8 de Crescimento de Fibroblasto/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
14.
J Mol Histol ; 52(2): 351-361, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33547543

RESUMO

During cardiogenesis, the outflow tract undergoes a complicated morphogenesis, including the re-alignment of the great blood vessels, and the separation of aorta and pulmonary trunk. The deficiency of FGF8 in the morphogenesis of outflow tract has been well studied, however, the effect of over-dosed FGF8 on the development of outflow tract remains unknown. In this study, Rosa26R-Fgf8 knock-in allele was constitutively activated by Wnt1-cre transgene in the mouse neural crest cells presumptive for the endocardial cushion of outflow tract. Surprisingly, Wnt1-cre; Rosa26R-Fgf8 mouse embryos exhibited persistent truncus arteriosus and died prior to E15.5. The cardiac neural crest cells in Wnt1-cre; Rosa26R-Fgf8 truncus arteriosus did not degenerate as in WT controls, but proliferated into a thickened endocardial cushion and then, blocked the blood outflow from cardiac chambers into the lungs, which resulted in the embryonic lethality. Although the spiral aorticopulmonary septum failed to form, the differentiaion of the endothelium and smooth muscle in the Wnt1-cre; Rosa26R-Fgf8 truncus arteriosus were impacted little. However, lineage tracing assay showed that the neural crest derived cells aggregated in the cushion layer, but failed to differentiate into the endothelium of Wnt1-cre; Rosa26R-Fgf8 truncus arteriosus. Further investigation displayed the reduced p-Akt and p-Erk immunostaining, and the decreased Bmp2 and Bmp4 transcription in the endothelium of Wnt1-cre; Rosa26R-Fgf8 truncus arteriosus. Our findings suggested that Fgf8 over-expression in cardiac neural crest impaired the formation of aorticopulmonary septum by suppressing the endothelial differentiation and stimulating the proliferation of endocardial cushion cells, which implicated a novel etiology of persistent truncus arteriosus.


Assuntos
Fator 8 de Crescimento de Fibroblasto/metabolismo , Cardiopatias Congênitas/metabolismo , Crista Neural/citologia , Persistência do Tronco Arterial/metabolismo , Animais , Movimento Celular/genética , Movimento Celular/fisiologia , Feminino , Fator 8 de Crescimento de Fibroblasto/genética , Cardiopatias Congênitas/genética , Masculino , Camundongos , Crista Neural/metabolismo , Persistência do Tronco Arterial/genética
15.
Cancer Res ; 81(11): 2930-2942, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33589519

RESUMO

Targeted monotherapies usually fail due to development of resistance by a subgroup of cells that evolve into recurrent tumors. Alveolar rhabdomyosarcoma is an aggressive myogenic soft-tissue cancer that is associated with a characteristic PAX3-FOXO1 gene fusion encoding a novel fusion transcription factor. In our myoblast model of PAX3-FOXO1-induced rhabdomyosarcoma, deinduction of PAX3-FOXO1 simulates a targeted therapy that antagonizes the fusion oncoprotein. This simulated therapy results initially in regression of the primary tumors, but PAX3-FOXO1-independent recurrent tumors eventually form after a delay. We report here that upregulation of FGF8, a direct transcriptional target of PAX3-FOXO1, is a mechanism responsible for PAX3-FOXO1-independent tumor recurrence. As a transcriptional target of PAX3-FOXO1, FGF8 promoted oncogenic activity in PAX3-FOXO1-expressing primary tumors that developed in the myoblast system. In the recurrent tumors forming after PAX3-FOXO1 deinduction, FGF8 expression was necessary and sufficient to induce PAX3-FOXO1-independent tumor growth through an autocrine mechanism. FGF8 was also expressed in human PAX3-FOXO1-expressing rhabdomyosarcoma cell lines and contributed to proliferation and transformation. In a human rhabdomyosarcoma cell line with reduced PAX3-FOXO1 expression, FGF8 upregulation rescued oncogenicity and simulated recurrence after PAX3-FOXO1-targeted therapy. We propose that deregulated expression of a PAX3-FOXO1 transcriptional target can generate resistance to therapy directed against this oncogenic transcription factor and postulate that this resistance mechanism may ultimately be countered by therapeutic approaches that antagonize the corresponding downstream pathways. SIGNIFICANCE: In a model of cancer initiated by a fusion transcription factor, constitutive activation of a downstream transcriptional target leads to fusion oncoprotein-independent recurrences, thereby highlighting a novel progression mechanism and therapeutic target.


Assuntos
Biomarcadores Tumorais/metabolismo , Fator 8 de Crescimento de Fibroblasto/metabolismo , Regulação Neoplásica da Expressão Gênica , Recidiva Local de Neoplasia/patologia , Proteínas de Fusão Oncogênica/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Rabdomiossarcoma/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Feminino , Fator 8 de Crescimento de Fibroblasto/genética , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição Box Pareados/genética , Rabdomiossarcoma/genética , Rabdomiossarcoma/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Cell Mol Med ; 25(6): 3051-3062, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33580754

RESUMO

The homeobox gene, LIM-homeobox 8 (Lhx8), has previously been identified as an essential transcription factor for dental mesenchymal development. However, how Lhx8 itself is regulated and regulates odontogenesis remains poorly understood. In this study, we employed an RNAscope assay to detect the co-expression pattern of Lhx8 and Suv39h1 in the dental mesenchyme, which coincided with the dynamic expression profiles of the early epithelium signal of Fibroblast Growth Factor 8 (FGF8) and the later mesenchymal signal Bone Morphogenetic Protein 2 (BMP2). Moreover, FGF8 activated Lhx8, whereas BMP2 repressed Lhx8 expression at the transcriptional level. The high expression of Lhx8 in the early dental mesenchyme maintained the cell fate in an undifferentiated status by interacting with Suv39h1, a histone-lysine N-methyltransferase constitutively expressed in the dental mesenchyme. Further in the ex vivo organ culture model, the knockdown of Suv39h1 significantly blocked the function of Lhx8 and FGF8. Mechanistically, Lhx8/Suv39h1 recognized the odontoblast differentiation-related genes and repressed gene expression via methylating H3K9 on their promoters. Taken together, our data here suggest that Lhx8/Suv39h1 complex is inversely regulated by epithelium-mesenchymal signals, balancing the differentiation and proliferation of dental mesenchyme via H3K9 methylation.


Assuntos
Proteína Morfogenética Óssea 2/genética , Diferenciação Celular/genética , Fator 8 de Crescimento de Fibroblasto/genética , Proteínas com Homeodomínio LIM/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteína Morfogenética Óssea 2/metabolismo , Proliferação de Células , Polpa Dentária/citologia , Feminino , Fator 8 de Crescimento de Fibroblasto/metabolismo , Histonas , Humanos , Imuno-Histoquímica , Metilação , Camundongos , Complexos Multiproteicos/metabolismo , Odontogênese/genética , Ligação Proteica
17.
Nat Commun ; 12(1): 439, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469032

RESUMO

Developmental genes are often regulated by multiple elements with overlapping activity. Yet, in most cases, the relative function of those elements and their contribution to endogenous gene expression remain poorly characterized. An example of this phenomenon is that distinct sets of enhancers have been proposed to direct Fgf8 in the limb apical ectodermal ridge and the midbrain-hindbrain boundary. Using in vivo CRISPR/Cas9 genome engineering, we functionally dissect this complex regulatory ensemble and demonstrate two distinct regulatory logics. In the apical ectodermal ridge, the control of Fgf8 expression appears distributed between different enhancers. In contrast, we find that in the midbrain-hindbrain boundary, one of the three active enhancers is essential while the other two are dispensable. We further dissect the essential midbrain-hindbrain boundary enhancer to reveal that it is also composed by a mixture of essential and dispensable modules. Cross-species transgenic analysis of this enhancer suggests that its composition may have changed in the vertebrate lineage.


Assuntos
Desenvolvimento Embrionário/genética , Elementos Facilitadores Genéticos/genética , Fator 8 de Crescimento de Fibroblasto/genética , Regulação da Expressão Gênica no Desenvolvimento , Engenharia Genética/métodos , Animais , Sistemas CRISPR-Cas/genética , Ectoderma/embriologia , Embrião de Mamíferos , Extremidades/embriologia , Estudos de Viabilidade , Feminino , Fator 8 de Crescimento de Fibroblasto/metabolismo , Redes Reguladoras de Genes , Masculino , Mesencéfalo/embriologia , Camundongos , Camundongos Transgênicos , Rombencéfalo/embriologia
18.
Elife ; 92020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33210601

RESUMO

During vertebrate development, the presomitic mesoderm (PSM) periodically segments into somites, which will form the segmented vertebral column and associated muscle, connective tissue, and dermis. The periodicity of somitogenesis is regulated by a segmentation clock of oscillating Notch activity. Here, we examined mouse mutants lacking only Fgf4 or Fgf8, which we previously demonstrated act redundantly to prevent PSM differentiation. Fgf8 is not required for somitogenesis, but Fgf4 mutants display a range of vertebral defects. We analyzed Fgf4 mutants by quantifying mRNAs fluorescently labeled by hybridization chain reaction within Imaris-based volumetric tissue subsets. These data indicate that FGF4 maintains Hes7 levels and normal oscillatory patterns. To support our hypothesis that FGF4 regulates somitogenesis through Hes7, we demonstrate genetic synergy between Hes7 and Fgf4, but not with Fgf8. Our data indicate that Fgf4 is potentially important in a spectrum of human Segmentation Defects of the Vertebrae caused by defective Notch oscillations.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fator 4 de Crescimento de Fibroblastos/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Embrião de Mamíferos , Fator 4 de Crescimento de Fibroblastos/genética , Fator 8 de Crescimento de Fibroblasto/genética , Fator 8 de Crescimento de Fibroblasto/metabolismo , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mutação , Coluna Vertebral/anormalidades
19.
Biomolecules ; 10(10)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019532

RESUMO

In mammals, the novel protein fibroblast growth factor receptor-like 1 (FGFRL1) is involved in the development of metanephric kidneys. It appears that this receptor controls a crucial transition of the induced metanephric mesenchyme to epithelial renal vesicles, which further develop into functional nephrons. FGFRL1 knockout mice lack metanephric kidneys and do not express any fibroblast growth factor (FGF) 8 in the metanephric mesenchyme, suggesting that FGFRL1 and FGF8 play a decisive role during kidney formation. FGFRL1 consists of three extracellular immunoglobulin (Ig) domains (Ig1-Ig2-Ig3), a transmembrane domain and a short intracellular domain. We have prepared the extracellular domain (Ig123), the three individual Ig domains (Ig1, Ig2, Ig3) as well as all combinations containing two Ig domains (Ig12, Ig23, Ig13) in recombinant form in human cells. All polypeptides that contain the Ig2 domain (Ig123, Ig12, Ig23, Ig2) were found to interact with FGF8 with very high affinity, whereas all constructs that lack the Ig2 domain (Ig1, Ig3, Ig13) poorly interacted with FGF8 as shown by ELISA and surface plasmon resonance. It is therefore likely that FGFRL1 represents a physiological receptor for FGF8 in the kidney and that the ligand primarily binds to the Ig2 domain of the receptor. With Biacore experiments, we also measured the affinity of FGF8 for the different constructs. All constructs containing the Ig2 domain showed a rapid association and a slow dissociation phase, from which a KD of 2-3 × 10-9 M was calculated. Our data support the hypothesis that binding of FGF8 to FGFRL1 could play an important role in driving the formation of nephrons in the developing kidney.


Assuntos
Fator 8 de Crescimento de Fibroblasto/genética , Domínios de Imunoglobulina/genética , Rim/crescimento & desenvolvimento , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/genética , Animais , Transição Epitelial-Mesenquimal/genética , Humanos , Rim/metabolismo , Ligantes , Camundongos , Camundongos Knockout , Néfrons/crescimento & desenvolvimento , Néfrons/metabolismo , Ressonância de Plasmônio de Superfície
20.
Development ; 147(22)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33046506

RESUMO

FGF8 signaling plays diverse roles in inner ear development, acting at multiple stages from otic placode induction to cellular differentiation in the organ of Corti. As a secreted morphogen with diverse functions, Fgf8 expression is likely to be spatially restricted and temporally dynamic throughout inner ear development. We evaluated these characteristics using genetic labeling mediated by Fgf8mcm gene-targeted mice and determined that Fgf8 expression is a specific and early marker of Type-I vestibular hair cell identity. Fgf8mcm expression initiates at E11.5 in the future striolar region of the utricle, labeling hair cells following EdU birthdating, and demonstrates that sub-type identity is determined shortly after terminal mitosis. This early fate specification is not apparent using markers or morphological criteria that are not present before birth in the mouse. Although analyses of Fgf8 conditional knockout mice did not reveal developmental phenotypes, the restricted pattern of Fgf8 expression suggests that functionally redundant FGF ligands may contribute to vestibular hair cell differentiation and supports a developmental model in which Type-I and Type-II hair cells develop in parallel rather than from an intermediate precursor.


Assuntos
Fator 8 de Crescimento de Fibroblasto/metabolismo , Células Ciliadas Vestibulares/metabolismo , Sáculo e Utrículo/embriologia , Animais , Fator 8 de Crescimento de Fibroblasto/genética , Células Ciliadas Vestibulares/citologia , Camundongos , Camundongos Knockout , Sáculo e Utrículo/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...