Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731851

RESUMO

COVID-19 is characterized by a wide range of clinical manifestations, where aging, underlying diseases, and genetic background are related to worse outcomes. In the present study, the differential expression of seven genes related to immunity, IRF9, CCL5, IFI6, TGFB1, IL1B, OAS1, and TFRC, was analyzed in individuals with COVID-19 diagnoses of different disease severities. Two-step RT-qPCR was performed to determine the relative gene expression in whole-blood samples from 160 individuals. The expression of OAS1 (p < 0.05) and IFI6 (p < 0.05) was higher in moderate hospitalized cases than in severe ones. Increased gene expression of OAS1 (OR = 0.64, CI = 0.52-0.79; p = 0.001), IRF9 (OR = 0.581, CI = 0.43-0.79; p = 0.001), and IFI6 (OR = 0.544, CI = 0.39-0.69; p < 0.001) was associated with a lower risk of requiring IMV. Moreover, TGFB1 (OR = 0.646, CI = 0.50-0.83; p = 0.001), CCL5 (OR = 0.57, CI = 0.39-0.83; p = 0.003), IRF9 (OR = 0.80, CI = 0.653-0.979; p = 0.03), and IFI6 (OR = 0.827, CI = 0.69-0.991; p = 0.039) expression was associated with patient survival. In conclusion, the relevance of OAS1, IRF9, and IFI6 in controlling the viral infection was confirmed.


Assuntos
2',5'-Oligoadenilato Sintetase , COVID-19 , Fator Gênico 3 Estimulado por Interferon, Subunidade gama , SARS-CoV-2 , Humanos , 2',5'-Oligoadenilato Sintetase/genética , COVID-19/genética , COVID-19/imunologia , COVID-19/virologia , Masculino , Feminino , Pessoa de Meia-Idade , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Proteínas Nucleares/genética , Adulto , Idoso , Proteínas Mitocondriais
2.
Nat Immunol ; 25(5): 847-859, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658806

RESUMO

Immune cells need to sustain a state of constant alertness over a lifetime. Yet, little is known about the regulatory processes that control the fluent and fragile balance that is called homeostasis. Here we demonstrate that JAK-STAT signaling, beyond its role in immune responses, is a major regulator of immune cell homeostasis. We investigated JAK-STAT-mediated transcription and chromatin accessibility across 12 mouse models, including knockouts of all STAT transcription factors and of the TYK2 kinase. Baseline JAK-STAT signaling was detected in CD8+ T cells and macrophages of unperturbed mice-but abrogated in the knockouts and in unstimulated immune cells deprived of their normal tissue context. We observed diverse gene-regulatory programs, including effects of STAT2 and IRF9 that were independent of STAT1. In summary, our large-scale dataset and integrative analysis of JAK-STAT mutant and wild-type mice uncovered a crucial role of JAK-STAT signaling in unstimulated immune cells, where it contributes to a poised epigenetic and transcriptional state and helps prepare these cells for rapid response to immune stimuli.


Assuntos
Homeostase , Janus Quinases , Macrófagos , Camundongos Knockout , Fatores de Transcrição STAT , Transdução de Sinais , Animais , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Camundongos Endogâmicos C57BL , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , TYK2 Quinase/metabolismo , TYK2 Quinase/genética , Regulação da Expressão Gênica
3.
Dev Comp Immunol ; 156: 105167, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38574830

RESUMO

IRF9 can play an antibacterial role by regulating the type I interferon (IFN) pathway. Streptococcus iniae can cause many deaths of yellowfin seabream, Acanthopagrus latus in pond farming. Nevertheless, the regulatory mechanism of type I IFN signalling by A. latus IRF9 (AlIRF9) against S. iniae remains elucidated. In our study, AlIRF9 has a total cDNA length of 3200 bp and contains a 1311 bp ORF encoding a presumed 436 amino acids (aa). The genomic DNA sequence of AlIRF9 has nine exons and eight introns, and AlIRF9 was expressed in various tissues, containing the stomach, spleen, brain, skin, and liver, among which the highest expression was in the spleen. Moreover, AlIRF9 transcriptions in the spleen, liver, kidney, and brain were increased by S. iniae infection. By overexpression of AlIRF9, AlIRF9 is shown as a whole-cell distribution, mainly concentrated in the nucleus. Moreover, the promoter fragments of -415 to +192 bp and -311 to +196 bp were regarded as core sequences from two AlIFNa3s. The point mutation analyses verified that AlIFNa3 and AlIFNa3-like transcriptions are dependent on both M3 sites with AlIRF9. In addition, AlIRF9 could greatly reduce two AlIFNa3s and interferon signalling factors expressions. These results showed that in A. latus, both AlIFNa3 and AlIFNa3-like can mediate the regulation of AlIRF9 in the process of infection with S. iniae.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Fator Gênico 3 Estimulado por Interferon, Subunidade gama , Dourada , Infecções Estreptocócicas , Streptococcus iniae , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Infecções Estreptocócicas/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Dourada/genética , Dourada/imunologia , Dourada/microbiologia , Streptococcus iniae/fisiologia , Regiões Promotoras Genéticas/genética , Transdução de Sinais , Regulação da Expressão Gênica , Imunidade Inata/genética
4.
Int J Biol Macromol ; 266(Pt 2): 131282, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565369

RESUMO

IRF9 is a crucial component in the JAK-STAT pathway. IRF9 interacts with STAT1 and STAT2 to form IFN-I-stimulated gene factor 3 (ISGF3) in response to type I IFN stimulation, which promotes ISG transcription. However, the mechanism by which IFN signaling regulates Malabar grouper (Epinephelus malabaricus) IRF9 is still elusive. Here, we explored the nd tissue-specific mRNA distribution of the MgIRF9 gene, as well as its antiviral function in E. malabaricus. MgIRF9 encodes a protein of 438 amino acids with an open reading frame of 1317 base pairs. MgIRF9 mRNA was detected in all tissues of a healthy M. grouper, with the highest concentrations in the muscle, gills, and brain. It was significantly up-regulated by nervous necrosis virus infection and poly (I:C) stimulation. The gel mobility shift test demonstrated a high-affinity association between MgIRF9 and the promoter of zfIFN in vitro. In GK cells, grouper recombinant IFN-treated samples showed a significant response in ISGs and exhibited antiviral function. Subsequently, overexpression of MgIRF9 resulted in a considerable increase in IFN and ISGs mRNA expression (ADAR1, ADAR1-Like, and ADAR2). Co-immunoprecipitation studies demonstrated that MgIRF9 and STAT2 can interact in vivo. According to the findings, M. grouper IRF9 may play a role in how IFN signaling induces ISG gene expression in grouper species.


Assuntos
Bass , Fator Gênico 3 Estimulado por Interferon, Subunidade gama , Animais , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Bass/genética , Bass/imunologia , Bass/metabolismo , Nodaviridae , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Doenças dos Peixes/virologia , Doenças dos Peixes/imunologia , Sequência de Aminoácidos , Poli I-C/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Antivirais/farmacologia , Regiões Promotoras Genéticas , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Inflammation ; 47(1): 99-113, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37804406

RESUMO

Osteoporosis is a chronic disease that endangers the health of the elderly. Inhibiting osteoclast hyperactivity is a key aspect of osteoporosis prevention and treatment. Several studies have shown that interferon regulatory factor 9 (IRF9) not only regulates innate and adaptive immune responses but also plays an important role in inflammation, antiviral response, and cell development. However, the exact role of IRF9 in osteoclasts has not been reported. To elucidate the role of IRF9 in osteoclast differentiation, we established the ovariectomized mouse model of postmenopausal osteoporosis and found that IRF9 expression was reduced in ovariectomized mice with overactive osteoclasts. Furthermore, knockdown of IRF9 expression enhanced osteoclast differentiation in vitro. Using RNA sequencing, we identified that the differentially expressed genes enriched by IRF9 knockdown were related to ferroptosis. We observed that IRF9 knockdown promoted osteoclast differentiation via decreased ferroptosis in vitro and further verified that IRF9 knockdown reduced ferroptosis by activating signal transducer and activator of transcription 3 (STAT3) to promote osteoclastogenesis. In conclusion, we identified an essential role of IRF9 in the regulation of osteoclastogenesis in osteoporosis and its underlying mechanism.


Assuntos
Reabsorção Óssea , Ferroptose , Osteoporose , Idoso , Animais , Humanos , Camundongos , Reabsorção Óssea/metabolismo , Diferenciação Celular , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Osteoclastos/metabolismo , Osteogênese , Osteoporose/metabolismo , Ligante RANK/metabolismo , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo
6.
J Virol ; 97(10): e0072723, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37819133

RESUMO

IMPORTANCE: Type I interferon (IFN) signaling plays a principal role in host innate immune responses against invading viruses. Viruses have evolved diverse mechanisms that target the Janus kinase-signal transducer and activator of transcription (STAT) signaling pathway to modulate IFN response negatively. Seneca Valley virus (SVV), an emerging porcine picornavirus, has received great interest recently because it poses a great threat to the global pork industry. However, the molecular mechanism by which SVV evades host innate immunity remains incompletely clear. Our results revealed that SVV proteinase (3Cpro) antagonizes IFN signaling by degrading STAT1, STAT2, and IRF9, and cleaving STAT2 to escape host immunity. SVV 3Cpro also degrades karyopherin 1 to block IFN-stimulated gene factor 3 nuclear translocation. Our results reveal a novel molecular mechanism by which SVV 3Cpro antagonizes the type I IFN response pathway by targeting STAT1-STAT2-IRF9 and karyopherin α1 signals, which has important implications for our understanding of SVV-evaded host innate immune responses.


Assuntos
Proteases Virais 3C , Interferon Tipo I , Picornaviridae , Animais , Interações Hospedeiro-Patógeno , Interferon Tipo I/metabolismo , Carioferinas , Picornaviridae/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Suínos , Proteases Virais 3C/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , alfa Carioferinas/metabolismo , Transdução de Sinais
7.
Exp Mol Med ; 55(5): 987-998, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37121967

RESUMO

Myofibroblasts, characterized by the expression of the matricellular protein periostin (Postn), mediate the profibrogenic response during tissue repair and remodeling. Previous studies have demonstrated that systemic deficiency in myocardin-related transcription factor A (MRTF-A) attenuates renal fibrosis in mice. In the present study, we investigated the myofibroblast-specific role of MRTF-A in renal fibrosis and the underlying mechanism. We report that myofibroblast-specific deletion of MRTF-A, achieved through crossbreeding Mrtfa-flox mice with Postn-CreERT2 mice, led to amelioration of renal fibrosis. RNA-seq identified zinc finger E-Box binding homeobox 1 (Zeb1) as a downstream target of MRTF-A in renal fibroblasts. MRTF-A interacts with TEA domain transcription factor 1 (TEAD1) to bind to the Zeb1 promoter and activate Zeb1 transcription. Zeb1 knockdown retarded the fibroblast-myofibroblast transition (FMyT) in vitro and dampened renal fibrosis in mice. Transcriptomic assays showed that Zeb1 might contribute to FMyT by repressing the transcription of interferon regulatory factor 9 (IRF9). IRF9 knockdown overcame the effect of Zeb1 depletion and promoted FMyT, whereas IRF9 overexpression antagonized TGF-ß-induced FMyT. In conclusion, our data unveil a novel MRTF-A-Zeb1-IRF9 axis that can potentially contribute to fibroblast-myofibroblast transition and renal fibrosis. Screening for small-molecule compounds that target this axis may yield therapeutic options for the mollification of renal fibrosis.


Assuntos
Fibroblastos , Miofibroblastos , Animais , Camundongos , Fibroblastos/metabolismo , Fibrose , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Miofibroblastos/metabolismo
8.
EMBO J ; 42(5): e112351, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36762436

RESUMO

Human cytomegalovirus (CMV) is a ubiquitously distributed pathogen whose rodent counterparts such as mouse and rat CMV serve as common infection models. Here, we conducted global proteome profiling of rat CMV-infected cells and uncovered a pronounced loss of the transcription factor STAT2, which is crucial for antiviral interferon signalling. Via deletion mutagenesis, we found that the viral protein E27 is required for CMV-induced STAT2 depletion. Cellular and in vitro analyses showed that E27 exploits host-cell Cullin4-RING ubiquitin ligase (CRL4) complexes to induce poly-ubiquitylation and proteasomal degradation of STAT2. Cryo-electron microscopy revealed how E27 mimics molecular surface properties of cellular CRL4 substrate receptors called DCAFs (DDB1- and Cullin4-associated factors), thereby displacing them from the catalytic core of CRL4. Moreover, structural analyses showed that E27 recruits STAT2 through a bipartite binding interface, which partially overlaps with the IRF9 binding site. Structure-based mutations in M27, the murine CMV homologue of E27, impair the interferon-suppressing capacity and virus replication in mouse models, supporting the conserved importance of DCAF mimicry for CMV immune evasion.


Assuntos
Infecções por Citomegalovirus , Muromegalovirus , Animais , Humanos , Camundongos , Ratos , Microscopia Crioeletrônica , Infecções por Citomegalovirus/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Interferons/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Receptores de Interleucina-17/metabolismo
9.
J Med Virol ; 95(2): e28521, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36691924

RESUMO

The binding of interferon (IFN) to its receptors leads to formation of IFN-stimulated gene factor 3 (ISGF3) complex that activates the transcription of cellular IFN-regulated genes. IFN regulatory factor 9 (IRF9, also called ISGF3γ or p48) is a key component of ISGF3. However, there is limited knowledge regarding the molecular evolution of IRF9 among vertebrates. In this study, we have identified the existence of the IRF9 gene in cartilaginous fish (sharks). Among primates, several isoforms unique to old world moneys and great apes are identified. These IRF9 isoforms are named as primate-specific IRF9 (PS-IRF9) to distinguish from canonical IRF9. PS-IRF9 originates from a unique exon usage and differential splicing in the IRF9 gene. Although the N-terminus are identical for all IRF9s, the C-terminal regions of the PS-IRF9 are completely different from canonical IRF9. In humans, two PS-IRF9s are identified and their RNA transcripts were detected in human primary peripheral blood mononuclear cells. In addition, human PS-IRF9 proteins were detected in human cell lines. Sharing the N-terminal exons with the canonical IRF9 proteins, PS-IRF9 is predicted to bind to the same DNA sequences as the canonical IRF9 proteins. As the C-terminal regions of IRFs are the determinants of IRF functions, PS-IRF9 may offer unique biological functions and represent a novel signaling molecule involved in the regulation of the IFN pathway in a primate-specific manner.


Assuntos
Leucócitos Mononucleares , Primatas , Animais , Humanos , Linhagem Celular , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Leucócitos Mononucleares/metabolismo , Primatas/metabolismo , Isoformas de Proteínas/metabolismo
10.
Mol Biol Rep ; 50(4): 3909-3917, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36662450

RESUMO

BACKGROUND: IRF9 is a transcription factor that mediates the expression of interferon-stimulated genes (ISGs) through the Janus kinase-Signal transducer and activator of transcription (JAK-STAT) pathway. The JAK-STAT pathway is regulated through phosphorylation reactions, in which all components of the pathway are known to be phosphorylated except IRF9. The enigma surrounding IRF9 regulation by a phosphorylation event is intriguing. As IRF9 plays a major role in establishing an antiviral state in host cells, the topic of IRF9 regulation warrants deeper investigation. METHODS: Initially, total lysates of 2fTGH and U2A cells (transfected with recombinant IRF9) were filter-selected and concentrated using phosphoprotein enrichment assay. The phosphoprotein state of IRF9 was further confirmed using Phos-tag™ assay. All protein expression was determined using Western blotting. Tandem mass spectrometry was conducted on immunoprecipitated IRF9 to identify the phosphorylated amino acids. Finally, site-directed mutagenesis was performed and the effects of mutated IRF9 on relevant ISGs (i.e., USP18 and Mx1) was evaluated using qPCR. RESULTS: IRF9 is phosphorylated at S252 and S253 under IFNß-induced condition and R242 under non-induced condition. Site-directed mutagenesis of S252 and S253 to either alanine or aspartic acid has a modest effect on the upregulation of USP18 gene-a negative regulator of type I interferon (IFN) response-but not Mx1 gene. CONCLUSION: Our preliminary study shows that IRF9 is phosphorylated and possibly regulates USP18 gene expression. However, further in vivo studies are needed to determine the significance of IRF9 phosphorylation.


Assuntos
Interferon Tipo I , Janus Quinases , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Fosforilação , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Interferon Tipo I/metabolismo
11.
Trends Cancer ; 9(1): 83-92, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36216730

RESUMO

Acute exposure of cancer cells to high concentrations of type I interferon (IFN-I) drives growth arrest and apoptosis, whereas chronic exposure to low concentrations provides important prosurvival advantages. Tyrosine-phosphorylated IFN-stimulated gene (ISG) factor 3 (ISGF3) drives acute deleterious responses to IFN-I, whereas unphosphorylated (U-)ISGF3, lacking tyrosine phosphorylation, drives essential constitutive prosurvival mechanisms. Surprisingly, programmed cell death-ligand 1 (PD-L1), often expressed on the surfaces of tumor cells and well recognized for its importance in inactivating cytotoxic T cells, also has important cell-intrinsic protumor activities, including dampening acute responses to cytotoxic high levels of IFN-I and sustaining the expression of the low levels that benefit tumors. More thorough understanding of the newly recognized complex roles of IFN-I in cancer may lead to the identification of novel therapeutic strategies.


Assuntos
Interferons , Neoplasias , Humanos , Interferons/metabolismo , Fator Gênico 3 Estimulado por Interferon/genética , Fator Gênico 3 Estimulado por Interferon/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Transdução de Sinais , Tirosina , Neoplasias/tratamento farmacológico , Neoplasias/genética
12.
Biomed J ; 46(2): 100530, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35439640

RESUMO

BACKGROUND: Studies have proven that as competing endogenous RNAs (ceRNAs), long non-coding RNAs (lncRNAs) play vital roles in regulating RNA transcripts in ischemic stroke. It has been reported that TTTY15, a lncRNA, is dysregulated in cardiomyocytes after ischemic injury. We intended to explore the potential regulating mechanism of TTTY15 in ischemic stroke. METHODS: TTTY15 and miR-520a-3p levels in vivo were measured in the cerebral ischemia/reperfusion (I/R) model. Cell apoptosis was measured by flow cytometry. To manifest TTTY15 functions in I/R injury, Neuro 2a (N2a) cells were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) and treated with si-NC, pcDNA3.1-NC, si-TTTY15 or pcDNA3.1-TTTY15. RESULTS: TTTY15 expression was elevated and miR-520a-3p expression was declined in mouse brains exposed to I/R and in N2a cells exposed to OGD/R. Bioinformatics analyses predicted the binding sites of miR-520a-3p in the 3'-UTRs of interferon regulatory factor 9 (IRF9) and TTTY15. Luciferase reporter assay exhibited that TTTY15 bound to miR-520a-3p directly and IRF9 was targeted by miR-520a-3p. MiR-520a-3p overexpression diminished N2a cell apoptosis caused by OGD/R. TTTY15 overexpression antagonized the inhibitory impacts of miR-520a-3p on IRF9 expression and apoptosis after OGD/R, while TTTY15 knockdown enhanced the inhibitory impacts of miR-520a-3p. Additionally, TTTY15 knockdown alleviated brain damages and neurological deficits induced by I/R in vivo. Our results revealed that TTTY15 modulated IRF9 via acting as a ceRNA for miR-520a-3p. CONCLUSION: The study revealed the roles of TTTY15/miR-520a-3p/IRF9 signaling pathway in regulating cerebral ischemia/reperfusion injury.


Assuntos
Isquemia Encefálica , AVC Isquêmico , MicroRNAs , RNA Longo não Codificante , Traumatismo por Reperfusão , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Isquemia Encefálica/genética , Reperfusão , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Apoptose , Glucose
13.
Front Immunol ; 13: 904875, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059459

RESUMO

Type I interferons (type I-IFN) are critical for the host defense to viral infection, and at the same time, the dysregulation of type I-IFN responses leads to autoinflammation or autoimmunity. Recently, we reported that the decrease in monounsaturated fatty acid caused by the genetic deletion of Scd2 is essential for the activation of type I-IFN signaling in CD4+ Th1 cells. Although interferon regulatory factor (IRF) is a family of homologous proteins that control the transcription of type I-IFN and interferon stimulated genes (ISGs), the member of the IRF family that is responsible for the type I-IFN responses induced by targeting of SCD2 remains unclear. Here, we report that the deletion of Scd2 triggered IRF3 activation for type I-IFN production, resulting in the nuclear translocation of IRF9 to induce ISG transcriptome in Th1 cells. These data led us to hypothesize that IRF9 plays an essential role in the transcriptional regulation of ISGs in Scd2-deleted (sgScd2) Th1 cells. By employing ChIP-seq analyses, we found a substantial percentage of the IRF9 target genes were shared by sgScd2 and IFNß-treated Th1 cells. Importantly, our detailed analyses identify a unique feature of IRF9 binding in sgScd2 Th1 cells that were not observed in IFNß-treated Th1 cells. In addition, our combined analyses of transcriptome and IRF9 ChIP-seq revealed that the autoimmunity related genes, which increase in patient with SLE, were selectively increased in sgScd2 Th1 cells. Thus, our findings provide novel mechanistic insights into the process of fatty acid metabolism that is essential for the type I-IFN response and the activation of the IRF family in CD4+ T cells.


Assuntos
Linfócitos T CD4-Positivos , Fatores Reguladores de Interferon , Interferon Tipo I , Estearoil-CoA Dessaturase , Antivirais , Linfócitos T CD4-Positivos/metabolismo , Regulação da Expressão Gênica , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Interferon Tipo I/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Estearoil-CoA Dessaturase/genética , Transcriptoma
14.
Medicine (Baltimore) ; 101(35): e29554, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36107502

RESUMO

BACKGROUND: Coronavirus (CoV) disease (COVID-19) identified in Wuhan, China, in 2019, is mainly characterized by atypical pneumonia and severe acute respiratory syndrome (SARS) and is caused by SARS CoV-2, which belongs to the Coronaviridae family. Determining the underlying disease mechanisms is central to the identification and development of COVID-19-specific drugs for effective treatment and prevention of human-to-human transmission, disease complications, and deaths. METHODS: Here, next-generation RNA sequencing (RNA Seq) data were obtained using Illumina Next Seq 500 from SARS CoV-infected A549 cells and mock-treated A549 cells from the Gene Expression Omnibus (GEO) (GSE147507), and quality control (QC) was assessed before RNA Seq analysis using CLC Genomics Workbench 20.0. Differentially expressed genes (DEGs) were imported into BioJupies to decipher COVID-19 induced signaling pathways and small molecules derived from chemical synthesis or natural sources to mimic or reverse COVID -19 specific gene signatures. In addition, iPathwayGuide was used to identify COVID-19-specific signaling pathways, as well as drugs and natural products with anti-COVID-19 potential. RESULTS: Here, we identified the potential activation of upstream regulators such as signal transducer and activator of transcription 2 (STAT2), interferon regulatory factor 9 (IRF9), and interferon beta (IFNß), interleukin-1 beta (IL-1ß), and interferon regulatory factor 3 (IRF3). COVID-19 infection activated key infectious disease-specific immune-related signaling pathways such as influenza A, viral protein interaction with cytokine and cytokine receptors, measles, Epstein-Barr virus infection, and IL-17 signaling pathway. Besides, we identified drugs such as prednisolone, methylprednisolone, diclofenac, compound JQ1, and natural products such as Withaferin-A and JinFuKang as candidates for further experimental validation of COVID-19 therapy. CONCLUSIONS: In conclusion, we have used the in silico next-generation knowledge discovery (NGKD) methods to discover COVID-19-associated pathways and specific therapeutics that have the potential to ameliorate the disease pathologies associated with COVID-19.


Assuntos
Produtos Biológicos , Tratamento Farmacológico da COVID-19 , Infecções por Vírus Epstein-Barr , Células A549 , Citocinas/metabolismo , Diclofenaco , Herpesvirus Humano 4/genética , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Interferon beta , Interleucina-17/metabolismo , Interleucina-1beta/metabolismo , Metilprednisolona , RNA , Receptores de Citocinas/genética , SARS-CoV-2/genética , Fator de Transcrição STAT2 , Análise de Sequência de RNA , Proteínas Virais/genética
15.
J Virol ; 96(17): e0094422, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35972295

RESUMO

African swine fever virus (ASFV) is the etiological agent of a highly lethal hemorrhagic disease in domestic pigs and wild boars that has significant economic consequences for the pig industry. The type I interferon (IFN) signaling pathway is a pivotal component of the innate antiviral response, and ASFV has evolved multiple mechanisms to antagonize this pathway and facilitate infection. Here, we reported a novel function of ASFV pI215L in inhibiting type I IFN signaling. Our results showed that ASFV pI215L inhibited IFN-stimulated response element (ISRE) promoter activity and subsequent transcription of IFN-stimulated genes (ISGs) by triggering interferon regulatory factor 9 (IRF9) degradation. Additionally, we found that catalytically inactive pI215L mutations retained the ability to block type I IFN signaling, indicating that this only known viral E2 ubiquitin-conjugating enzyme mediates IFR9 degradation in a ubiquitin-conjugating activity-independent manner. By coimmunoprecipitation, confocal immunofluorescence, and subcellular fractionation approaches, we demonstrated that pI215L interacted with IRF9 and impaired the formation and nuclear translocation of IFN-stimulated gene factor 3 (ISGF3). Moreover, further mechanism studies supported that pI215L induced IRF9 degradation through the autophagy-lysosome pathway in both pI215L-overexpressed and ASFV-infected cells. These findings reveal a new immune evasion strategy evolved by ASFV in which pI215L acts to degrade host IRF9 via the autophagic pathway, thus inhibiting the type I IFN signaling and counteracting the host innate immune response. IMPORTANCE African swine fever virus (ASFV) causes a highly contagious and lethal disease in pigs and wild boars that is currently present in many countries, severely affecting the global pig industry. Despite extensive research, effective vaccines and antiviral strategies are still lacking, and many fundamental questions regarding the molecular mechanisms underlying host innate immunity escape remain unclear. In this study, we identified ASFV pI215L, the only known viral E2 ubiquitin-conjugating enzyme, which is involved in antagonizing the type I interferon signaling. Mechanistically, pI215L interacted with interferon regulatory factor 9 for autophagic degradation, and this degradation was independent of its ubiquitin-conjugating activity. These results increase the current knowledge regarding ASFV evasion of innate immunity, which may instruct future research on antiviral strategies and dissection of ASFV pathogenesis.


Assuntos
Febre Suína Africana , Autofagia , Interferon Tipo I , Fator Gênico 3 Estimulado por Interferon, Subunidade gama , Febre Suína Africana/imunologia , Vírus da Febre Suína Africana , Animais , Imunidade Inata , Interferon Tipo I/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Transdução de Sinais , Sus scrofa , Suínos , Enzimas de Conjugação de Ubiquitina/metabolismo
16.
Zhonghua Xue Ye Xue Za Zhi ; 43(5): 370-375, 2022 May 14.
Artigo em Chinês | MEDLINE | ID: mdl-35680593

RESUMO

Objective: To investigate the prognostic significance of interferon regulatory factor 9 (IRF9) expression and identify its role as a potential therapeutic target in acute promyelocytic leukemia (APL) . Methods: The gene expression profile and survival data applied in the bioinformatic analysis were obtained from The Cancer Genome Atlas and Beat acute myeloid leukemia (AML) cohorts. A dox-induced lentiviral system was used to induce the expression of PML-RARα (PR) in U937 cells, and the expression level of IRF9 in U937 cells treated with or without ATRA was examined. We then induced the expression of IRF9 in NB4, a promyelocytic leukemia cell line. In vitro studies focused on leukemic phenotypes triggered by IRF9 expression. Results: ①Bioinformatic analysis of the public database demonstrated the lowest expression of IRF9 in APL among all subtypes of AML, with lower expression associated with worse prognosis. ②We successfully established a PR-expression-inducible U937 cell line and found that IRF9 was downregulated by the PR fusion gene in APL, with undetectable expression in NB4 promyelocytic cells. ③An IRF9-inducible NB4 cell line was successfully established. The inducible expression of IRF9 promoted the differentiation of NB4 cells and had a synergistic effect with lower doses of ATRA. In addition, the inducible expression of IRF9 significantly reduced the colony formation capacity of NB4 cells. Conclusion: In this study, we found that the inducible expression of PR downregulates IRF9 and can be reversed by ATRA, suggesting a specific regulatory relationship between IRF9 and the PR fusion gene. The induction of IRF9 expression in NB4 cells can promote cell differentiation as well as reduce the colony forming ability of leukemia cells, implying an anti-leukemia effect for IRF9, which lays a biological foundation for IRF9 as a potential target for the treatment of APL.


Assuntos
Leucemia Mieloide Aguda , Leucemia Promielocítica Aguda , Diferenciação Celular , Humanos , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fenótipo , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Células U937
17.
J Virol ; 96(13): e0217121, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35708311

RESUMO

The alphaherpesvirus pseudorabies virus (PRV) is the etiologic agent of swine Aujeszky's disease, which can cause huge economic losses to the pig industry. PRV can overcome a type I interferon (IFN)-induced antiviral state in host cells through its encoded EP0 protein. However, the exact role of EP0 in this process is poorly defined. Here, we report that EP0 transcriptionally represses IFN regulatory factor 9 (IRF9), a critical component in the IFN signaling pathway, thereby reducing the cellular levels of IRF9 and inhibiting IFN-induced gene transcription. This activity of EP0 is mediated by its C-terminal region independently of the RING domain. Moreover, compared with EP0 wild-type PRV, EP0-deficient PRV loses the ability to efficiently decrease cellular IRF9, while reintroducing the C-terminal region of EP0 back into the EP0-deficient virus restores the activity. Together, these results suggest that EP0 can transcriptionally modulate IRF9-mediated antiviral pathways through its C-terminal region, contributing to PRV innate immune evasion. IMPORTANCE Alphaherpesviruses can establish lifelong infections and cause many diseases in humans and animals. Pseudorabies virus (PRV) is a swine alphaherpesvirus that threatens pig production. Using PRV as a model, we found that alphaherpesvirus can utilize its encoded early protein EP0 to inhibit the IFN-induced upregulation of antiviral proteins by reducing the basal expression levels of IRF9 through repressing its transcription. Our findings reveal a mechanism employed by alphaherpesvirus to evade the immune response and indicate that EP0 is an important viral protein in pathogenesis and a potential target for antiviral drug development.


Assuntos
Herpesvirus Suídeo 1 , Interferon Tipo I , Fator Gênico 3 Estimulado por Interferon, Subunidade gama , Pseudorraiva , Doenças dos Suínos , Animais , Antivirais/farmacologia , Regulação da Expressão Gênica/imunologia , Herpesvirus Suídeo 1/imunologia , Herpesvirus Suídeo 1/metabolismo , Interações entre Hospedeiro e Microrganismos/imunologia , Interferon Tipo I/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Pseudorraiva/imunologia , Pseudorraiva/virologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
18.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35409339

RESUMO

Non-communicable diseases are increasing and have an underlying low-grade inflammation in common, which may affect gut health. To maintain intestinal homeostasis, unwanted epithelial activation needs to be avoided. This study compared the efficacy of butyrate, propionate and acetate to suppress IFN-γ+/-TNF-α induced intestinal epithelial activation in association with their HDAC inhibitory capacity, while studying the canonical and non-canonical STAT1 pathway. HT-29 were activated with IFN-γ+/-TNF-α and treated with short chain fatty acids (SCFAs) or histone deacetylase (HDAC) inhibitors. CXCL10 release and protein and mRNA expression of proteins involved in the STAT1 pathway were determined. All SCFAs dose-dependently inhibited CXCL10 release of the cells after activation with IFN-γ or IFN-γ+TNF-α. Butyrate was the most effective, completely preventing CXCL10 induction. Butyrate did not affect phosphorylated STAT1, nor phosphorylated NFκB p65, but inhibited IRF9 and phosphorylated JAK2 protein expression in activated cells. Additionally, butyrate inhibited CXCL10, SOCS1, JAK2 and IRF9 mRNA in activated cells. The effect of butyrate was mimicked by class I HDAC inhibitors and a general HDAC inhibitor Trichostatin A. Butyrate is the most potent inhibitor of CXCL10 release compared to other SCFAs and acts via HDAC inhibition. This causes downregulation of CXCL10, JAK2 and IRF9 genes, resulting in a decreased IRF9 protein expression which inhibits the non-canonical pathway and CXCL10 transcription.


Assuntos
Butiratos , Histona Desacetilases , Butiratos/metabolismo , Butiratos/farmacologia , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Células Epiteliais/metabolismo , Ácidos Graxos Voláteis/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , RNA Mensageiro/genética , Fator de Necrose Tumoral alfa/metabolismo
19.
J Invest Dermatol ; 142(9): 2476-2487.e9, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35148998

RESUMO

Melanoma is the leading cause of cutaneous malignancy death. BRAF inhibitors (BRAFis) have been developed as target therapies because nearly half of patients with melanoma have activating alterations in the BRAF oncogene. However, the fast-developed resistance to BRAFis limits their treatment efficacy. Understanding the molecular mechanism of resistance is vital to increase the success of clinical treatment. We searched three datasets (GSE42872, GSE52882, and GSE106321) from the Gene Expression Omnibus database, which analyzed the mRNA expression profile of melanoma cells under BRAFis treatment, and the differentially expressed genes were identified. Among all the differentially expressed genes, the increased expression of IRF9 and STAT2 was prominent and verified to be upregulated in BRAFis-treated melanoma cells. Furthermore, IRF9 or STAT2 overexpression led to less sensitivity, whereas IRF9 or STAT2 knockdown increased sensitivity to BRAFis treatment. In a subcutaneous xenograft tumor model, we showed that IRF9 or STAT2 overexpression slowed BRAFis-induced tumor shrinking, but IRF9 or STAT2 knockdown led to BRAFis-induced tumor shrinking more quickly. Interestingly, we discovered that IRF9-STAT2 signaling controlled GSDME-dependent pyroptosis by restoring GSDME transcription. These results suggest that targeting IRF9/STAT2 may lead to more promising effective treatments to prevent melanoma resistance to BRAFis by inducing pyroptosis.


Assuntos
Fator Gênico 3 Estimulado por Interferon, Subunidade gama , Melanoma , Proteínas Citotóxicas Formadoras de Poros , Piroptose , Fator de Transcrição STAT2 , Humanos , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Melanoma/tratamento farmacológico , Melanoma/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Fator de Transcrição STAT2/genética , Transdução de Sinais
20.
Sci Rep ; 12(1): 364, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013429

RESUMO

RNA-binding proteins (RBPs) interact with and determine the fate of many cellular RNAs directing numerous essential roles in cellular physiology. Nuclear Factor 90 (NF90) is an RBP encoded by the interleukin enhancer-binding factor 3 (ILF3) gene that has been found to influence RNA metabolism at several levels, including pre-RNA splicing, mRNA turnover, and translation. To systematically identify the RNAs that interact with NF90, we carried out iCLIP (individual-nucleotide resolution UV crosslinking and immunoprecipitation) analysis in the human embryonic fibroblast cell line HEK-293. Interestingly, many of the identified RNAs encoded proteins involved in the response to viral infection and RNA metabolism. We validated a subset of targets and investigated the impact of NF90 on their expression levels. Two of the top targets, IRF3 and IRF9 mRNAs, encode the proteins IRF3 and IRF9, crucial regulators of the interferon pathway involved in the SARS-CoV-2 immune response. Our results support a role for NF90 in modulating key genes implicated in the immune response and offer insight into the immunological response to the SARS-CoV-2 infection.


Assuntos
COVID-19/metabolismo , Imunoprecipitação/métodos , Proteínas do Fator Nuclear 90/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , SARS-CoV-2/metabolismo , COVID-19/virologia , Células Cultivadas , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Proteínas do Fator Nuclear 90/genética , Ligação Proteica , RNA/genética , Interferência de RNA , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , RNA-Seq/métodos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...