Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Brain Res Bull ; 178: 9-16, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34728231

RESUMO

Patients who have surgery during the first few years of their lives may have an increased risk of behavioral abnormality. Our previous study has shown a role of glial cell-derived neurotrophic factor (GDNF) in neonatal surgery-induced learning and memory impairment in rats. This study was designed to determine whether neonatal surgery induced hyperactive behavior in addition to learning and memory impairment and whether GDNF played a role in these changes. Postnatal day 7 male and female Sprague-Dawley rats were subjected to right common carotid arterial exposure under sevoflurane anesthesia. Their learning, memory and behavior were tested from 23 days after the surgery. GDNF was injected intracerebroventricularly at the end of surgery. Surgery reduced GDNF expression in the hippocampus. Surgery impaired learning and memory and induced a hyperactive behavior as assessed by Barnes maze, fear conditioning and open field tests. In addition, surgery reduced dendritic arborization and spine density. The effects were attenuated by GDNF injection. These results suggest that surgery induces a hyperactive behavior pattern, impairment of learning and memory, and neuronal microstructural damage later in the lives in rats. GDNF reduction may mediate these surgical effects.


Assuntos
Disfunção Cognitiva , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Hipocampo , Aprendizagem/fisiologia , Complicações Pós-Operatórias , Agitação Psicomotora , Procedimentos Cirúrgicos Operatórios/efeitos adversos , Animais , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/prevenção & controle , Modelos Animais de Doenças , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Aprendizagem/efeitos dos fármacos , Masculino , Memória/fisiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/metabolismo , Complicações Pós-Operatórias/fisiopatologia , Complicações Pós-Operatórias/prevenção & controle , Agitação Psicomotora/etiologia , Agitação Psicomotora/prevenção & controle , Ratos , Ratos Sprague-Dawley
2.
Int J Mol Sci ; 22(23)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34884944

RESUMO

Hirschsprung disease is a congenital malformation where ganglia of the neural crest-derived enteric nervous system are missing over varying lengths of the distal gastrointestinal tract. This complex genetic condition involves both rare and common variants in dozens of genes, many of which have been functionally validated in animal models. Modifier loci present in the genetic background are also believed to influence disease penetrance and severity, but this has not been frequently tested in animal models. Here, we addressed this question using Holstein mice in which aganglionosis is due to excessive deposition of collagen VI around the developing enteric nervous system, thereby allowing us to model trisomy 21-associated Hirschsprung disease. We also asked whether the genetic background might influence the response of Holstein mice to GDNF enemas, which we recently showed to have regenerative properties for the missing enteric nervous system. Compared to Holstein mice in their original FVB/N genetic background, Holstein mice maintained in a C57BL/6N background were found to have a less severe enteric nervous system defect and to be more responsive to GDNF enemas. This change of genetic background had a positive impact on the enteric nervous system only, leaving the neural crest-related pigmentation phenotype of Holstein mice unaffected. Taken together with other similar studies, these results are thus consistent with the notion that the enteric nervous system is more sensitive to genetic background changes than other neural crest derivatives.


Assuntos
Colágeno Tipo VI/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Doença de Hirschsprung/tratamento farmacológico , Doença de Hirschsprung/genética , Animais , Modelos Animais de Doenças , Enema , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Medicina Regenerativa , Resultado do Tratamento
3.
Int J Toxicol ; 40(1): 4-14, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33131343

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) is a potent neuroprotective biologic in Parkinson's disease models. Adeno-associated viral vector serotype 2 (AAV2)-human GDNF safety was assessed in rats treated with a single intracerebral dose of vehicle, 6.8 × 108, 6.8 × 109, or 5.2 × 1010 vector genomes (vg)/dose followed by interim sacrifices on day 7, 31, 90, and 376. There were no treatment-related effects observed on food consumption, body weight, hematology, clinical chemistry, coagulation parameters, neurobehavioral parameters, organ weights, or serum GDNF and anti-GDNF antibody levels. Increased serum anti-AAV2 neutralizing antibody titers were observed in the 5.2 × 1010 vg/dose group. Histopathological lesions were observed at the injection site in the 6.8 × 109 vg/dose (day 7) and 5.2 × 1010 vg/dose groups (days 7 and 31) and consisted of gliosis, mononuclear perivascular cuffing, intranuclear inclusion bodies, and/or apoptosis on day 7 and mononuclear perivascular cuffing on day 31. GDNF immunostaining was observed in the injection site in all dose groups through day 376 indicating no detectable impacts of anti-AAV2 neutralizing antibody. There was no evidence of increased expression of calcitonin gene-related peptide or Swann cell hyperplasia in the cervical and lumbar spinal cord or medulla oblongata at the 5.2 × 1010 vg/dose level indicating lack of hyperplastic effects. In conclusion, no systemic toxicity was observed, and the local toxicity observed at the injection site appeared to be reversible demonstrating a promising safety profile of intracerebral AAV2-GDNF delivery. Furthermore, an intracerebral dose of 6.8 × 108 AAV2-GDNF vg/dose was considered to be a no observed adverse effect level in rats.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Fator Neurotrófico Derivado de Linhagem de Célula Glial/toxicidade , Fator Neurotrófico Derivado de Linhagem de Célula Glial/uso terapêutico , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/toxicidade , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
5.
Neuropeptides ; 83: 102072, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32690313

RESUMO

Spatial memory performance declines in both normal aging and Alzheimer's disease. This cognitive deficit is related to hippocampus dysfunction. Gene therapy using neurotrophic factors like Glial cell line-derived neurotrophic factor (GDNF) emerges as a promising approach to ameliorate age-related cognitive deficits. We constructed a two vector regulatable system (2VRS) which consists of a recombinant adenoviral vector (RAd) harboring a Tet-Off bidirectional promoter flanked by GDNF and Green Fluorescent Protein (GFP) genes. A second adenovector, RAd-tTA, constitutively expresses the regulatory protein tTA. When cells are cotransduced by the 2VRS, tTA activates the bidirectional promoter and both transgenes are expressed. In the presence of the antibiotic doxycycline (DOX) transgene expression is silenced. We tested the 2VRS in CHO-K1 cells where we observed a dose-dependent GFP expression that was completely inhibited by DOX (1 mg/ml). The 2VRS injected in the hippocampal CA1 region transduced both neurons and astrocytes and was efficiently inhibited by DOX added to the drinking water. In order to assess GDNF biological activity we injected 2VRS and its Control (CTRL) vector in the hypothalamus and monitored body weight for one month. The results showed that GDNF retards weight recovery 6 days more than CTRL. In conclusion, our 2VRS demonstrated optimal GFP expression and showed a bioactive effect of transgenic GDNF in the brain.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Proteínas de Fluorescência Verde/administração & dosagem , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Adenoviridae , Animais , Células CHO , Cricetinae , Cricetulus , Vetores Genéticos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Ratos
6.
Exp Neurol ; 331: 113364, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32454038

RESUMO

Owing to its potent longterm neuroprotective and neurorestorative properties, glial cell line-derived neurotrophic factor (GDNF) is currently studied in neurodegenerative disease clinical trials. However, little is known about the longterm effect of GDNF on neurological recovery, brain remodeling and neuroplasticity in the post-acute phase of ischemic stroke. In a comprehensive set of experiments, we examined the effects of lentiviral GDNF administration after ischemic stroke. GDNF reduced neurological deficits, neuronal injury, blood-brain barrier permeability in the acute phase in mice. As compared with control, enhanced motor-coordination and spontaneous locomotor activity were noted in GDNF-treated mice, which were associated with increased microvascular remodeling, increased neurogenesis and reduced glial scar formation in the peri-infarct tissue. We observed reduced brain atrophy and increased plasticity of contralesional pyramidal tract axons that crossed the midline in order to innervate denervated neurons in the ipsilesional red and facial nuclei. Contralesional axonal plasticity by GDNF was associated with decreased abundance of the axonal growth inhibitors brevican and versican in contralesional and ipsilesional brain tissue, reduced abundance of the growth repulsive guidance molecule ephrin b1 in contralesional brain tissue, increased abundance of the midline growth repulsive protein Slit1 in contralesional brain tissue and reduced abundance of Slit1's receptor Robo2 in ipsilesional brain tissue. These data indicate that GDNF potently induces longterm neurological recovery, peri-infarct brain remodeling and contralesional neuroplasticity, which are associated with the fine-tuned regulation of axonal growth inhibitors and guidance molecules that facilitate the growth of contralesional corticofugal axons in the direction to the ipsilesional hemisphere.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , AVC Isquêmico/patologia , Neurogênese/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Animais , Lentivirus , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Sci Transl Med ; 12(527)2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969488

RESUMO

Severe injuries to peripheral nerves are challenging to repair. Standard-of-care treatment for nerve gaps >2 to 3 centimeters is autografting; however, autografting can result in neuroma formation, loss of sensory function at the donor site, and increased operative time. To address the need for a synthetic nerve conduit to treat large nerve gaps, we investigated a biodegradable poly(caprolactone) (PCL) conduit with embedded double-walled polymeric microspheres encapsulating glial cell line-derived neurotrophic factor (GDNF) capable of providing a sustained release of GDNF for >50 days in a 5-centimeter nerve defect in a rhesus macaque model. The GDNF-eluting conduit (PCL/GDNF) was compared to a median nerve autograft and a PCL conduit containing empty microspheres (PCL/Empty). Functional testing demonstrated similar functional recovery between the PCL/GDNF-treated group (75.64 ± 10.28%) and the autograft-treated group (77.49 ± 19.28%); both groups were statistically improved compared to PCL/Empty-treated group (44.95 ± 26.94%). Nerve conduction velocity 1 year after surgery was increased in the PCL/GDNF-treated macaques (31.41 ± 15.34 meters/second) compared to autograft (25.45 ± 3.96 meters/second) and PCL/Empty (12.60 ± 3.89 meters/second) treatment. Histological analyses included assessment of Schwann cell presence, myelination of axons, nerve fiber density, and g-ratio. PCL/GDNF group exhibited a statistically greater average area occupied by individual Schwann cells at the distal nerve (11.60 ± 33.01 µm2) compared to autograft (4.62 ± 3.99 µm2) and PCL/Empty (4.52 ± 5.16 µm2) treatment groups. This study demonstrates the efficacious bridging of a long peripheral nerve gap in a nonhuman primate model using an acellular, biodegradable nerve conduit.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Fator Neurotrófico Derivado de Linhagem de Célula Glial/química , Regeneração Nervosa/fisiologia , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Preparações de Ação Retardada , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Macaca , Regeneração Nervosa/efeitos dos fármacos , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo
8.
Exp Neurol ; 321: 113037, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31425689

RESUMO

Avulsion of spinal nerve roots is a severe proximal peripheral nerve lesion. Despite neurosurgical repair, recovery of function in human patients is disappointing, because spinal motor neurons degenerate progressively, axons grow slowly and the distal Schwann cells which are instrumental to supporting axon extension lose their pro-regenerative properties. We have recently shown that timed GDNF gene therapy (dox-i-GDNF) in a lumbar plexus injury model promotes axon regeneration and improves electrophysiological recovery but fails to stimulate voluntary hind paw function. Here we report that dox-i-GDNF treatment following avulsion and re-implantation of cervical ventral roots leads to sustained motoneuron survival and recovery of voluntary function. These improvements were associated with a twofold increase in motor axon regeneration and enhanced reinnervation of the hand musculature. In this cervical model the distal hand muscles are located 6,5 cm from the reimplantation site, whereas following a lumber lesion this distance is twice as long. Since the first signs of muscle reinnervation are observed 6 weeks after the lesion, this suggests that regenerating axons reached the hand musculature before a critical state of chronic denervation has developed. These results demonstrate that the beneficial effects of timed GDNF-gene therapy are more robust following spinal nerve avulsion lesions that allow reinnervation of target muscles within a relatively short time window after the lesion. This study is an important step in demonstrating the potential of timed GDNF-gene therapy to enhance axon regeneration after neurosurgical repair of a severe proximal nerve lesion.


Assuntos
Neuropatias do Plexo Braquial , Terapia Genética/métodos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Regeneração Nervosa/fisiologia , Recuperação de Função Fisiológica , Animais , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Radiculopatia , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia
9.
Neurotherapeutics ; 16(4): 1283-1295, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31148054

RESUMO

Functional recovery following nerve injury declines when target re-innervation is delayed. Currently, no intervention exists to improve outcomes after prolonged denervation. We explored the neuroregenerative effects of glial cell line-derived neurotrophic factor (GDNF) and chondroitinase (CDN) in a chronic denervation animal model. A fibrin-based sustained delivery method for growth factors was optimized in vitro and in vivo, and then tested in our animal model. GDNF, CDN, and GDNF+CDN were injected into the denervated stump at the time of nerve repair. Histomorphometry and retrograde labeling were used to assess axonal regeneration. The mechanisms promoting such regeneration were explored with immunofluorescence. Five weeks after repair, the GDNF+CDN group had the highest number and maturity of axons. GDNF was noted to preferentially promote axonal maturity, whereas CDN predominantly increased the number of axons. GDNF favored motor neuron regeneration, and upregulated Ki67 in Schwann cells. CDN did not favor motor versus sensory regeneration and was noted to cleave inhibitory endoneurial proteoglycans. Early measures of nerve regeneration after delayed repair are improved by activating Schwann cells and breaking down the inhibitory proteoglycans in the distal nerve segment, suggesting a role for GDNF+CDN to be translated for human nerve repairs.


Assuntos
Axônios/fisiologia , Condroitinases e Condroitina Liases/administração & dosagem , Denervação/métodos , Modelos Animais de Doenças , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Regeneração Nervosa/fisiologia , Animais , Axônios/efeitos dos fármacos , Doença Crônica , Sistemas de Liberação de Medicamentos/métodos , Quimioterapia Combinada , Feminino , Regeneração Nervosa/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
10.
J Control Release ; 304: 51-64, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31054993

RESUMO

Neurotrophic factor delivery via biodegradable nerve guidance conduits may serve as a promising treatment for the repair of large peripheral nerve defects. However, a platform for controlled delivery is required because of their short in vivo half-life and their potential to impede axonal regeneration when used in supraphysiological doses. In this study, we investigated the dose-dependent, synergistic and temporal effects of NGF and GDNF on neurite outgrowth, adult dorsal root ganglia axonal outgrowth, Schwann cell migration and cytokine production in vitro. Using the optimal dose and combination of NGF and GDNF, we developed a PLGA microparticle-based delivery platform to control their delivery. The dose-dependent effects of both NGF and GDNF individually were found to be non-linear with a saturation point. However, the synergistic effect between NGF and GDNF was found to outweigh their dose-dependent effects in terms of enhancing Schwann cell migration and axonal outgrowth while allowing a 100-fold reduction in dose. Moreover, a temporal profile that mimics the physiological flux of NGF and GDNF in response to injury, compared to one that resembles an early burst release delivery profile, was found to enhance their bioactivity. The optimized NGF- and GDNF-loaded microparticles were then incorporated into a guidance conduit, and their capacity to enhance nerve regeneration across a 15 mm sciatic nerve defect in rats was demonstrated. Enhanced nerve regeneration was seen in comparison to non-treated defects and very encouragingly, to a similar level compared to the clinical gold standard of autograft. Taken together, we suggest that this delivery platform might have significant potential in the field of peripheral nerve repair; allowing spatial and temporal control over the delivery of potent neurotrophic factors to enhance the regenerative capacity of biomaterials-based nerve guidance conduits.


Assuntos
Sistemas de Liberação de Medicamentos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Fator de Crescimento Neural/administração & dosagem , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Animais , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Sinergismo Farmacológico , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Masculino , Microesferas , Fator de Crescimento Neural/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos , Ratos Endogâmicos Lew , Células de Schwann/citologia , Nervo Isquiático/efeitos dos fármacos
11.
Brain Stimul ; 12(5): 1143-1150, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31079989

RESUMO

BACKGROUND: Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the gene encoding the huntingtin (Htt) protein, which results in a protein containing an abnormally expanded polyglutamine (polyQ) sequence. The expanded polyQ in the Htt protein is toxic to brain cells. No therapy exists to delay disease progression. METHODS: This study describes a gene-liposome system that synergistically applied focused ultrasound (FUS)-blood-brain barrier (BBB) opening for rescuing motor and neuropathological impairments when administered from pre to post-symptomatic transgenic mouse models of HD. DPPC liposomes (LPs) are designed to carry glia cell line-derived neurotrophic factor (GDNF) plasmid DNA (GDNFp) to form a GDNFp-liposome (GDNFp-LPs) complex. Pulsed FUS exposure with microbubbles (MBs) was used to induce BBB opening for non-viral, non-invasive, and targeted gene delivery into the central nervous system (CNS) for therapeutic purposes. RESULTS: FUS-gene therapy significantly improved motor performance with GDNFp-LPs + FUS treated HD mice equilibrating longer periods in the animal behavior. Reflecting the improvements observed in motor function, GDNF overexpression results in significantly decreased formation of polyglutamine-expanded aggregates, reduced oxidative stress and apoptosis, promoted neurite outgrowth, and improved neuronal survival. Immunoblotting and histological staining further confirmed the neuroprotective effect from delivery of GDNF genes to neuronal cells. CONCLUSIONS: This study suggests that the GDNFp-LPs plus FUS sonication can provide an effective gene therapy to achieve local extravasation and triggered gene delivery for non-invasive in vivo treatment of CNS diseases.


Assuntos
Barreira Hematoencefálica , Permeabilidade Capilar/fisiologia , Técnicas de Transferência de Genes , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Doença de Huntington/terapia , Terapia por Ultrassom/métodos , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Terapia Genética/métodos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Camundongos , Camundongos Transgênicos , Microbolhas
12.
Neural Plast ; 2019: 6286197, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984255

RESUMO

Methods: Human ARPE-19 cells engineered to secrete high levels of the glial cell line-derived neurotrophic factor (GDNF) were encapsulated into hollow fiber membranes. The devices were implanted into the rat striatum 1 week prior to striatal quinolinic acid injections. Animals were evaluated using a battery of validated motor tests, and histology was performed to determine the extent of GDNF diffusion and associated prevention of neuronal cell loss and behavioral deficits. Results: Encapsulated cell-based delivery of GDNF produced widespread distribution of GDNF throughout the entire implanted striatum. Stereological estimates of striatal neuron number and volume of lesion size revealed that GDNF delivery resulted in near complete neuroprotection. Conclusions: Delivery of neurotrophic molecules such as GDNF using encapsulated cells has reached a technological point where clinical evaluation is justified. Because GDNF has been effective in animal models of Parkinson's disease, stroke, epilepsy, and Huntington's disease, among other debilitating neurodegenerative diseases, encapsulated cell-based delivery of GDNF might represent one innovative means of slowing the neural degeneration seen in a myriad of currently untreatable neurological diseases.


Assuntos
Corpo Estriado/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Ácido Quinolínico/toxicidade , Animais , Encapsulamento de Células , Linhagem Celular , Sistemas de Liberação de Medicamentos , Humanos , Células LLC-PK1 , Masculino , Doenças Neurodegenerativas/tratamento farmacológico , Neurônios/efeitos dos fármacos , Ratos Sprague-Dawley , Suínos
13.
J Neurosci ; 39(11): 2144-2156, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30665947

RESUMO

Neurotrophic factors are candidates for treating epilepsy, but their development has been hampered by difficulties in achieving stable and targeted delivery of efficacious concentrations within the desired brain region. We have developed an encapsulated cell technology that overcomes these obstacles by providing a targeted, continuous, de novo synthesized source of high levels of neurotrophic molecules from human clonal ARPE-19 cells encapsulated into hollow fiber membranes. Here we illustrate the potential of this approach for delivering glial cell line-derived neurotrophic factor (GDNF) directly to the hippocampus of epileptic rats. In vivo studies demonstrated that bilateral intrahippocampal implants continued to secrete GDNF that produced high hippocampal GDNF tissue levels in a long-term manner. Identical implants robustly reduced seizure frequency in the pilocarpine model. Seizures were reduced rapidly, and this effect increased in magnitude over 3 months, ultimately leading to a reduction of seizures by 93%. This effect persisted even after device removal, suggesting potential disease-modifying benefits. Importantly, seizure reduction was associated with normalized changes in anxiety and improved cognitive performance. Immunohistochemical analyses revealed that the neurological benefits of GDNF were associated with the normalization of anatomical alterations accompanying chronic epilepsy, including hippocampal atrophy, cell degeneration, loss of parvalbumin-positive interneurons, and abnormal neurogenesis. These effects were associated with the activation of GDNF receptors. All in all, these results support the concept that the implantation of encapsulated GDNF-secreting cells can deliver GDNF in a sustained, targeted, and efficacious manner, paving the way for continuing preclinical evaluation and eventual clinical translation of this approach for epilepsy.SIGNIFICANCE STATEMENT Epilepsy is one of the most common neurological conditions, affecting millions of individuals of all ages. These patients experience debilitating seizures that frequently increase over time and can associate with significant cognitive decline and psychiatric disorders that are generally poorly controlled by pharmacotherapy. We have developed a clinically validated, implantable cell encapsulation system that delivers high and consistent levels of GDNF directly to the brain. In epileptic animals, this system produced a progressive and permanent reduction (>90%) in seizure frequency. These benefits were accompanied by improvements in cognitive and anxiolytic behavior and the normalization of changes in CNS anatomy that underlie chronic epilepsy. Together, these data suggest a novel means of tackling the frequently intractable neurological consequences of this devastating disorder.


Assuntos
Epilepsia/tratamento farmacológico , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Convulsões/tratamento farmacológico , Animais , Encapsulamento de Células , Linhagem Celular , Sistemas de Liberação de Medicamentos/métodos , Epilepsia/induzido quimicamente , Humanos , Masculino , Pilocarpina/administração & dosagem , Ratos Sprague-Dawley , Convulsões/induzido quimicamente
14.
Brain ; 142(2): 295-311, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649249

RESUMO

Neurosurgical repair in patients with proximal nerve lesions results in unsatisfactory recovery of function. Gene therapy for neurotrophic factors is a powerful strategy to promote axon regeneration. Glial cell line-derived neurotrophic factor (GDNF) gene therapy promotes motor neuron survival and axon outgrowth; however, uncontrolled delivery of GDNF results in axon entrapment. We report that time-restricted GDNF expression (1 month) using an immune-evasive doxycycline-inducible gene switch attenuated local axon entrapment in avulsed reimplanted ventral spinal roots, was sufficient to promote long-term motor neuron survival (24 weeks) and facilitated the recovery of compound muscle action potentials by 8 weeks. These improvements were associated with an increase in long-distance regeneration of motor axons. In contrast, persistent GDNF expression impaired axon regeneration by inducing axon entrapment. These findings demonstrate that timed expression can resolve the deleterious effect of uncontrolled growth factor delivery and shows that inducible growth factor gene therapy can be employed to enhance the efficacy of axon regeneration after neurosurgical repair of a proximal nerve lesion in rats. This preclinical study is an important step in the ongoing development of a neurotrophic factor gene therapy for patients with severe proximal nerve lesions.


Assuntos
Axônios/fisiologia , Genes de Troca/fisiologia , Terapia Genética/métodos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Evasão da Resposta Imune/fisiologia , Regeneração Nervosa/fisiologia , Animais , Axônios/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Feminino , Genes de Troca/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Evasão da Resposta Imune/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Ratos , Ratos Wistar , Células de Schwann/efeitos dos fármacos , Células de Schwann/fisiologia , Fatores de Tempo
15.
Mol Neurobiol ; 56(1): 688-701, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29779176

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) gene therapy could offer a disease-modifying treatment for Parkinson's disease (PD). Here, we report that plasmid DNA nanoparticles (NPs) encoding human GDNF administered intranasally to rats induce transgene expression in the brain and protect dopamine neurons in a model of PD. To first test whether intranasal administration could transfect cells in the brain, rats were sacrificed 1 week after intranasal pGDNF NPs or the naked plasmid. GDNF ELISA revealed significant increases in GDNF expression throughout the brain for both treatments. To assess whether expression was sufficient to protect dopamine neurons, naked pGDNF and pGDNF DNA NPs were given intranasally 1 week before a unilateral 6-hydroxydopamine lesion in a rat model of PD. Three to four weeks after the lesion, amphetamine-induced rotational behavior was reduced, and dopaminergic fiber density and cell counts in the lesioned substantia nigra and nerve terminal density in the lesioned striatum were significantly preserved in rats given intranasal pGDNF. The NPs afforded a greater level of neuroprotection than the naked plasmid. These results provide proof-of-principle that intranasal administration of pGDNF DNA NPs can offer a non-invasive, non-viral gene therapy approach for early-stage PD.


Assuntos
DNA/administração & dosagem , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Fator Neurotrófico Derivado de Linhagem de Célula Glial/uso terapêutico , Nanopartículas/administração & dosagem , Neuroproteção , Doença de Parkinson/prevenção & controle , Plasmídeos/administração & dosagem , Administração Intranasal , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Masculino , Fatores de Crescimento Neural , Oxidopamina , Ratos Sprague-Dawley , Substância Negra/metabolismo , Substância Negra/patologia
16.
Biotechnol Bioeng ; 116(1): 143-154, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30229866

RESUMO

Autologous nerve grafts are the current "gold standard" for repairing large nerve gaps. However, they cause morbidity at the donor nerve site and only a limited amount of nerve can be harvested. Nerve conduits are a promising alternative to autografts and can act as guidance cues for the regenerating axons, without the need to harvest donor nerve. Separately, it has been shown that localized delivery of GDNF can enhance axon growth and motor recovery. FK506, an FDA approved small molecule, has also been shown to enhance peripheral nerve regeneration. This paper describes the design of a novel hole-based drug delivery apparatus integrated with a polytetrafluoroethylene (PTFE) nerve conduit for controlled local delivery of a protein such as GDNF or a small molecule such as FK506. The PTFE devices were tested in a diffusion chamber, and the bioactivity of the released media was evaluated by measuring neurite growth of dorsal root ganglions (DRGs) exposed to the released drugs. The drug delivering nerve guide was able to release bioactive concentrations of FK506 or GDNF. Following these tests, optimized drug releasing nerve conduits were implanted across 10 mm sciatic nerve gaps in a BL6 yellow fluorescent protein (YFP) mouse model, where they demonstrated significant improvement in muscle mass, compound muscle action potential, and axon myelination in vivo as compared with nerve conduits without the drug. The drug delivery nerve guide could release drug for extended periods of time and enhance axon growth in vitro and in vivo.


Assuntos
Portadores de Fármacos/administração & dosagem , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Traumatismos dos Nervos Periféricos/terapia , Politetrafluoretileno/administração & dosagem , Regeneração , Tacrolimo/administração & dosagem , Alicerces Teciduais , Animais , Modelos Animais de Doenças , Camundongos , Medicina Regenerativa/métodos , Resultado do Tratamento
17.
PLoS One ; 13(9): e0203215, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30260982

RESUMO

Nerve terminals of primary sensory neurons are influenced by their environment through target derived trophic factors, like nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF). In mice, subpopulations of DRG neurons express receptors either for NGF or GDNF and therefore differentially respond to these neurotrophic factors. We probed neurite endings from porcine DRG neurons cultured in either NGF or GDNF and examined their shape, elongation and stimulus-evoked CGRP release. A compartmentalized culture system was employed allowing spatial separation of outgrown neurites from their somata and use of different growth factors in the compartments. We show that neurites of GDNF cultured somata extend into lateral compartments without added growth factor, unlike neurites of NGF cultured ones. Neurites of NGF cultured somata extend not only into NGF- but also into GDNF-containing compartments. GDNF at the site of terminals of NGF responsive somata led to a strong neurite arborization and formation of large growth cones, compared to neurites in medium with NGF. Functionally, we could detect evoked CGRP release from as few as 7 outgrown neurites per compartment and calculated release per mm neurite length. CGRP release was detected both in neurites from NGF and GDNF cultured somata, suggesting that also the latter ones are peptidergic in pig. When neurites of NGF cultured somata were grown in GDNF, capsaicin evoked a lower CGRP release than high potassium, compared to those grown in NGF. Our experiments demonstrate that the compartmented culture chamber can be a suitable model to assess neurite properties from trophic factor specific primary sensory neurons. With this model, insights into mechanisms of gain or loss of function of specific nociceptive neurites may be achieved.


Assuntos
Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Fator de Crescimento Neural/fisiologia , Neuritos/fisiologia , Neuritos/ultraestrutura , Animais , Peptídeo Relacionado com Gene de Calcitonina/fisiologia , Capsaicina/farmacologia , Técnicas de Cultura de Células/instrumentação , Células Cultivadas , Gânglios Espinais/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Técnicas In Vitro , Camundongos , Modelos Neurológicos , Fator de Crescimento Neural/administração & dosagem , Neuritos/efeitos dos fármacos , Potássio/farmacologia , Sus scrofa , Canais de Cátion TRPV/metabolismo
18.
J Neurosci Methods ; 308: 183-191, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30081039

RESUMO

BACKGROUND: One potential treatment strategy to enhance axon regeneration is transplanting Schwann Cells (SCs) that overexpress glial cell line-derived neurotrophic factor (GDNF). Unfortunately, constitutive GDNF overexpression in vivo can result in failure of regenerating axons to extend beyond the GDNF source, a phenomenon termed the "candy-store" effect. Little is known about the mechanism of this axon entrapment in vivo. NEW METHOD: We present a reproducible in vitro culture platform using a microfluidic device to model axon entrapment and investigate mechanisms by which GDNF causes axon entrapment. The device is comprised of three culture chambers connected by two sets of microchannels, which prevent cell soma from moving between chambers but allow neurites to grow between chambers. Neurons from dorsal root ganglia were seeded in one end chamber while the effect of different conditions in the other two chambers was used to study neurite entrapment. RESULTS: The results showed that GDNF-overexpressing SCs (G-SCs) can induce axon entrapment in vitro. We also found that while physiological levels of GDNF (100 ng/mL) promoted neurite extension, supra-physiological levels of GDNF (700 ng/mL) induced axon entrapment. COMPARISON WITH EXISTING METHOD: All previous work related to the "candy-store" effect were done in vivo. Here, we report the first in vitro platform that can recapitulate the axonal entrapment and investigate the mechanism of the phenomenon. CONCLUSIONS: This platform facilitates investigation of the "candy-store" effect and shows the effects of high GDNF concentrations on neurite outgrowth.


Assuntos
Axônios/fisiologia , Técnicas de Cultura de Células/métodos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/fisiologia , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Células de Schwann/fisiologia , Animais , Orientação de Axônios , Axônios/efeitos dos fármacos , Técnicas de Cultura de Células/instrumentação , Galinhas , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Masculino , Técnicas Analíticas Microfluídicas/instrumentação , Ratos Endogâmicos Lew , Células de Schwann/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia
19.
Arch Toxicol ; 92(7): 2353-2367, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29785638

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) has demonstrated neurorestorative and neuroprotective effects in rodent and nonhuman primate models of Parkinson's disease. However, continuous intraputamenal infusion of GDNF (100 µg/day) resulted in multifocal cerebellar Purkinje cell loss in a 6-month toxicity study in rhesus monkeys. It was hypothesized that continuous leakage of GDNF into the cerebrospinal fluid compartment during the infusions led to down-regulation of GDNF receptors on Purkinje cells, and that subsequent acute withdrawal of GDNF then mediated the observed cerebellar lesions. Here we present the results of a 9-month toxicity study in which rhesus monkeys received intermittent intraputamenal infusions via convection-enhanced delivery. Animals were treated with GDNF (87.1 µg; N = 14) or vehicle (N = 6) once every 4 weeks for a total of 40 weeks (11 treatments). Four of the GDNF-treated animals were utilized in a satellite study assessing the impact of concomitant catheter repositioning prior to treatment. In the main study, eight animals (5 GDNF, 3 control) were euthanized at the end of the treatment period, along with the four satellite study animals, while the remaining eight animals (5 GDNF, 3 control) were euthanized at the end of a 12-week recovery period. There were no GDNF-related adverse effects and in particular, no GDNF-related microscopic findings in the brain, spinal cord, dorsal root ganglia, or trigeminal ganglia. Therefore, 87.1 µg/4 weeks is considered the no observed adverse effect level for GDNF in rhesus monkeys receiving intermittent, convection-enhanced delivery of GDNF for 9 months.


Assuntos
Cerebelo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/toxicidade , Fármacos Neuroprotetores/toxicidade , Putamen/efeitos dos fármacos , Animais , Convecção , Esquema de Medicação , Sistemas de Liberação de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Bombas de Infusão Implantáveis , Macaca mulatta , Masculino , Fármacos Neuroprotetores/administração & dosagem , Nível de Efeito Adverso não Observado , Testes de Toxicidade Crônica
20.
Prog Neurol Surg ; 33: 243-252, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29332088

RESUMO

There has been substantial research interest in delivering therapeutic neurotrophic factors directly to the brain for the treatment of Parkinson's Disease (PD) and other movement disorders. Direct infusion of glial cell-line derived neurotrophic factor has been investigated in both pre-clinical models and clinical trials. In this chapter we discuss past and present research investigating the potential of direct drug delivery to the brain for the treatment of PD and other movement disorders.


Assuntos
Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Transtornos dos Movimentos/tratamento farmacológico , Fatores de Crescimento Neural/administração & dosagem , Doença de Parkinson/tratamento farmacológico , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...