Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.145
Filtrar
1.
Bull Exp Biol Med ; 176(5): 666-671, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38727956

RESUMO

This paper shows for the first time that co-transplantation of human olfactory ensheathing cells with neurotrophin-3 into spinal cord cysts is more effective for activation of remyelination than transplantation of cells with brain-derived neurotrophic factor and a combination of these two factors. The studied neurotrophic factors do not affect proliferation and migration of ensheathing cells in vitro. It can be concluded that the maximum improvement of motor function in rats receiving ensheathing cells with neurotrophin-3 is largely determined by activation of remyelination.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neurotrofina 3 , Bulbo Olfatório , Remielinização , Animais , Ratos , Neurotrofina 3/metabolismo , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Remielinização/fisiologia , Bulbo Olfatório/citologia , Proliferação de Células , Medula Espinal/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/fisiologia , Células Cultivadas , Movimento Celular , Cistos/patologia , Feminino , Cistos do Sistema Nervoso Central/cirurgia , Cistos do Sistema Nervoso Central/patologia
2.
Cell Commun Signal ; 22(1): 216, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570868

RESUMO

BACKGROUND: Radiation-induced brain injury (RIBI) is a common and severe complication during radiotherapy for head and neck tumor. Repetitive transcranial magnetic stimulation (rTMS) is a novel and non-invasive method of brain stimulation, which has been applied in various neurological diseases. rTMS has been proved to be effective for treatment of RIBI, while its mechanisms have not been well understood. METHODS: RIBI mouse model was established by cranial irradiation, K252a was daily injected intraperitoneally to block BDNF pathway. Immunofluorescence staining, immunohistochemistry and western blotting were performed to examine the microglial pyroptosis and hippocampal neurogenesis. Behavioral tests were used to assess the cognitive function and emotionality of mice. Golgi staining was applied to observe the structure of dendritic spine in hippocampus. RESULTS: rTMS significantly promoted hippocampal neurogenesis and mitigated neuroinflammation, with ameliorating pyroptosis in microglia, as well as downregulation of the protein expression level of NLRP3 inflammasome and key pyroptosis factor Gasdermin D (GSDMD). BDNF signaling pathway might be involved in it. After blocking BDNF pathway by K252a, a specific BDNF pathway inhibitor, the neuroprotective effect of rTMS was markedly reversed. Evaluated by behavioral tests, the cognitive dysfunction and anxiety-like behavior were found aggravated with the comparison of mice in rTMS intervention group. Moreover, the level of hippocampal neurogenesis was found to be attenuated, the pyroptosis of microglia as well as the levels of GSDMD, NLRP3 inflammasome and IL-1ß were upregulated. CONCLUSION: Our study indicated that rTMS notably ameliorated RIBI-induced cognitive disorders, by mitigating pyroptosis in microglia and promoting hippocampal neurogenesis via mediating BDNF pathway.


Assuntos
Lesões Encefálicas , Disfunção Cognitiva , Camundongos , Animais , Estimulação Magnética Transcraniana/efeitos adversos , Estimulação Magnética Transcraniana/métodos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Microglia/metabolismo , Piroptose , Inflamassomos/metabolismo , Encéfalo/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Cognição , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Neurogênese/efeitos da radiação
3.
Int J Biol Macromol ; 267(Pt 2): 131610, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621565

RESUMO

Brain-derived neurotrophic factor (BDNF) is a neurotrophic protein that promotes neuronal survival, increases neurotransmitter synthesis, and has potential therapeutic effects in neurodegenerative and psychiatric diseases, but its drug development has been limited by the fact that recombinant proteins of BDNF are unstable and do not penetrate the blood-brain barrier (BBB). In this study, we fused a TAT membrane-penetrating peptide with BDNF to express a recombinant protein (TBDNF), which was then PEG-modified to P-TBDNF. Protein characterization showed that P-TBDNF significantly improved the stability of the recombinant protein and possessed the ability to penetrate the BBB, and in cellular experiments, P-TBDNF prevented MPTP-induced nerve cell oxidative stress damage, apoptosis and inflammatory response, and its mechanism of action was closely related to the activation of tyrosine kinase B (TrkB) receptor and inhibition of microglia activation. In animal experiments, P-TBDNF improved motor and cognitive deficits in MPTP mice and inhibited pathological changes in Parkinson's disease (PD). In conclusion, this paper is expected to reveal the mechanism of action of P-TBDNF in inhibiting neurotoxicity, provide a new way for treating PD, and lay the foundation for the future development of recombinant P-TBDNF.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Fármacos Neuroprotetores , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Fator Neurotrófico Derivado do Encéfalo/genética , Camundongos , Fármacos Neuroprotetores/farmacologia , Proteínas Recombinantes/farmacologia , Barreira Hematoencefálica/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Humanos , Apoptose/efeitos dos fármacos , Receptor trkB/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Camundongos Endogâmicos C57BL
4.
Cells ; 13(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38534361

RESUMO

BACKGROUND: Brain-derived neurotrophic factor (BDNF) has gained attention as a therapeutic agent due to its potential biological activities, including osteogenesis. However, the molecular mechanisms involved in the osteogenic activity of BDNF have not been fully understood. This study aimed to investigate the action of BDNF on the osteoblast differentiation in bone marrow stromal cells, and its influence on signaling pathways. In addition, to evaluate the clinical efficacy, an in vivo animal study was performed. METHODS: Preosteoblast cells (MC3T3-E1), bone marrow-derived stromal cells (ST2), and a direct 2D co-culture system were treated with BDNF. The effect of BDNF on cell proliferation was determined using the CCK-8 assay. Osteoblast differentiation was assessed based on alkaline phosphatase (ALP) activity and staining and the protein expression of multiple osteoblast markers. Calcium accumulation was examined by Alizarin red S staining. For the animal study, we used ovariectomized Sprague-Dawley rats and divided them into BDNF and normal saline injection groups. MicroCT, hematoxylin and eosin (H&E), and tartrate-resistant acid phosphatase (TRAP) stain were performed for analysis. RESULTS: BDNF significantly increased ALP activity, calcium deposition, and the expression of osteoblast differentiation-related proteins, such as ALP, osteopontin, etc., in both ST-2 and the MC3T3-E1 and ST-2 co-culture systems. Moreover, the effect of BDNF on osteogenic differentiation was diminished by blocking tropomyosin receptor kinase B, as well as inhibiting c-Jun N-terminal kinase and p38 MAPK signals. Although the animal study results including bone density and histology showed increased osteoblastic and decreased osteoclastic activity, only a portion of parameters reached statistical significance. CONCLUSIONS: Our study results showed that BDNF affects osteoblast differentiation through TrkB receptor, and JNK and p38 MAPK signal pathways. Although not statistically significant, the trend of such effects was observed in the animal experiment.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Osteogênese , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Cálcio/farmacologia , Ratos Sprague-Dawley , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Muscle Nerve ; 69(4): 490-497, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38328996

RESUMO

INTRODUCTION/AIMS: Daily intramuscular injections of fibroblast growth factor 2 (FGF2) but not of brain-derived neurotrophic factor (BDNF) significantly improve whisking behavior and mono-innervation of the rat levator labii superioris (LLS) muscle 56 days after buccal nerve transection and suture (buccal-buccal anastomosis, BBA). We explored the dose-response of BDNF, FGF2, and insulin growth factor 2 (IGF2) on the same parameters, asking whether higher doses of BDNF would promote recovery. METHODS: After BBA, growth factors were injected (30 µL volume) daily into the LLS muscle over 14, 28, or 56 days. At 56 days, video-based motion analysis of vibrissal whisking was performed and the extent of mono- and poly-reinnervation of the reinnervated neuromuscular junctions (NMJs) of the muscle determined with immunostaining of the nerve with ß-tubulin and histochemical staining of the endplates with Alexa Fluor 488-conjugated α-bungarotoxin. RESULTS: The dose-response curve demonstrated significantly higher whisking amplitudes and corresponding increased mono-innervation of the NMJ in the reinnervated LLS muscle at concentrations of 20-30 µg/mL BDNF administered daily for 14-28 days after BBA surgery. In contrast, high doses of IGF2 and FGF2, or doses of 20 and 40 µg/mL of BDNF administered for 14-56 days had no effect on either whisking behavior or in reducing poly-reinnervation of endplates in the muscle. DISCUSSION: These data suggest that the re-establishment of mono-innervation of whiskerpad muscles and the improved motor function by injections of BDNF into the paralyzed vibrissal musculature after facial nerve injury have translation potential and promote clinical application.


Assuntos
Traumatismos do Nervo Facial , Ratos , Animais , Traumatismos do Nervo Facial/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Injeções Intramusculares , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Junção Neuromuscular , Regeneração Nervosa/fisiologia , Recuperação de Função Fisiológica/fisiologia , Nervo Facial
6.
Neuroscience ; 543: 49-64, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38417539

RESUMO

In males but not in females, brain derived neurotrophic factor (BDNF) plays an obligatory role in the onset and maintenance of neuropathic pain. Afferent terminals of injured peripheral nerves release colony stimulating factor (CSF-1) and other mediators into the dorsal horn. These transform the phenotype of dorsal horn microglia such that they express P2X4 purinoceptors. Activation of these receptors by neuron-derived ATP promotes BDNF release. This microglial-derived BDNF increases synaptic activation of excitatory dorsal horn neurons and decreases that of inhibitory neurons. It also alters the neuronal chloride gradient such the normal inhibitory effect of GABA is converted to excitation. By as yet undefined processes, this attenuated inhibition increases NMDA receptor function. BDNF also promotes the release of pro-inflammatory cytokines from astrocytes. All of these actions culminate in the increase dorsal horn excitability that underlies many forms of neuropathic pain. Peripheral nerve injury also alters excitability of structures in the thalamus, cortex and mesolimbic system that are responsible for pain perception and for the generation of co-morbidities such as anxiety and depression. The weight of evidence from male rodents suggests that this preferential modulation of excitably of supra-spinal pain processing structures also involves the action of microglial-derived BDNF. Possible mechanisms promoting the preferential release of BDNF in pain signaling structures are discussed. In females, invading T-lymphocytes increase dorsal horn excitability but it remains to be determined whether similar processes operate in supra-spinal structures. Despite its ubiquitous role in pain aetiology neither BDNF nor TrkB receptors represent potential therapeutic targets.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neuralgia , Ratos , Animais , Feminino , Masculino , Ratos Sprague-Dawley , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Células do Corno Posterior , Corno Dorsal da Medula Espinal , Neuralgia/tratamento farmacológico , Hiperalgesia
7.
Gut Microbes ; 16(1): 2310603, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38332676

RESUMO

Chronic pain is commonly linked with diminished working memory. This study explores the impact of the anesthetic (S)-ketamine on spatial working memory in a chronic constriction injury (CCI) mouse model, focusing on gut microbiome. We found that multiple doses of (S)-ketamine, unlike a single dose, counteracted the reduced spontaneous alteration percentage (%SA) in the Y-maze spatial working memory test, without affecting mechanical or thermal pain sensitivity. Additionally, repeated (S)-ketamine treatments improved the abnormal composition of the gut microbiome (ß-diversity), as indicated by fecal 16S rRNA analysis, and increased levels of butyrate, a key gut - brain axis mediator. Protein analysis showed that these treatments also corrected the upregulated histone deacetylase 2 (HDAC2) and downregulated brain-derived neurotrophic factor (BDNF) in the hippocampi of CCI mice. Remarkably, fecal microbiota transplantation from mice treated repeatedly with (S)-ketamine to CCI mice restored %SA and hippocampal BDNF levels in CCI mice. Butyrate supplementation alone also improved %SA, BDNF, and HDAC2 levels in CCI mice. Furthermore, the TrkB receptor antagonist ANA-12 negated the beneficial effects of repeated (S)-ketamine on spatial working memory impairment in CCI mice. These results indicate that repeated (S)-ketamine administration ameliorates spatial working memory impairment in CCI mice, mediated by a gut microbiota - brain axis, primarily through the enhancement of hippocampal BDNF - TrkB signaling by butyrate.


Assuntos
Dor Crônica , Microbioma Gastrointestinal , Ketamina , Camundongos , Animais , Ketamina/farmacologia , Ketamina/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Memória de Curto Prazo , Dor Crônica/tratamento farmacológico , RNA Ribossômico 16S , Hipocampo/metabolismo , Transtornos da Memória/tratamento farmacológico , Butiratos/farmacologia
8.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38397033

RESUMO

In female mammals, the proliferation and apoptosis of granulosa cells (GCs) are critical in determining the fate of follicles and are influenced by various factors, including brain-derived neurotrophic factor (BDNF). Previous research has shown that BDNF primarily regulates GC proliferation through the PI3K/AKT, NF-kB, and CREB tumour pathways; however, the role of other molecular mechanisms in mediating BDNF-induced GC proliferation remains unclear. In this study, we investigated the involvement of the m6A reader YTH domain-containing family member 2 (YTHDF2) in BDNF-stimulated GC proliferation and its underlying mechanism. GCs were cultured in DMEM medium supplemented with varying BDNF concentrations (0, 10, 30, 75, and 150 ng/mL) for 24 h. The viability, number, and cell cycle of GCs were assessed using the CCK-8 assay, cell counting, and flow cytometry, respectively. Further exploration into YTHDF2's role in BDNF-stimulated GC proliferation was conducted using RT-qPCR, Western blotting, and sequencing. Our findings indicate that YTHDF2 mediates the effect of BDNF on GC proliferation. Additionally, this study suggests for the first time that BDNF promotes YTHDF2 expression by increasing the phosphorylation level of the ERK1/2 signalling pathway. This study offers a new perspective and foundation for further elucidating the mechanism by which BDNF regulates GC proliferation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Fosfatidilinositol 3-Quinases , Feminino , Suínos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células da Granulosa/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proliferação de Células , Mamíferos/metabolismo
9.
Macromol Biosci ; 24(5): e2300453, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38224015

RESUMO

Spinal cord injuries are very common worldwide, leading to permanent nerve function loss with devastating effects in the affected patients. The challenges and inadequate results in the current clinical treatments are leading scientists to innovative neural regenerative research. Advances in nanoscience and neural tissue engineering have opened new avenues for spinal cord injury (SCI) treatment. In order for designed nerve guidance conduit (NGC) to be functionally useful, it must have ideal scaffold properties and topographic features that promote the linear orientation of damaged axons. In this study, it is aimed to develop channeled polycaprolactone (PCL)/Poly-D,L-lactic-co-glycolic acid (PLGA) hybrid film scaffolds, modify their surfaces by IKVAV pentapeptide/gold nanoparticles (AuNPs) or polypyrrole (PPy) and investigate the behavior of motor neurons on the designed scaffold surfaces in vitro under static/bioreactor conditions. Their potential to promote neural regeneration after implantation into the rat SCI by shaping the film scaffolds modified with neural factors into a tubular form is also examined. It is shown that channeled groups decorated with AuNPs highly promote neurite orientation under bioreactor conditions and also the developed optimal NGC (PCL/PLGA G1-IKVAV/BDNF/NGF-AuNP50) highly regenerates SCI. The results indicate that the designed scaffold can be an ideal candidate for spinal cord regeneration.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Ouro , Nanopartículas Metálicas , Fator de Crescimento Neural , Poliésteres , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Traumatismos da Medula Espinal , Alicerces Teciduais , Animais , Ouro/química , Ouro/farmacologia , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Poliésteres/química , Poliésteres/farmacologia , Ratos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Alicerces Teciduais/química , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/química , Regeneração Nervosa/efeitos dos fármacos , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Ratos Sprague-Dawley
10.
Biofactors ; 50(1): 58-73, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37431985

RESUMO

The pituitary is a vital endocrine organ for synthesis and secretion of gonadotropic hormones (FSH and LH), and the gonadotropin showed fluctuations in animals with different fecundity. Long non-coding RNAs (lncRNAs) have been identified as regulatory factors for the reproductive process. However, the profiles of lncRNAs and their roles involved in sheep fecundity remains unclear. In this study, we performed RNA-sequencing for the sheep pituitary gland associated with different fecundity, and identified a novel candidate lncRNA LOC105613571 targeting BDNF related to gonadotropin secretion. Our results showed that expression of lncRNA LOC105613571 and BDNF could be significantly upregulated by GnRH stimulation in sheep pituitary cells in vitro. Notably, either lncRNA LOC105613571 or BDNF silencing inhibited cell proliferation while promoted cell apoptosis. Moreover, lncRNA LOC105613571 knockdown could also downregulate gonadotropin secretion via inactivation AKT, ERK and mTOR pathway. In addition, co-treatment with GnRH stimulation and lncRNA LOC105613571 or BDNF knockdown showed the opposite effect on sheep pituitary cells in vitro. In summary, BDNF-binding lncRNA LOC105613571 in sheep regulates pituitary cell proliferation and gonadotropin secretion via the AKT/ERK-mTOR pathway, providing new ideas for the molecular mechanisms of pituitary functions.


Assuntos
Hormônio Luteinizante , RNA Longo não Codificante , Animais , Ovinos/genética , Hormônio Luteinizante/metabolismo , Hormônio Luteinizante/farmacologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Hipófise/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo
11.
Genes Cells ; 29(1): 99-105, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009531

RESUMO

Suppressor of cancer cell invasion (SCAI) acts as a transcriptional repressor of serum response factor (SRF)-mediated gene expression by binding to megakaryoblastic leukemia (MKL)/myocardin-related transcription factor (MRTF), which is an SRF transcriptional coactivator. Growing evidence suggests that SCAI is a negative regulator of neuronal morphology, whereas MKL2/MRTFB is a positive regulator. The mRNA expression of SCAI is downregulated during brain development, suggesting that a reduction in SCAI contributes to the reduced suppression of SRF-mediated gene induction, thus increasing dendritic complexity and developing neuronal circuits. In the present study, we hypothesized that brain-derived neurotrophic factor (BDNF), which is important for neuronal plasticity and development, might alter SCAI mRNA levels. We therefore investigated the effects of BDNF on SCAI mRNA levels in primary cultured cortical neurons. Furthermore, because alternative splicing generates several SCAI variants in the brain, we measured SCAI variant mRNA after BDNF stimulation. Both SCAI variant 1 and total SCAI mRNA expression levels were downregulated by BDNF. Moreover, the extracellular signal-regulated protein kinase/mitogen-activated protein kinase (ERK/MAPK) pathway was involved in the BDNF-mediated decrease in SCAI mRNA expression. Our findings provide insights into the molecular mechanism underlying a neurotrophic factor switch for the repressive transcriptional complex that includes SCAI.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neurônios , Humanos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neurônios/metabolismo , Regulação da Expressão Gênica , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Invasividade Neoplásica , Células Cultivadas
12.
Lett Appl Microbiol ; 77(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38126116

RESUMO

Fecal microbiota transplantation from patients with depression/inflammatory bowel disease (PDI) causes depression with gut inflammation in mice. Here, we investigated the effects of six Lactobacillus reuteri strains on brain-derived neurotropic factor (BDNF), serotonin, and interleukin (IL)-6 expression in neuronal or macrophage cells and PDI fecal microbiota-cultured microbiota (PcM)-induced depression in mice. Of these strains, L6 most potently increased BDNF and serotonin levels in corticosterone-stimulated SH-SY5Y and PC12 cells, followed by L3. L6 most potently decreased IL-6 expression in lipopolysaccharide (LPS)-stimulated macrophages. When L1 (weakest in vitro), L3, and L6 were orally administered in mice with PcM-induced depression, L6 most potently suppressed depression-like behaviors and hippocampal TNF-α and IL-6 expression and increased hippocampal serotonin, BDNF, 5HT7, GABAARα1, and GABABR1b expression, followed by L3 and L1. L6 also suppressed TNF-α and IL-6 expression in the colon. BDNF or serotonin levels in corticosterone-stimulated neuronal cells were negatively correlated with depression-related biomarkers in PcM-transplanted mice, while IL-6 levels in LPS-stimulated macrophage were positively correlated. These findings suggest that IL-6 expression-suppressing and BDNF/serotonin expression-inducing LBPs in vitro, particularly L6, may alleviate gut microbiota-involved depression with colitis in vivo.


Assuntos
Microbioma Gastrointestinal , Limosilactobacillus reuteri , Neuroblastoma , Ratos , Humanos , Camundongos , Animais , Interleucina-6/genética , Depressão/terapia , Fator de Necrose Tumoral alfa/genética , Lipopolissacarídeos/toxicidade , Corticosterona/farmacologia , Serotonina/farmacologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Ansiedade/terapia , Ansiedade/etiologia , Camundongos Endogâmicos C57BL
13.
Commun Biol ; 6(1): 1278, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110605

RESUMO

Plasticity and homeostatic mechanisms allow neural networks to maintain proper function while responding to physiological challenges. Despite previous work investigating morphological and synaptic effects of brain-derived neurotrophic factor (BDNF), the most prevalent growth factor in the central nervous system, how exposure to BDNF manifests at the network level remains unknown. Here we report that BDNF treatment affects rodent hippocampal network dynamics during development and recovery from glutamate-induced excitotoxicity in culture. Importantly, these effects are not obvious when traditional activity metrics are used, so we delve more deeply into network organization, functional analyses, and in silico simulations. We demonstrate that BDNF partially restores homeostasis by promoting recovery of weak and medium connections after injury. Imaging and computational analyses suggest these effects are caused by changes to inhibitory neurons and connections. From our in silico simulations, we find that BDNF remodels the network by indirectly strengthening weak excitatory synapses after injury. Ultimately, our findings may explain the difficulties encountered in preclinical and clinical trials with BDNF and also offer information for future trials to consider.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Sinapses , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Sinapses/metabolismo , Neurônios/fisiologia , Ácido Glutâmico/metabolismo
14.
Open Vet J ; 13(10): 1326-1333, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38027402

RESUMO

Background: Hypoxia ischemia leads to abnormal behavior and growth. Prenatal hypoxia also decreases brain adaptive potential, which can cause fatal effects such as cell death. Asiatic acid (AA) in Centella asiatica is a neuroprotector through antioxidant and anti-inflammatory activities. Aim: This study aimed to analyze the effect of AA as a neuroprotector against hypoxia during intrauterine development on locomotor activity, head width, and brain-derived neurotrophic factor (BDNF) expression. Methods: The true experimental laboratory research used a posttest control-only design. Zebrafish embryos (Danio rerio) aged 0-2 dpf (days postfertilization) were exposed to hypoxia with oxygen levels reaching 1.5 mg/l. Then, AA was administered at successive concentrations, namely, 0.36, 0.72, and 1.45 µg/ml, at 2 hpf (hours postfertilization), 3, 6, and 9 dpf. Head width, velocity activity, and BDNF expression were observed. Results: Intrauterine hypoxia significantly decreased head width, velocity rate, and BDNF expression (<0.001). Administration of AA at all concentrations and age 9 dpf to zebrafish larvae with intrauterine hypoxia exposure increased head width ( p < 0.0001), velocity (p < 0.05), and relative mRNA expression of BDNF (p < 0.05). Conclusion: AA is potentially neuroprotective to the brain in zebrafish larvae exposed to hypoxia during intrauterine development.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/metabolismo , Larva , Hipóxia/veterinária
15.
Ideggyogy Sz ; 76(9-10): 327-337, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37782061

RESUMO

Background and purpose:

Ciprofloxacin (CIP) is a broad-spectrum antibiotic widely used in clinical practice to treat musculoskeletal infections. Fluoroquinolone-induced neurotoxic adverse events have been reported in a few case reports, all the preclinical studies on its neuropsychiatric side effects involved only healthy animals. This study firstly investigated the behavioral effects of CIP in an osteoarthritis rat model with joint destruction and pain, which can simulate inflammation-associated musculoskeletal pain. Furthermore, effects of CIP on regional brain-derived neurotrophic factor (BDNF) expression were examined given its major contributions to the neuromodulation and plasticity underlying behavior and cognition. 

. Methods:

Fourteen days after induction of chronic osteoarthritis, animals were administered vehicle, 33 mg/kg or 100 mg/kg CIP for five days intraperitoneally. Motor activity, behavioral motivation, and psychomotor learning were examined in a reward-based behavioral test (Ambitus) on Day 4 and sensorimotor gating by the prepulse inhibition test on Day 5. Thereafter, the prolonged BDNF mRNA and protein expression levels were measured in the hippocampus and the prefrontal cortex. 

. Results:

CIP dose-dependently reduced both locomotion and reward-motivated exploratory activity, accompanied with impaired learning ability. In contrast, there were no significant differences in startle reflex and sensory gating among treatment groups; however, CIP treatment reduced motor activity of the animals in this test, too. These alterations were associated with reduced BDNF mRNA and protein expression levels in the hippocampus but not the prefrontal cortex. 

. Conclusion:

This study revealed the detrimental effects of CIP treatment on locomotor activity and motivation/learning ability during osteoarthritic condition, which might be due to, at least partially, deficient hippocampal BDNF expression and ensuing impairments in neural and synaptic plasticity.

.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Ciprofloxacina , Humanos , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Ciprofloxacina/efeitos adversos , Ciprofloxacina/metabolismo , Reflexo de Sobressalto/fisiologia , Aprendizagem , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacologia , Hipocampo/metabolismo
16.
Hear Res ; 439: 108895, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37837701

RESUMO

The auditory nerve typically degenerates following loss of cochlear hair cells or synapses. In the case of hair cell loss neural degeneration hinders restoration of hearing through a cochlear implant, and in the case of synaptopathy suprathreshold hearing is affected, potentially degrading speech perception in noise. It has been established that neurotrophins such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) can mitigate auditory nerve degeneration. Several potential BDNF mimetics have also been investigated for neurotrophic effects in the cochlea. A recent in vitro study showed favorable effects of M3, a TrkB monoclonal antibody agonist, when compared with BDNF. In the present study we set out to examine the effect of M3 on auditory nerve preservation in vivo. Thirty-one guinea pigs were bilaterally deafened, and unilaterally treated with a single 3-µl dose of 7 mg/ml, 0.7 mg/ml M3 or vehicle-only by means of a small gelatin sponge two weeks later. During the experiment and analyses the experimenters were blinded to the three treatment groups. Four weeks after treatment, we assessed the treatment effect (1) histologically, by quantifying survival of SGCs and their peripheral processes (PPs); and (2) electrophysiologically, with two different paradigms of electrically evoked compound action potential (eCAP) recordings shown to be indicative of neural health: single-pulse stimulation with varying inter-phase gap (IPG), and pulse-train stimulation with varying inter-pulse interval. We observed a consistent and significant preservative effect of M3 on SGC survival in the lower basal turn (approximately 40% more survival than in the untreated contralateral cochlea), but also in the upper middle and lower apical turn of the cochlea. This effect was similar for the two treatment groups. Survival of PPs showed a trend similar to that of the SGCs, but was only significantly higher for the highest dose of M3. The protective effect of M3 on SGCs was not reflected in any of the eCAP measures: no statistically significant differences were observed between groups in IPG effect nor between the M3 treatment groups and the control group using the pulse-train stimulation paradigm. In short, while a clear effect of M3 was observed on SGC survival, this was not clearly translated into functional preservation.


Assuntos
Implantes Cocleares , Surdez , Cobaias , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Gânglio Espiral da Cóclea/patologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Nervo Coclear , Audição , Cóclea
17.
J Neurochem ; 167(1): 104-125, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37688457

RESUMO

Brain-derived neurotrophic factor (BDNF) stimulates dendrite outgrowth and synaptic plasticity by activating downstream protein kinase A (PKA) signaling. Recently, BDNF has been shown to modulate mitochondrial respiration in isolated brain mitochondria, suggesting that BDNF can modulate mitochondrial physiology. However, the molecular mechanisms by which BDNF stimulates mitochondrial function in neurons remain to be elucidated. In this study, we surmised that BDNF binds to the TrkB receptor and translocates to mitochondria to govern mitochondrial physiology in a PKA-dependent manner. Confocal microscopy and biochemical subcellular fractionation assays confirm the localization of the TrkB receptor in mitochondria. The translocation of the TrkB receptor to mitochondria was significantly enhanced upon treating primary cortical neurons with exogenous BDNF, leading to rapid PKA activation. Showing a direct role of BDNF in regulating mitochondrial structure/function, time-lapse confocal microscopy in primary cortical neurons showed that exogenous BDNF enhances mitochondrial fusion, anterograde mitochondrial trafficking, and mitochondrial content within dendrites, which led to increased basal and ATP-linked mitochondrial respiration and glycolysis as assessed by an XF24e metabolic analyzer. BDNF-mediated regulation of mitochondrial structure/function requires PKA activity as treating primary cortical neurons with a pharmacological inhibitor of PKA or transiently expressing constructs that target an inhibitor peptide of PKA (PKI) to the mitochondrion abrogated BDNF-mediated mitochondrial fusion and trafficking. Mechanistically, western/Phos-tag blots show that BDNF stimulates PKA-mediated phosphorylation of Drp1 and Miro-2 to promote mitochondrial fusion and elevate mitochondrial content in dendrites, respectively. Effects of BDNF on mitochondrial function were associated with increased resistance of neurons to oxidative stress and dendrite retraction induced by rotenone. Overall, this study revealed new mechanisms of BDNF-mediated neuroprotection, which entails enhancing mitochondrial health and function of neurons.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Proteínas Quinases Dependentes de AMP Cíclico , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptor trkB/metabolismo , Neurônios/metabolismo , Mitocôndrias/metabolismo , Células Cultivadas
18.
Dev Growth Differ ; 65(8): 434-445, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37435714

RESUMO

Alcohol and nicotine are psychoactive substances responsible for serious health consequences. Although the biological mechanisms of alcohol and nicotine have been studied extensively, individual differences in the response to these drugs have received little attention. Here we evaluated gene expression and behavior of bold and shy individuals after acute exposure to alcohol and nicotine. For this, zebrafish were classified as bold and shy individuals based on emergence tests, and then fish were exposed to 0.00, 0.10, and 0.50% alcohol or 0.00, 1.00, and 5.00 mg/L nicotine and their anxiety-like and locomotor behavior was observed. After behavioral assessment, brain mRNA expression (ache, bdnf, gaba1, gad1b, th1, and tph1) was evaluated. Locomotion patterns differed between profiles depending on alcohol and nicotine concentration. Anxiety increased in shy fish and decreased in bold fish after exposure to both drugs. Alcohol exposure induced an increase in tph1 mRNA expression in bold fish, while bdnf mRNA expression was increased in shy fish. Nicotine increased ache, bdnf, and tph1 mRNA levels in both profiles, but at higher levels in bold fish. Based on our research, we found that alcohol induces anxiogenic effects in both bold and shy zebrafish. Additionally, shy individuals exposed to a low concentration of nicotine exhibited stronger anxiety-like responses than their bold counterparts. These findings further support the validity of using zebrafish as a dependable tool for studying the effects of drugs and uncovering the underlying mechanisms associated with individual variations.


Assuntos
Comportamento Animal , Peixe-Zebra , Animais , Peixe-Zebra/genética , Comportamento Animal/fisiologia , Nicotina/efeitos adversos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Individualidade , Etanol/efeitos adversos , Expressão Gênica , RNA Mensageiro
19.
Biochem Pharmacol ; 215: 115701, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37487878

RESUMO

The brain-derived neurotrophic factor (BDNF) has been recently shown to have activating effects in isolated platelets. However, BDNF circulates in plasma and a mechanism to preclude constant activation of platelets appears necessary. Hence, we investigated the mechanism regulating BDNF bioavailability in blood. Protein-protein interactions were predicted by molecular docking and validated through immunoprecipitation. Platelet aggregation was assessed using light transmission aggregometry with washed platelets in response to classical agonists or BDNF, in the absence or presence of alpha-2-macroglobulin (α2M), and in platelet-rich plasma. BDNF signaling was assessed with phospho-blots. As little as 25% autologous plasma was sufficient to completely abolish platelet aggregation in response to BDNF. Docking predicted two forms of BDNF binding to native or activated α2M, in parallel and perpendicular arrangements, and the model suggested that the BDNF-α2M complex cannot bind to the high-affinity BDNF receptor, tropomyosin receptor kinase B (TrkB). Experimentally, native and activated α2M formed stable complexes with BDNF preventing BDNF-induced TrkB activation and signal transduction. Both native and activated α2M inhibited BDNF induced-platelet aggregation in a concentration-dependent manner with comparable half-maximal inhibitory concentrations (IC50≈ 125-150 nM). Our study implicates α2M as a physiological regulator of BDNF bioavailability, and as an inhibitor of BDNF-induced platelet activation in blood.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , alfa 2-Macroglobulinas Associadas à Gravidez , Feminino , Gravidez , Humanos , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Agregação Plaquetária , Simulação de Acoplamento Molecular , Receptor trkB/metabolismo , Inibidores Enzimáticos/farmacologia
20.
Dev Cell ; 58(18): 1733-1747.e6, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37506696

RESUMO

Transactivation of Tropomyosin receptor kinase B (TrkB) by EGF leads to cell surface transport of TrkB, promoting its signaling responsiveness to brain-derived neurotrophic factor (BDNF), a critical process for proper cortical plate development. However, the mechanisms that regulate the transport of TrkB to the cell surface are not fully understood. Here, we identified Calnexin as a regulator for targeting TrkB either to the cell surface or toward autophagosomal processing. Calnexin-deficient mouse embryos show impaired cortical plate formation and elevated levels of transactivated TrkB. In Calnexin-depleted mouse neuronal precursor cells, we detected an impaired cell surface transport of TrkB in response to EGF and an impaired delivery to autophagosomes. Mechanistically, we show that Calnexin facilitates the interaction of TrkB with the ER-phagy receptor Fam134b, thereby targeting TrkB to ER-phagy. This mechanism appears as a critical process for fine-tuning the sensitivity of neurons to BDNF.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Fator de Crescimento Epidérmico , Animais , Camundongos , Calnexina/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Autofagia , Chaperonas Moleculares/metabolismo , Receptor trkB/metabolismo , Córtex Cerebral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...