Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 712-713: 149945, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640732

RESUMO

ORF3b is one of the SARS-CoV-2 accessory proteins. Previous experimental study suggested that ORF3b prevents IRF3 translocating to nucleus. However, the biophysical mechanism of ORF3b-IRF3 interaction is elusive. Here, we explored the conformation ensemble of ORF3b using all-atom replica exchange molecular dynamics simulation. Disordered ORF3b has mixed α-helix, ß-turn and loop conformers. The potential ORF3b-IRF3 binding modes were searched by docking representative ORF3b conformers with IRF3, and 50 ORF3b-IRF3 complex poses were screened using molecular dynamics simulations ranging from 500 to 1000 ns. We found that ORF3b binds IRF3 predominantly on its CBP binding and phosphorylated pLxIS motifs, with CBP binding site has the highest binding affinity. The ORF3b-IRF3 binding residues are highly conserved in SARS-CoV-2. Our results provided biophysics insights into ORF3b-IRF3 interaction and explained its interferon antagonism mechanism.


Assuntos
Fator Regulador 3 de Interferon , Simulação de Dinâmica Molecular , Ligação Proteica , SARS-CoV-2 , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/química , SARS-CoV-2/metabolismo , SARS-CoV-2/química , Humanos , Sítios de Ligação , COVID-19/virologia , COVID-19/metabolismo , Simulação de Acoplamento Molecular , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/química , Conformação Proteica
2.
Nucleic Acids Res ; 48(20): 11421-11433, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33205822

RESUMO

IRF3 and IRF7 are critical transcription factors in the innate immune response. Their activation is controlled by phosphorylation events, leading to the formation of homodimers that are transcriptionally active. Phosphorylation occurs when IRF3 is recruited to adaptor proteins via a positively charged surface within the regulatory domain of IRF3. This positively charged surface also plays a crucial role in forming the active homodimer by interacting with the phosphorylated sites stabilizing the homodimer. Here, we describe a distinct molecular interaction that is responsible for adaptor docking and hence phosphorylation as well as a separate interaction responsible for the formation of active homodimer. We then demonstrate that IRF7 can be activated by both MAVS and STING in a manner highly similar to that of IRF3 but with one key difference. Regulation of IRF7 appears more tightly controlled; while a single phosphorylation event is sufficient to activate IRF3, at least two phosphorylation events are required for IRF7 activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/metabolismo , Transdução de Sinais/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Dimerização , Genes Reporter , Células HEK293 , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/química , Fator Regulador 3 de Interferon/genética , Fator Regulador 7 de Interferon/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosforilação , Ligação Proteica/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/imunologia , Quinase Induzida por NF-kappaB
3.
Cells ; 9(5)2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32413959

RESUMO

Mutations of Ubiquilin 2 (UBQLN2) or TANK-binding kinase 1 (TBK1) are associated with amyotrophic lateral sclerosis and frontotemporal degeneration (ALS/FTD). However, the mechanisms whereby UBQLN2 or TBK1 mutations lead to ALS and FTD remain unclear. Here, we explored the effect of UBQLN2 on TBK1 in HEK-293T cells or in CRISPR-Cas9-mediated IRF3 and IRF7 knockout (KO) cells. We found an interaction between TBK1 and UBQLN2, which was affected by ALS/FTD-linked mutations in TBK1 or UBQLN2. Co-expression of UBQLN2 with TBK1 elevated the protein level of TBK1 as well as the phosphorylation of TBK1 and IRF3 in a UBQLN2 dose-dependent manner, and this phosphorylation was reduced by mutant UBQLN2. In addition, the cellular production of IFN1 and related pro-inflammatory cytokines was substantially elevated when UBQLN2 and TBK1 were co-expressed, which was also decreased by mutant UBQLN2. Functional assay revealed that mutant UBQLN2 significantly reduced the binding affinity of TBK1 for its partners, including IRF3, (SQSTM1)/p62 and optineurin (OPTN). Moreover, complete loss of IRF3 abolished the induction of IFN1 and related pro-inflammatory cytokines enhanced by UBQLN2 in HEK-293T cells, whereas no significant change in IRF7 knockout cells was observed. Thus, our findings suggest that UBQLN2 promotes IRF3 phosphorylation via TBK1, leading to enhanced IFN1 induction, and also imply that the dysregulated TBK1-IRF3 pathway may play a role in UBQLN2-related neurodegeneration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/biossíntese , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Relacionadas à Autofagia/química , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/química , Proteínas Mutantes/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos
4.
Sci Rep ; 10(1): 4508, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32161340

RESUMO

Interferon regulatory factor 3 (IRF3) and IRF7 are closely related IRF members and the major factors for the induction of interferons, a key component in vertebrate innate immunity. However, there is limited knowledge regarding the evolution and adaptation of those IRFs to the environments. Two unique motifs in IRF3 and 7 were identified. One motif, GASSL, is highly conserved throughout the evolution of IRF3 and 7 and located in the signal response domain. Another motif, DPHK, is in the DNA-binding domain. The ancestral protein of IRF3 and 7 seemed to possess the DPHK motif. In the ray-finned fish lineage, while the DPHK is maintained in IRF7, the motif in IRF3 is changed to NPHK with a D → N amino acid substitution. The D → N substitution are also found in amphibian IRF3 but not in amphibian IRF7. Terrestrial animals such as reptiles and mammals predominantly use DPHK sequences in both IRF3 and 7. However, the D → N substitution in IRF3 DPHK is again found in cetaceans such as whales and dolphins as well as in marsupials. These observations suggest that the D → N substitutions in the IRF3 DPHK motif is likely to be associated with vertebrate's adaptations to aquatic environments and other environmental changes.


Assuntos
Adaptação Biológica , Evolução Biológica , Fator Regulador 3 de Interferon/genética , Fator Regulador 7 de Interferon/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência Conservada , Evolução Molecular , Fator Regulador 3 de Interferon/química , Mamíferos , Modelos Moleculares , Filogenia , Conformação Proteica
5.
Fish Shellfish Immunol ; 89: 411-419, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30978449

RESUMO

The dark sleeper, Odontobutis obscura (O. obscura), is a commercially important species of freshwater sleeper native to East Asia. However, its molecular biology system is unexplored, including the interferon (IFN) signaling pathway, which is crucial to the antiviral response. In this study, we characterised the IFN regulation pattern of dark sleeper interferon regulatory factor 3 (OdIRF3), supplementing evidence of the conservation of this classical pathway in fish. First, the open reading frame (ORF) of OdIRF3 was cloned from the liver tissue by Rapid amplification of cDNA ends (RACE). Amino acid sequence analysis suggested that OdIRF3 is homologous with other fish IRF3 and that the N-terminal DNA-binding domain (DBD) and the C-terminal IRF-association domain (IAD) are conserved. Then, the cellular distribution demonstrated that OdIRF3 is located in the cytoplasm region and transfers into the nuclear region under stimulation. For the function identification, OdIRF3 activated several types of IFN promoters and induced downstream interferon stimulated genes (ISGs) expression. Finally, the overexpression of OdIRF3 significantly decreased viral proliferation. Taken together, these data systematically characterised the sequence, cellular location, and function in IFN expression of OdIRF3, shedding light on the molecular biology mechanism of the dark sleeper.


Assuntos
Doenças dos Peixes/imunologia , Peixes/genética , Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Fator Regulador 3 de Interferon/química , Interferons/genética , Filogenia , Fator de Transcrição STAT1/genética , Alinhamento de Sequência/veterinária
6.
Fish Shellfish Immunol ; 89: 468-476, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30940578

RESUMO

Interferon regulatory factor (IRF) 3 and IRF7 are key regulators of type I interferon (IFN) gene expression for the antiviral immune response. In the present study, interferon regulatory factor 3 and 7 from Asian seabass, namely AsIRF3 and AsIRF7 were cloned and characterized. The full-length cDNA sequence of IRF3 and IRF7 consisted of 2965 and 2343 bp respectively. AsIRF3 and AsIRF7 were true orthologes of vertebrate IRF3/7 and showed similar domain organization, with an N-terminal DBD which consisted five tryptophan residues in IRF3 and four in IRF7, a C-terminal IRF3 domain and a serine rich region. Both IRF3 and 7 constitutively expressed during the ontogenesis and in all tissues of healthy fish. The expression of both genes was up-regulated following NNV challenge with obvious transcript abundance in brain heart and kidney. Ectopic expression of AsIRF3 and AsIRF7 displayed activation of ISRE/NF-κB promoters and modulation of interferon, ISGs and pro-inflammatory cytokine gene expression. These observations indicated that IRF3 and IRF7 play an important role in Asian seabass's antiviral defense and the RIG-IRF-IFN axis is conserved in the species.


Assuntos
Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Perciformes/genética , Perciformes/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Infecções por Vírus de DNA/imunologia , Proteínas de Peixes/química , Perfilação da Expressão Gênica/veterinária , Fator Regulador 3 de Interferon/química , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 7 de Interferon/química , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/imunologia , Nodaviridae/fisiologia , Filogenia , Alinhamento de Sequência/veterinária
7.
Nature ; 562(7728): 538-544, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30323286

RESUMO

The transcriptional co-activator p300 is a histone acetyltransferase (HAT) that is typically recruited to transcriptional enhancers and regulates gene expression by acetylating chromatin. Here we show that the activation of p300 directly depends on the activation and oligomerization status of transcription factor ligands. Using two model transcription factors, IRF3 and STAT1, we demonstrate that transcription factor dimerization enables the trans-autoacetylation of p300 in a highly conserved and intrinsically disordered autoinhibitory lysine-rich loop, resulting in p300 activation. We describe a crystal structure of p300 in which the autoinhibitory loop invades the active site of a neighbouring HAT domain, revealing a snapshot of a trans-autoacetylation reaction intermediate. Substrate access to the active site involves the rearrangement of an autoinhibitory RING domain. Our data explain how cellular signalling and the activation and dimerization of transcription factors control the activation of p300, and therefore explain why gene transcription is associated with chromatin acetylation.


Assuntos
Multimerização Proteica , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição de p300-CBP/química , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Domínio Catalítico , Cromatina/química , Cromatina/metabolismo , Cristalografia por Raios X , Ativação Enzimática , Humanos , Fator Regulador 3 de Interferon/química , Fator Regulador 3 de Interferon/metabolismo , Ligantes , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Domínios Proteicos , Fator de Transcrição STAT1/química , Fator de Transcrição STAT1/metabolismo , Transcrição Gênica
8.
Virology ; 515: 165-175, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29294448

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV) is an inefficient inducer of interferon (IFN) response. It expresses various proteins that effectively circumvent IFN production at different levels via distinct mechanisms. Through the construction of recombinant IBV expressing proteins 8a, 8b and 8ab encoded by SARS-CoV ORF8, we demonstrate that expression of 8b and 8ab enables the corresponding recombinant viruses to partially overcome the inhibitory actions of IFN activation to achieve higher replication efficiencies in cells. We also found that proteins 8b and 8ab could physically interact with IRF3. Overexpression of 8b and 8ab resulted in the reduction of poly (I:C)-induced IRF3 dimerization and inhibition of the IFN-ß signaling pathway. This counteracting effect was partially mediated by protein 8b/8ab-induced degradation of IRF3 in a ubiquitin-proteasome-dependent manner. Taken together, we propose that SARS-CoV may exploit the unique functions of proteins 8b and 8ab as novel mechanisms to overcome the effect of IFN response during virus infection.


Assuntos
Fator Regulador 3 de Interferon/metabolismo , Síndrome Respiratória Aguda Grave/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Ubiquitina/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , Linhagem Celular , Humanos , Fator Regulador 3 de Interferon/química , Fator Regulador 3 de Interferon/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Domínios Proteicos , Proteólise , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Síndrome Respiratória Aguda Grave/genética , Síndrome Respiratória Aguda Grave/virologia , Transdução de Sinais , Proteínas Virais Reguladoras e Acessórias/genética
9.
Nucleic Acids Res ; 46(5): 2509-2520, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29361124

RESUMO

Transcription factors IRF3, IRF5 and IRF7 (IRF3/5/7) have overlapping, yet distinct, roles in the mammalian response to pathogens. To examine the role that DNA-binding specificity plays in delineating IRF3/5/7-specific gene regulation we used protein-binding microarrays (PBMs) to characterize the DNA binding of IRF3/5/7 homodimers. We identified both common and dimer-specific DNA binding sites, and show that DNA-binding differences can translate into dimer-specific gene regulation. Central to the antiviral response, IRF3/5/7 regulate type I interferon (IFN) genes. We show that IRF3 and IRF7 bind to many interferon-stimulated response element (ISRE)-type sites in the virus-response elements (VREs) of IFN promoters. However, strikingly, IRF5 does not bind the VREs, suggesting evolutionary selection against IRF5 homodimer binding. Mutational analysis reveals a critical specificity-determining residue that inhibits IRF5 binding to the ISRE-variants present in the IFN gene promoters. Integrating PBM and reporter gene data we find that both DNA-binding affinity and affinity-independent mechanisms determine the function of DNA-bound IRF dimers, suggesting that DNA-based allostery plays a role in IRF binding site function. Our results provide new insights into the role and limitations of DNA-binding affinity in delineating IRF3/5/7-specific gene expression.


Assuntos
Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/metabolismo , Fatores Reguladores de Interferon/metabolismo , Elementos de Resposta , Sítios de Ligação , DNA/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/química , Fator Regulador 7 de Interferon/química , Fatores Reguladores de Interferon/química , Interferon Tipo I/genética , Análise Serial de Proteínas , Multimerização Proteica
10.
Biochem J ; 474(12): 2051-2065, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28487378

RESUMO

TRAF family member-associated NF-κB activator (TANK) is a scaffold protein that assembles into the interferon (IFN) regulator factor 3 (IRF3)-phosphorylating TANK-binding kinase 1 (TBK1)-(IκB) kinase ε (IKKε) complex, where it is involved in regulating phosphorylation of the IRF3 and IFN production. However, the functions of TANK in encephalomyocarditis virus (EMCV) infection-induced type I IFN production are not fully understood. Here, we demonstrated that, instead of stimulating type I IFN production, the EMCV-HB10 strain infection potently inhibited Sendai virus- and polyI:C-induced IRF3 phosphorylation and type I IFN production in HEK293T cells. Mechanistically, EMCV 3C protease (EMCV 3C) cleaved TANK and disrupted the TANK-TBK1-IKKε-IRF3 complex, which resulted in the reduction in IRF3 phosphorylation and type I IFN production. Taken together, our findings demonstrate that EMCV adopts a novel strategy to evade host innate immune responses through cleavage of TANK.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Cisteína Endopeptidases/metabolismo , Vírus da Encefalomiocardite/enzimologia , Quinase I-kappa B/antagonistas & inibidores , Fator Regulador 3 de Interferon/antagonistas & inibidores , Interferon Tipo I/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Virais/metabolismo , Proteases Virais 3C , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Cães , Deleção de Genes , Humanos , Quinase I-kappa B/química , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Fator Regulador 3 de Interferon/química , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/biossíntese , Mesocricetus , Mutagênese Sítio-Dirigida , Mutação , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Virais/química , Proteínas Virais/genética
11.
Annu Rev Biochem ; 86: 541-566, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28399655

RESUMO

The innate immune system functions as the first line of defense against invading bacteria and viruses. In this context, the cGAS/STING [cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase/STING] signaling axis perceives the nonself DNA associated with bacterial and viral infections, as well as the leakage of self DNA by cellular dysfunction and stresses, to elicit the host's immune responses. In this pathway, the noncanonical cyclic dinucleotide 2',3'-cyclic GMP-AMP (2',3'-cGAMP) functions as a second messenger for signal transduction: 2',3'-cGAMP is produced by the enzyme cGAS upon its recognition of double-stranded DNA, and then the 2',3'-cGAMP is recognized by the receptor STING to induce the phosphorylation of downstream factors, including TBK1 (TANK binding kinase 1) and IRF3 (interferon regulatory factor 3). Numerous crystal structures of the components of this cGAS/STING signaling axis have been reported and these clarify the structural basis for their signal transduction mechanisms. In this review, we summarize recent progress made in the structural dissection of this signaling pathway and indicate possible directions of forthcoming research.


Assuntos
DNA/imunologia , Imunidade Inata , Nucleotídeos Cíclicos/imunologia , Nucleotidiltransferases/imunologia , Sistemas do Segundo Mensageiro/imunologia , Animais , Bactérias , Cristalografia por Raios X , Citosol/química , Citosol/imunologia , DNA/química , DNA/genética , Regulação da Expressão Gênica , Humanos , Fator Regulador 3 de Interferon/química , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Modelos Moleculares , Nucleotídeos Cíclicos/química , Nucleotídeos Cíclicos/genética , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Fosforilação , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Sistemas do Segundo Mensageiro/genética
12.
Virus Genes ; 52(6): 797-805, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27481269

RESUMO

Type I interferon (IFN) and the IFN-induced cellular antiviral responses are the primary defense mechanisms against viral infection; however, viruses always evolve various mechanisms to antagonize this host's IFN responses. Porcine bocavirus (PBoV) is a newly identified porcine parvovirus. In this study, we found that the nonstructural protein NP1 of PBoV inhibits Sendai virus-induced IFN-ß production and the subsequent expression of IFN-stimulating genes (ISGs). Ectopic expression of NP1 significantly impairs IRF3-mediated IFN-ß production; however, it does not affect the expression, phosphorylation, and nuclear translocation of IRF3, the most important transcription factor for IFN synthesis. Coimmunoprecipitation and Chromatin immunoprecipitation assays suggested that NP1 interacts with the DNA-binding domain of IRF3, which in turn blocks the association of IRF3 with IFN-ß promoter. Together, our findings demonstrated that PBoV encodes an antagonist inhibiting type I IFN production, providing a better understanding of the PBoV immune evasion strategy.


Assuntos
Bocavirus/fisiologia , DNA/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/biossíntese , Nucleoproteínas/metabolismo , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Humanos , Fator Regulador 3 de Interferon/química , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Suínos
13.
Proc Natl Acad Sci U S A ; 113(24): E3403-12, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27302953

RESUMO

Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)-like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-ß) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF binds to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses.


Assuntos
Fator Regulador 3 de Interferon/química , Rotavirus/química , Proteínas não Estruturais Virais/química , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Motivos de Aminoácidos , Proteína de Ligação a CREB/química , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/imunologia , Humanos , Evasão da Resposta Imune , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Domínios Proteicos , Rotavirus/genética , Rotavirus/imunologia , Infecções por Rotavirus/genética , Infecções por Rotavirus/imunologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia
14.
Fish Shellfish Immunol ; 54: 499-506, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27142934

RESUMO

IFN regulatory factor (IRF) 3 as an important member of IRF family, is required for the host antiviral response. In mammals, IRF3 is known to be a critical player in regulating the transcription of IFN and IFN-stimulated genes (ISGs). However, only a few studies investigated the characteristics of IRF3 genes in fish. In this study, IRF3 from miiuy croaker was identified and characterized in bioinformatics and functions. Miiuy croaker IRF3 had conserved DBD, IAD and SRD domains with other vertebrates IRF3 genes, also miiuy croaker IRF3 had relatively conserved gene synteny and gene structures with other fish IRF3 genes. Evolutionary analysis showed IRF3 genes in mammals underwent positive selection, while IRF3 in fish underwent purifying selection. Expression analysis showed miiuy croaker IRF3 was expressed in all tested tissues and up-regulated expressed in infected liver and kidney; and up-regulated expression of miiuy croaker IRF3 was observed in head kidney macrophages which stimulated with poly(I:C) indicating that miiuy croaker IRF3 participated in the immune response to defense against poly(I:C) infection. Furthermore, luciferase reporter assay showed that overexpression of miiuy croaker IRF3 can activate the production of ISRE and IFNα, suggesting that miiuy croaker IRF3 acted as transcription activators in immune responses and maybe activate IFN signaling pathway. Immunofluorescence assay showed miiuy craoker IRF3 was localized in the cytoplasm in Hela cells. Overall, we systematically and comprehensively analyzed the bioinformatics and functions of miiuy croaker IRF3, which provided further insights into the transcriptional regulation of IRF3 gene in fish and valuable information for the study of evolution of IRF3 genes.


Assuntos
Proteínas de Peixes/metabolismo , Genoma , Fator Regulador 3 de Interferon/metabolismo , Perciformes/imunologia , Sequência de Aminoácidos , Animais , Biologia Computacional , Evolução Molecular , Proteínas de Peixes/química , Proteínas de Peixes/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Fator Regulador 3 de Interferon/química , Fator Regulador 3 de Interferon/genética , Especificidade de Órgãos , Perciformes/genética , Perciformes/microbiologia , Filogenia , Poli I-C/farmacologia , Alinhamento de Sequência/veterinária , Sintenia
15.
J Immunol ; 195(1): 289-97, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25994966

RESUMO

Accurate cellular localization plays a crucial role in the effective function of most signaling proteins, and nuclear trafficking is central to the function of transcription factors. IFN regulatory factor (IRF)3 is a master transcription factor responsible for the induction of type I IFN, which plays a crucial role in host antiviral innate immune responses. However, the mechanisms for control and regulation of IRF3 nuclear import largely remain to be elucidated. In our study, we identified a bipartite nuclear localization signal (NLS) in IRF3, with two interdependent basic clusters separated by a 7-aa linker. Our study further demonstrated that the bipartite NLS of IRF3 is also critical for IRF3 DNA-binding activity, indicating that the two functions of this region are integrated, which is in contrast to other IRFs. Furthermore, the IFN bioassay and infection studies suggest that IRF3 NLS is essential to the IRF3-mediated IFN responses and antiviral immunity. Overall, our results reveal a previously unrecognized bipartite NLS for IRF3 that contains both DNA-binding activity and nuclear import function, and they shed light on the regulatory mechanisms of IRF3 activation and IRF3-mediated antiviral responses.


Assuntos
Núcleo Celular/imunologia , DNA/imunologia , Fibroblastos/imunologia , Fator Regulador 3 de Interferon/imunologia , Sinais de Localização Nuclear/imunologia , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/imunologia , Animais , Sítios de Ligação , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/virologia , DNA/metabolismo , Fibroblastos/metabolismo , Fibroblastos/virologia , Expressão Gênica , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/química , Fator Regulador 3 de Interferon/classificação , Fator Regulador 3 de Interferon/genética , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Sinais de Localização Nuclear/genética , Filogenia , Ligação Proteica , Vírus Sendai/imunologia , Alinhamento de Sequência , Transdução de Sinais , Vesiculovirus/imunologia
16.
Science ; 347(6227): aaa2630, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25636800

RESUMO

During virus infection, the adaptor proteins MAVS and STING transduce signals from the cytosolic nucleic acid sensors RIG-I and cGAS, respectively, to induce type I interferons (IFNs) and other antiviral molecules. Here we show that MAVS and STING harbor two conserved serine and threonine clusters that are phosphorylated by the kinases IKK and/or TBK1 in response to stimulation. Phosphorylated MAVS and STING then bind to a positively charged surface of interferon regulatory factor 3 (IRF3) and thereby recruit IRF3 for its phosphorylation and activation by TBK1. We further show that TRIF, an adaptor protein in Toll-like receptor signaling, activates IRF3 through a similar phosphorylation-dependent mechanism. These results reveal that phosphorylation of innate adaptor proteins is an essential and conserved mechanism that selectively recruits IRF3 to activate the type I IFN pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transporte Vesicular/química , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Quinase I-kappa B/metabolismo , Fator Regulador 3 de Interferon/química , Interferon-alfa/biossíntese , Interferon beta/biossíntese , Proteínas de Membrana/química , Camundongos , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Multimerização Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes/metabolismo , Vírus Sendai/fisiologia , Serina/metabolismo , Transdução de Sinais , Ubiquitinação , Vesiculovirus/fisiologia
17.
J Immunol ; 194(7): 3102-15, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25712217

RESUMO

HSV-2 is the major cause of genital herpes, and its infection increases the risk of HIV-1 acquisition and transmission. After initial infection, HSV-2 can establish latency within the nervous system and thus maintains lifelong infection in humans. It has been suggested that HSV-2 can inhibit type I IFN signaling, but the underlying mechanism has yet to be determined. In this study, we demonstrate that productive HSV-2 infection suppresses Sendai virus (SeV) or polyinosinic-polycytidylic acid-induced IFN-ß production. We further reveal that US1, an immediate-early protein of HSV-2, contributes to such suppression, showing that US1 inhibits IFN-ß promoter activity and IFN-ß production at both mRNA and protein levels, whereas US1 knockout significantly impairs such capability in the context of HSV-2 infection. US1 directly interacts with DNA binding domain of IRF-3, and such interaction suppresses the association of nuclear IRF-3 with the IRF-3 responsive domain of IFN-ß promoter, resulting in the suppression of IFN-ß promoter activation. Additional studies demonstrate that the 217-414 aa domain of US1 is critical for the suppression of IFN-ß production. Our results indicate that HSV-2 US1 downmodulates IFN-ß production by suppressing the association of IRF-3 with the IRF-3 responsive domain of IFN-ß promoter. Our findings highlight the significance of HSV-2 US1 in inhibiting IFN-ß production and provide insights into the molecular mechanism by which HSV-2 evades the host innate immunity, representing an unconventional strategy exploited by a dsDNA virus to interrupt type I IFN signaling pathway.


Assuntos
Regulação da Expressão Gênica , Herpesvirus Humano 2/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/biossíntese , Interferon beta/genética , Regiões Promotoras Genéticas , Animais , Linhagem Celular , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/imunologia , Humanos , Proteínas Imediatamente Precoces/genética , Fator Regulador 3 de Interferon/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais
18.
Expert Opin Biol Ther ; 15 Suppl 1: S223-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25604147

RESUMO

OBJECTIVE: During preconditioning, lipopolysaccharide (LPS) selectively activates TLR4/MD-2/Toll/IL-1 receptor-domain-containing adaptor inducing IFN-ß (TRIF) pathway instead of pro-inflammatory myeloid differentiation protein-88 (MyD88)/MyD88-adaptor-like protein (MAL) pathway. Extracellular prothymosin alpha (ProTα) is also known to selectively activate the TLR4/MD2/TRIF-IRF3 pathway in certain diseased conditions. In the current study, biophysical evidence for ProTα/TLR4/MD-2 complex formation and its interaction dynamics have been studied. RESEARCH DESIGN AND METHODS: Gravimetric assay was used to investigate ProTα/TLR4/MD-2 complex formation while molecular dynamics (MD) simulation was used to study its interaction dynamics. RESULTS: Through electrostatic interaction, full-length ProTα (F-ProTα) C-terminal peptide (aa 91 - 111) superficially interacts with similar TLR4/MD-2 (KD = 273.36 nm vs 16.07 µg/ml [LPS]) conformation with LPS at an overlapping three-dimensional space while F-ProTα is hinged to the TLR4 scaffold by one-amino acid shift-Mosoian domain (aa-51 - 90). Comparatively, F-ProTα better stabilizes MD-2 metastable states transition and mediates higher TLR4/MD-2 interaction than LPS. CONCLUSIONS: ProTα via its C-terminal peptide (aa 91 - 111) exhibits in vitro biophysical contact with TLR4/MD-2 complex conformation recognized by LPS at overlapping LPS-binding positions.


Assuntos
Antígeno 96 de Linfócito/química , Antígeno 96 de Linfócito/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Timosina/análogos & derivados , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/metabolismo , Sequência de Aminoácidos , Animais , Técnicas de Química Analítica , Humanos , Fator Regulador 3 de Interferon/química , Fator Regulador 3 de Interferon/metabolismo , Interleucina-6/química , Interleucina-6/metabolismo , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ligação Proteica , Receptores de Interleucina-1/química , Receptores de Interleucina-1/metabolismo , Transdução de Sinais , Timosina/química , Timosina/metabolismo
19.
Fish Shellfish Immunol ; 37(2): 239-47, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24565894

RESUMO

Interferon regulatory factor (IRF) 3 and IRF7 have been identified as regulators of type I interferon (IFN) gene expression in mammals. In the present study, the two genes were cloned and characterized in the European eel, Anguilla anguilla. The full-length cDNA sequence of IRF3 and IRF7 in the European eel, named as AaIRF3 and AaIRF7 consists of 2879 and 2419 bp respectively. Multiple alignments showed that the two IRFs have a highly conserved DNA binding domain (DBD) in the N terminus, with the characteristic motif containing five tryptophan residues, which is a feature present in their mammalian homologues. But, IRF7 has only four of the five residues in other species of fish. The expression of AaIRF3 and AaIRF7 both displayed an obvious dose-dependent manner following polyinosinic:polycytidylic acid (PolyI:C) challenge. In vivo expression analysis showed that the mRNA level of AaIRF3 and AaIRF7 was significantly up-regulated in response to PolyI:C stimulation in all examined tissues/organs except in muscle, with a lower level of increase observed in response to lipopolysaccharide (LPS) challenge and Edwardsiella tarda infection, indicating that AaIRF3 and AaIRF7 may be more likely involved in antiviral immune response. In addition, some pattern recognition receptors genes related with the production of type I IFNs and those genes in response to type I IFNs were identified in the European eel genome database, indicating a relatively conserved system in the production of type I IFN and its signalling in the European eel.


Assuntos
Anguilla/genética , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 7 de Interferon/genética , Interferons/genética , Sequência de Aminoácidos , Anguilla/metabolismo , Animais , Sequência de Bases , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Fator Regulador 3 de Interferon/química , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/química , Fator Regulador 7 de Interferon/metabolismo , Lipopolissacarídeos/administração & dosagem , Dados de Sequência Molecular , Filogenia , Poli I-C/administração & dosagem , Alinhamento de Sequência/veterinária
20.
J Virol ; 87(23): 12814-27, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24049179

RESUMO

Viral infection initiates a series of signaling cascades that lead to the transcription of interferons (IFNs), finally inducing interferon-stimulated genes (ISGs) to eliminate viruses. Viruses have evolved a variety of strategies to modulate host IFN-mediated immune responses. Herpes simplex virus 1 (HSV-1) US3, a Ser/Thr kinase conserved in alphaherpesviruses, was previously reported to counteract host innate immunity; however, the molecular mechanism is elusive. In this study, we report that US3 blocks IFN-ß production by hyperphosphorylating IFN regulatory factor 3 (IRF3). Ectopic expression of US3 protein significantly inhibited Sendai virus (SeV)-mediated activation of IFN-ß and IFN-stimulated response element (ISRE) promoters and the transcription of IFN-ß, ISG54, and ISG56. US3 was also shown to block SeV-induced dimerization and nuclear translocation of IRF3. The kinase activity was indispensable for its inhibitory function, as kinase-dead (KD) US3 mutants K220M and D305A could not inhibit IFN-ß production. Furthermore, US3 interacted with and hyperphosphorylated IRF3 at Ser175 to prevent IRF3 activation. Finally, the US3 KD mutant viruses were constructed and denoted K220M or D305A HSV-1, respectively. Cells and mice infected with both mutant viruses produced remarkably larger amounts of IFN-ß than those infected with wild-type HSV-1. For the first time, these findings provide convincing evidence that US3 hyperphosphorylates IRF3, blocks the production of IFN-ß, and subverts host innate immunity.


Assuntos
Regulação para Baixo , Herpes Simples/genética , Herpes Simples/metabolismo , Herpesvirus Humano 1/enzimologia , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Animais , Feminino , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Humanos , Fator Regulador 3 de Interferon/química , Fator Regulador 3 de Interferon/genética , Interferon beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...