Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
J Biol Chem ; 298(11): 102558, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36183835

RESUMO

Activated protein C (APC) is an important anticoagulant protein that regulates thrombin generation through inactivation of factor V (FV) and activated factor V (FVa). The rate of APC inactivation of FV is slower compared to FVa, although proteolysis occurs at the same sites (Arg306, Arg506, and Arg679). The molecular basis for FV resistance to APC is unknown. Further, there is no information about how FV-short, a physiologically relevant isoform of FV with a shortened B-domain, is regulated by APC. Here, we identify the molecular determinants which differentially regulate APC recognition of FV versus FVa and uncover how FV-short can be protected from this anticoagulant pathway. Using recombinant FV derivatives and B-domain fragments, we show that the conserved basic region (BR; 963-1008) within the central portion of the B-domain plays a major role in limiting APC cleavage at Arg506. Derivatives of FV lacking the BR, including FV-short, were subject to rapid cleavage at Arg506 and were inactivated like FVa. The addition of a FV-BR fragment reversed this effect and delayed APC inactivation. We also found that anticoagulant glycoprotein TFPIα, which has a C-terminal BR homologous to FV-BR, protects FV-short from APC inactivation by delaying cleavage at Arg506. We conclude that the FV-BR plays a major role in protecting FV from APC inactivation. Using a similar mechanistic strategy, TFPIα also shields FV-short from APC. These findings clarify the resistance of FV to APC, advance our understanding of FV/FVa regulation, and establish a mechanistic framework for manipulating this reaction to alter coagulation.


Assuntos
Fator V , Proteína C , Fator V/genética , Fator V/metabolismo , Proteína C/genética , Proteína C/metabolismo , Anticoagulantes , Peptídeo Hidrolases , Fator Va/genética , Fator Va/metabolismo , Trombina/metabolismo
2.
Cell Chem Biol ; 29(2): 215-225.e5, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35114109

RESUMO

Coagulation cofactors profoundly regulate hemostasis and are appealing targets for anticoagulants. However, targeting such proteins has been challenging because they lack an active site. To address this, we isolate an RNA aptamer termed T18.3 that binds to both factor V (FV) and FVa with nanomolar affinity and demonstrates clinically relevant anticoagulant activity in both plasma and whole blood. The aptamer also shows synergy with low molecular weight heparin and delivers potent anticoagulation in plasma collected from patients with coronavirus disease 2019 (COVID-19). Moreover, the aptamer's anticoagulant activity can be rapidly and efficiently reversed using protamine sulfate, which potentially allows fine-tuning of aptamer's activity post-administration. We further show that the aptamer achieves its anticoagulant activity by abrogating FV/FVa interactions with phospholipid membranes. Our success in generating an anticoagulant aptamer targeting FV/Va demonstrates the feasibility of using cofactor-binding aptamers as therapeutic protein inhibitors and reveals an unconventional working mechanism of an aptamer by interrupting protein-membrane interactions.


Assuntos
Anticoagulantes/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Fator V/antagonistas & inibidores , Fator Va/antagonistas & inibidores , Sequência de Aminoácidos , Anticoagulantes/química , Anticoagulantes/metabolismo , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Pareamento de Bases , Sítios de Ligação , COVID-19/sangue , Membrana Celular/química , Membrana Celular/metabolismo , Fator V/química , Fator V/genética , Fator V/metabolismo , Fator Va/química , Fator Va/genética , Fator Va/metabolismo , Heparina de Baixo Peso Molecular/química , Heparina de Baixo Peso Molecular/metabolismo , Humanos , Soros Imunes/química , Soros Imunes/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Protaminas , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Técnica de Seleção de Aptâmeros , Especificidade por Substrato , Tratamento Farmacológico da COVID-19
3.
Arterioscler Thromb Vasc Biol ; 41(8): 2263-2276, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34162230

RESUMO

OBJECTIVE: The Australian snake venom ptFV (Pseudonaja textilis venom-derived factor V) variant retains cofactor function despite APC (activated protein C)-dependent proteolysis. Here, we aimed to unravel the mechanistic principles by determining the role of the absent Arg306 cleavage site that is required for the inactivation of FVa (mammalian factor Va). APPROACH AND RESULTS: Our findings show that in contrast to human FVa, APC-catalyzed proteolysis of ptFVa at Arg306 and Lys507 does not abrogate ptFVa cofactor function. Remarkably, the structural integrity of APC-proteolyzed ptFVa is maintained indicating that stable noncovalent interactions prevent A2-domain dissociation. Using Molecular Dynamics simulations, we uncovered key regions located in the A1 and A2 domain that may be at the basis of this remarkable characteristic. CONCLUSIONS: Taken together, we report a completely novel role for uniquely adapted regions in ptFVa that prevent A2 domain dissociation. As such, these results challenge our current understanding by which strict regulatory mechanisms control FVa activity.


Assuntos
Venenos Elapídicos/metabolismo , Fator Va/metabolismo , Proteína C/metabolismo , Animais , Linhagem Celular , Cricetinae , Venenos Elapídicos/química , Ativação Enzimática , Fator Va/química , Fator Va/genética , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Domínios e Motivos de Interação entre Proteínas , Proteólise , Relação Estrutura-Atividade , Especificidade por Substrato
4.
J Biol Chem ; 296: 100234, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33376137

RESUMO

Coagulation factor V (FV) plays an anticoagulant role but serves as a procoagulant cofactor in the prothrombinase complex once activated to FVa. At the heart of these opposing effects is the proteolytic removal of its central B-domain, including conserved functional landmarks (basic region, BR; 963-1008 and acidic region 2, AR2; 1493-1537) that enforce the inactive FV procofactor state. Tissue factor pathway inhibitor α (TFPIα) has been associated with FV as well as FV-short, a physiologically relevant isoform with a shortened B-domain missing the BR. However, it is unclear which forms of FV are physiologic ligands for TFPIα. Here, we characterize the binding and regulation of FV and FV-short by TFPIα via its positively charged C-terminus (TFPIα-BR) and examine how bond cleavage in the B-domain influences these interactions. We show that FV-short is constitutively active and functions in prothrombinase like FVa. Unlike FVa, FV-short binds with high affinity (Kd ∼1 nM) to TFPIα-BR, which blocks procoagulant function unless FV-short is cleaved at Arg1545, removing AR2. Importantly, we do not observe FV binding (µM detection limit) to TFPIα. However, cleavage at Arg709 and Arg1018 displaces the FV BR, exposing AR2 and allowing TFPIα to bind via its BR. We conclude that for full-length FV, the detachment of FV BR from AR2 is necessary and sufficient for TFPIα binding and regulation. Our findings pinpoint key forms of FV, including FV-short, that act as physiologic ligands for TFPIα and establish a mechanistic framework for assessing the functional connection between these proteins.


Assuntos
Fator V/química , Fator Va/química , Lipoproteínas/química , Trombina/genética , Coagulação Sanguínea/genética , Fator V/genética , Fator Va/genética , Fator Xa/química , Fator Xa/genética , Humanos , Ligantes , Lipoproteínas/genética , Ligação Proteica/genética , Domínios Proteicos/genética , Proteólise/efeitos dos fármacos , Trombina/química , Tromboplastina/química , Tromboplastina/genética
5.
J Thromb Haemost ; 17(12): 2056-2068, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31364267

RESUMO

BACKGROUND: Activated protein C (APC)-mediated inactivation of factor (F)Va is greatly enhanced by protein S. For inactivation to occur, a trimolecular complex among FVa, APC, and protein S must form on the phospholipid membrane. However, direct demonstration of complex formation has proven elusive. OBJECTIVES: To elucidate the nature of the phospholipid-dependent interactions among APC, protein S, and FVa. METHODS: We evaluated binding of active site blocked APC to phospholipid-coated magnetic beads in the presence and absence of protein S and/or FVa. The importance of protein S and FV residues were evaluated functionally. RESULTS: Activated protein C alone bound weakly to phospholipids. Protein S mildly enhanced APC binding to phospholipid surfaces, whereas FVa did not. However, FVa together with protein S enhanced APC binding (>14-fold), demonstrating formation of an APC/protein S/FVa complex. C4b binding protein-bound protein S failed to enhance APC binding, agreeing with its reduced APC cofactor function. Protein S variants (E36A and D95A) with reduced APC cofactor function exhibited essentially normal augmentation of APC binding to phospholipids, but diminished APC/protein S/FVa complex formation, suggesting involvement in interactions dependent upon FVa. Similarly, FVaNara (W1920R), an APC-resistant FV variant, also did not efficiently incorporate into the trimolecular complex as efficiently as wild-type FVa. FVa inactivation assays suggested that the mutation impairs its affinity for phospholipid membranes and with protein S within the complex. CONCLUSIONS: FVa plays a central role in the formation of its inactivation complex. Furthermore, membrane proximal interactions among FVa, APC, and protein S are essential for its cofactor function.


Assuntos
Coagulação Sanguínea , Proteínas de Ligação ao Cálcio/metabolismo , Fator Va/metabolismo , Fosfolipídeos/metabolismo , Proteína C/metabolismo , Proteína S/metabolismo , Sítios de Ligação , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Ativação Enzimática , Fator Va/química , Fator Va/genética , Células HEK293 , Humanos , Modelos Moleculares , Complexos Multiproteicos , Fosfolipídeos/química , Ligação Proteica , Proteína C/química , Conformação Proteica , Proteína S/química , Proteína S/genética , Relação Estrutura-Atividade , Trombina/metabolismo , Tromboplastina/metabolismo
6.
Pharm Res ; 33(6): 1517-26, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26960296

RESUMO

PURPOSE: Activated (super)Factor V ((super)FVa) is a novel engineered FV with excellent prohemostatic efficacy. (Super)FVa has three APC cleavage site mutations and an interdomain disulfide bond. Stability, pharmacokinetics, and immunogenic and thrombogenic potential are reported here. METHODS: Stability and circulating half-life were determined after incubation in buffer and human plasma, and after injection into FVIII-deficient mice. Immunogenicity potential was assessed by B- and T-cell specific epitope prediction and structural analysis using surface area and atomic depth computation. Thrombogenic potential was determined by quantification of lung fibrin deposition in wild-type mice after intravenous injection of (super)FVa (200 U/kg), recombinant human (rh) Tissue Factor (0.4-16 pmol/kg), rhFVIIa (3 mg/kg) or saline. RESULTS: FVa retained full activity over 30 h in buffer, the functional half-life in human plasma was 4.9 h, and circulating half-life in FVIII-deficient mice was ~30 min. Predicted immunogenicity was not increased compared to human FV. While rh Tissue Factor, the positive control, resulted in pronounced lung fibrin depositions (mean 121 µg/mL), (super)FVa did not (6.7 µg/mL), and results were comparable to fibrin depositions with rhFVIIa (7.6 µg/mL) or saline (5.6 µg/mL). CONCLUSION: FVa has an appropriate safety and stability profile for further preclinical development as a prohemostatic against severe bleeding.


Assuntos
Fator Va/farmacocinética , Hemofilia A/tratamento farmacológico , Hemostáticos/farmacocinética , Engenharia de Proteínas/métodos , Proteínas Recombinantes/farmacocinética , Animais , Modelos Animais de Doenças , Estabilidade de Medicamentos , Fator VIII/genética , Fator VIII/metabolismo , Fator Va/administração & dosagem , Fator Va/genética , Fator Va/toxicidade , Feminino , Fibrina/metabolismo , Meia-Vida , Hemofilia A/sangue , Hemofilia A/genética , Hemostáticos/administração & dosagem , Hemostáticos/toxicidade , Humanos , Injeções Intravenosas , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Knockout , Mutagênese Sítio-Dirigida , Mutação , Estabilidade Proteica , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/toxicidade , Índice de Gravidade de Doença , Trombina/metabolismo
7.
J Biol Chem ; 291(4): 1565-1581, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26601957

RESUMO

Prothrombin (FII) is activated to α-thrombin (IIa) by prothrombinase. Prothrombinase is composed of a catalytic subunit, factor Xa (fXa), and a regulatory subunit, factor Va (fVa), assembled on a membrane surface in the presence of divalent metal ions. We constructed, expressed, and purified several mutated recombinant FII (rFII) molecules within the previously determined fVa-dependent binding site for fXa (amino acid region 473-487 of FII). rFII molecules bearing overlapping deletions within this significant region first established the minimal stretch of amino acids required for the fVa-dependent recognition exosite for fXa in prothrombinase within the amino acid sequence Ser(478)-Val(479)-Leu(480)-Gln(481)-Val(482). Single, double, and triple point mutations within this stretch of rFII allowed for the identification of Leu(480) and Gln(481) as the two essential amino acids responsible for the enhanced activation of FII by prothrombinase. Unanticipated results demonstrated that although recombinant wild type α-thrombin and rIIa(S478A) were able to induce clotting and activate factor V and factor VIII with rates similar to the plasma-derived molecule, rIIa(SLQ→AAA) with mutations S478A/L480A/Q481A was deficient in clotting activity and unable to efficiently activate the pro-cofactors. This molecule was also impaired in protein C activation. Similar results were obtained with rIIa(ΔSLQ) (where rIIa(ΔSLQ) is recombinant human α-thrombin with amino acids Ser(478)/Leu(480)/Gln(481) deleted). These data provide new evidence demonstrating that amino acid sequence Leu(480)-Gln(481): 1) is crucial for proper recognition of the fVa-dependent site(s) for fXa within prothrombinase on FII, required for efficient initial cleavage of FII at Arg(320); and 2) is compulsory for appropriate tethering of fV, fVIII, and protein C required for their timely activation by IIa.


Assuntos
Glutamina/metabolismo , Leucina/metabolismo , Protrombina/química , Protrombina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Fator Va/genética , Fator Va/metabolismo , Fator Xa/genética , Fator Xa/metabolismo , Glutamina/genética , Humanos , Leucina/genética , Dados de Sequência Molecular , Proteína C/genética , Proteína C/metabolismo , Processamento de Proteína Pós-Traducional , Protrombina/genética , Tromboplastina/genética , Tromboplastina/metabolismo
8.
Blood ; 125(23): 3647-50, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25896652

RESUMO

Whole genome sequencing of an individual completely devoid of plasma- and platelet-derived factor V (FV) identified 167 variants in his F5 gene including previously identified and damaging missense mutations at rs6027 and Leu90Ser. Because the administration of fresh frozen plasma (FFP) prevents gastrointestinal bleeding in this individual, its effects on his plasma- and platelet-derived FV concentrations were assessed. The patient's plasma FV levels peaked by 2 hours following FFP administration and were undetectable 96 hours later. In contrast, increased platelet-derived FV/Va concentrations were observed within 6 hours, peaked at 24 hours, decreased slowly over 7 days, and originated from megakaryocyte endocytosis and intracellular processing of plasma FV. Ten days after transfusion, no thrombin was generated in a tissue factor-initiated whole blood clotting assay unless exogenous FV was added, consistent with the complete absence of plasma FV. In marked contrast, release of the patient's platelet-derived FV/Va (7% of normal) following platelet activation resulted in robust thrombin generation, similar to that in an individual with normal plasma- and platelet-derived FV concentrations. Thus, total FV deficiency can be corrected by plasma administration, which partially repletes and sustains the platelet cofactor pool, thereby highlighting the critical role of platelet-derived FV/Va in ensuring hemostatic competence.


Assuntos
Transfusão de Componentes Sanguíneos , Plaquetas , Deficiência do Fator V/sangue , Deficiência do Fator V/terapia , Fator Va/administração & dosagem , Plasma , Idoso , Substituição de Aminoácidos , Deficiência do Fator V/complicações , Deficiência do Fator V/genética , Fator Va/genética , Fator Va/metabolismo , Hemorragia Gastrointestinal/sangue , Hemorragia Gastrointestinal/etiologia , Hemorragia Gastrointestinal/genética , Hemorragia Gastrointestinal/terapia , Humanos , Masculino , Megacariócitos/metabolismo , Megacariócitos/patologia , Mutação de Sentido Incorreto , Tempo de Trombina
9.
J Thromb Haemost ; 12(3): 363-72, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24818532

RESUMO

BACKGROUND: Factor (F)VIIa-based bypassing not always provides sufficient hemostasis in hemophilia. OBJECTIVES: To investigate the potential of engineered activated factor V (FVa) variants as bypassing agents in hemophilia A. METHODS: Activity of FVa variants was studied in vitro using prothrombinase assays with purified components and in FV- and FVIII-deficient plasma using clotting and thrombin generation assays. In vivo bleed reduction after the tail clip was studied in hemophilia A mice. RESULTS AND CONCLUSIONS: FVa mutations included a disulfide bond connecting the A2 and A3 domains and ones that rendered FVa resistant to inactivation by activated protein C (APC). '(super) FVa,' a combination of the A2-A3 disulfide (A2-SS-A3) to stabilize FVa and of APC-cleavage site mutations (Arg506/306/679Gln), had enhanced specific activity and complete APC resistance compared with wild-type FVa, FVL eiden (Arg506Gln), or FVaL eiden (A2-SS-A3). Furthermore, (super) FVa potently increased thrombin generation in vitro in FVIII-deficient plasma. In vivo, (super) FVa reduced bleeding in FVIII-deficient mice more effectively than wild-type FVa. Low-dose (super) FVa, but not wild-type FVa, decreased early blood loss during the first 10 min by more than two-fold compared with saline and provided bleed protection for the majority of mice, similar to treatments with FVIII. During the second 10 min after tail cut, (super) FVa at high dose, but not wild-type FVa, effectively reduced bleeding. These findings suggest that (super) FVa enhances not only clot formation but also clot stabilization. Thus, (super) FVa efficiently improved hemostasis in hemophilia in vitro and in vivo and may have potential therapeutic benefits as a novel bypassing agent in hemophilia.


Assuntos
Fator Va/genética , Hemostasia/genética , Mutação , Engenharia de Proteínas/métodos , Animais , Coagulação Sanguínea , Dissulfetos/química , Fator Va/metabolismo , Hemofilia A/genética , Humanos , Camundongos , Camundongos Transgênicos , Tempo de Tromboplastina Parcial , Proteína C/química , Tempo de Protrombina , Proteínas Recombinantes/química , Trombina/química , Tromboplastina/química , Tromboplastina/genética
10.
J Biol Chem ; 288(42): 30151-30160, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24014022

RESUMO

Coagulation factor V (FV) circulates as an inactive procofactor and is activated to FVa by proteolytic removal of a large inhibitory B-domain. Conserved basic and acidic sequences within the B-domain appear to play an important role in keeping FV as an inactive procofactor. Here, we utilized recombinant B-domain fragments to elucidate the mechanism of this FV autoinhibition. We show that a fragment encoding the basic region (BR) of the B-domain binds with high affinity to cofactor-like FV(a) variants that harbor an intact acidic region. Furthermore, the BR inhibits procoagulant function of the variants, thereby restoring the procofactor state. The BR competes with FXa for binding to FV(a), and limited proteolysis of the B-domain, specifically at Arg(1545), ablates BR binding to promote high affinity association between FVa and FXa. These results provide new insight into the mechanism by which the B-domain stabilizes FV as an inactive procofactor and reveal how limited proteolysis of FV progressively destabilizes key regulatory regions of the B-domain to produce an active form of the molecule.


Assuntos
Fator Va/química , Fator Xa/química , Peptídeos/química , Proteólise , Fator Va/antagonistas & inibidores , Fator Va/genética , Fator Va/metabolismo , Fator Xa/genética , Fator Xa/metabolismo , Humanos , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
11.
Blood ; 117(26): 7164-73, 2011 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-21555742

RESUMO

Thrombin-catalyzed activation of coagulation factor V (FV) is an essential positive feedback reaction within the blood clotting system. Efficient processing at the N- (Arg(709)-Ser(710)) and C-terminal activation cleavage sites (Arg(1545)-Ser(1546)) requires initial substrate interactions with 2 clusters of positively charged residues on the proteinase surface, exosites I and II. We addressed the mechanism of activation of human factor V (FV) using peptides that cover the entire acidic regions preceding these cleavage sites, FV (657-709)/ (FVa2) and FV(1481-1545)/(FVa3). FVa2 appears to interact mostly with exosite I, while both exosites are involved in interactions with the C-terminal linker. The 1.7-Å crystal structure of irreversibly inhibited thrombin bound to FVa2 unambiguously reveals docking of FV residues Glu(666)-Glu(672) to exosite I. These findings were confirmed in a second, medium-resolution structure of FVa2 bound to the benzamidine-inhibited proteinase. Our results suggest that the acidic A2-B domain linker is involved in major interactions with thrombin during cofactor activation, with its more N-terminal hirudin-like sequence playing a critical role. Modeling experiments indicate that FVa2, and likely also FVa3, wrap around thrombin in productive thrombin·FV complexes that cover a large surface of the activator to engage the active site.


Assuntos
Fator V/química , Fator V/metabolismo , Trombina/química , Trombina/metabolismo , Clorometilcetonas de Aminoácidos/química , Clorometilcetonas de Aminoácidos/farmacologia , Sequência de Aminoácidos , Antitrombinas/química , Antitrombinas/farmacologia , Benzamidinas/química , Benzamidinas/farmacologia , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Enzimas Imobilizadas/antagonistas & inibidores , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Fator V/genética , Fator Va/química , Fator Va/genética , Fator Va/metabolismo , Humanos , Cinética , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Ressonância de Plasmônio de Superfície , Propriedades de Superfície , Trombina/antagonistas & inibidores
12.
Blood Coagul Fibrinolysis ; 22(4): 317-24, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21467919

RESUMO

Activated protein C (APC) inactivates membrane-bound factor Va following cleavages of the heavy chain at Arg, Arg, and Arg. The objective of this study is to examine which cleavage is most important for inactivation. The recombinant factor V molecules were constructed as follows: factor V (mutations R→Q), factor V (mutations R→Q), and factor V (mutations R→Q and R→Q). The recombinant molecules were expressed in mammalian cells, purified, and assayed prior and after incubation with APC and lipids for 30 min (factor Vai) in clotting assays and in an assay using purified reagents and saturating concentrations of factor Va. Clotting assays demonstrated that wild-type factor Vai (Vai), factor Vai, and factor Vai were devoid of activity, whereas factor Vai maintained approximately 70% activity following a 30 min incubation with APC. Prothrombinase assembled with all mutant cofactor molecules before and after treatment with APC had kinetic constant (Km) values similar to values found with prothrombinase assembled with factor Va. Prothrombinase assembled with factor Vai demonstrated a 20-fold reduction in kcat, whereas prothrombinase assembled with factor Vai had a two-fold reduction in kcat as compared with prothrombinase assembled with factor Va. In contrast, factor Vai and factor Vai did not show any loss in kcat under similar experimental conditions. In conclusion, our data demonstrate that the activity of an APC-treated factor Va molecule bearing a single mutation at Arg or Arg depends on the assay used; and regardless of the assay employed, in the absence of the APC-cleavage sites at Arg and Arg, the active cofactor is unable to be significantly inactivated by APC in the presence of a membrane surface.


Assuntos
Arginina/metabolismo , Fator Va , Proteína C/farmacologia , Proteínas Recombinantes , Tromboplastina/metabolismo , Animais , Arginina/genética , Coagulação Sanguínea , Testes de Coagulação Sanguínea , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Fator Va/genética , Fator Va/metabolismo , Humanos , Cinética , Plasmídeos , Mutação Puntual , Ligação Proteica , Proteína C/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção
13.
Biochemistry ; 49(39): 8520-34, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20722419

RESUMO

Factor Va, the cofactor of prothrombinase, is composed of heavy and light chains associated noncovalently in the presence of divalent metal ions. The COOH-terminal region of the heavy chain contains acidic amino acid clusters that are important for cofactor activity. In this work, we have investigated the role of amino acid region 659-663, which contains five consecutive acidic amino acid residues, by site-directed mutagenesis. We have generated factor V molecules in which all residues were mutated to either lysine (factor V(5K)) or alanine (factor V(5A)). We have also constructed a mutant molecule with this region deleted (factor V(Δ659-663)). The recombinant molecules along with wild-type factor V (factor V(WT)) were transiently expressed in mammalian cells, purified, and assessed for cofactor activity. Two-stage clotting assays revealed that the mutant molecules had reduced clotting activities compared to that of factor Va(WT). Kinetic analyses of prothrombinase assembled with the mutant molecules demonstrated diminished k(cat) values, while the affinity of all mutant molecules for factor Xa was similar to that for factor Va(WT). Gel electrophoresis analyses of plasma-derived and recombinant mutant prothrombin activation demonstrated delayed cleavage of prothrombin at both Arg(320) and Arg(271) by prothrombinase assembled with the mutant molecules, resulting in meizothrombin lingering throughout the activation process. These results were confirmed after analysis of the cleavage of FPR-meizothrombin. Our findings provide new insights into the structural contribution of the acidic COOH-terminal region of factor Va heavy chain to factor Xa activity within prothrombinase and demonstrate that amino acid region 659-663 from the heavy chain of the cofactor contributes to the regulation of the rate of cleavage of prothrombin by prothrombinase.


Assuntos
Fator Va/química , Fator Va/metabolismo , Fator Xa/metabolismo , Tromboplastina/metabolismo , Sequência de Aminoácidos , Animais , Precursores Enzimáticos/metabolismo , Fator V/genética , Fator V/metabolismo , Fator Va/genética , Expressão Gênica , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação Puntual , Protrombina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Trombina/metabolismo
14.
Blood ; 115(23): 4878-85, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20308596

RESUMO

Protein S has an established role in the protein C anticoagulant pathway, where it enhances the factor Va (FVa) and factor VIIIa (FVIIIa) inactivating property of activated protein C (APC). Despite its physiological role and clinical importance, the molecular basis of its action is not fully understood. To clarify the mechanism of the protein S interaction with APC, we have constructed and expressed a library of composite or point variants of human protein S, with residue substitutions introduced into the Gla, thrombin-sensitive region (TSR), epidermal growth factor 1 (EGF1), and EGF2 domains. Cofactor activity for APC was evaluated by calibrated automated thrombography (CAT) using protein S-deficient plasma. Of 27 variants tested initially, only one, protein S D95A (within the EGF1 domain), was largely devoid of functional APC cofactor activity. Protein S D95A was, however, gamma-carboxylated and bound phospholipids with an apparent dissociation constant (Kd(app)) similar to that of wild-type (WT) protein S. In a purified assay using FVa R506Q/R679Q, purified protein S D95A was shown to have greatly reduced ability to enhance APC-induced cleavage of FVa Arg306. It is concluded that residue Asp95 within EGF1 is critical for APC cofactor function of protein S and could define a principal functional interaction site for APC.


Assuntos
Substituição de Aminoácidos , Ácido Aspártico , Mutação de Sentido Incorreto , Proteína C/química , Proteína S/química , Fator VIIIa/química , Fator VIIIa/genética , Fator VIIIa/metabolismo , Fator Va/química , Fator Va/genética , Fator Va/metabolismo , Humanos , Proteína C/genética , Proteína C/metabolismo , Proteína S/genética , Proteína S/metabolismo , Estrutura Terciária de Proteína
15.
J Thromb Haemost ; 8(1): 129-36, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19874463

RESUMO

BACKGROUND: Activated protein C (APC) inhibits factor Va (FVa) by cleaving at Arg306, Arg506 and Arg679. Protein S serves as cofactor, in particular for the Arg306 site, and a protein S-mediated relocation of the active site of APC closer to the membrane has been proposed as a mechanism. Recently, it was demonstrated that FVa, which was mutated at all three APC-cleavage sites (FVa-306Q/506Q/679Q), could still be cleaved by APC. These sites were close to Arg306 and Arg506 but not further defined. OBJECTIVE: To identify and characterize the additional APC-cleavage sites in FVa. METHODS: The cDNA for FV-306Q/506Q/679Q was used as a template to create FV variants with one or more possible cleavage sites being mutated. The FV variants were expressed and their sensitivity for APC characterized functionally and with Western blotting. RESULTS: The additional APC-cleavage sites were located at Lys309, Arg313, Arg316, Arg317 and Arg505. FVa-306Q/309Q/313Q/316Q/317Q/505Q/506Q/679Q (denoted 8M-FVa) was APC resistant. To investigate individual sites, they were mutated back using 8M-FV as a template. The kinetics of APC-degradation of these variants demonstrated that protein S was equally efficient in enhancing the APC effect for all the novel sites. CONCLUSIONS: Multiple APC-cleavage sites close to Arg306 and a single site close to Arg506 were identified. Protein S was equally efficient as APC cofactor for all novel sites. The stimulation by protein S of the Arg505 cleavage argues against a specific protein S-mediated stimulation of cleavage at Arg306 due to relocation of the APC active site closer to the membrane.


Assuntos
Fator Va/metabolismo , Proteína C/metabolismo , Processamento de Proteína Pós-Traducional , Proteína S/metabolismo , Sequência de Aminoácidos , Arginina , Fator Va/química , Fator Va/genética , Humanos , Cinética , Lisina , Mutagênese Sítio-Dirigida , Mutação , Fosfolipídeos/metabolismo , Proteína C/química , Proteína S/química , Relação Estrutura-Atividade , Especificidade por Substrato
16.
Thromb Haemost ; 101(1): 55-61, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19132189

RESUMO

The hypothesis that prothrombin (FII) protects coagulation factor Va (FVa) from proteolytic inactivation by activated protein C (APC) was tested using purified proteins. FII dose-dependently protected FVa from APC proteolysis under conditions where competition of proteins for binding to negatively-charged phospholipid surface was not relevant (i.e. either at high phospholipid vesicle concentrations or using soluble dicaproylphosphatidylserine at levels below its critical micellar concentration). Cleavages in FVa at both Arg(506) and Arg(306) by APC were inhibited by FII. FII did not alter the amidolytic activity of APC towards chromogenic oligopeptide substrates or inhibit FVIIIa inactivation by APC, implying that the FII-mediated protection of FVa from APC proteolysis was due to the ability of FII to inhibit protein-protein interactions between FVa and APC. FII also protected FVa from inactivation by Gla-domainless APC, ruling out a role for the APC Gla domain for these observations. To identify domains of FII responsible for the observed phenomenon, various forms or fragments of FII were employed. Biotin-Phe-ProArg-CMK-inhibited meizothrombin and fII-fragment 1*2 protected FVa from proteolysis by APC. In contrast, no significant protection of FVa from APC cleavage was observed for Gladomainless-FII, prethrombin-1, prethrombin-2, FII fragment 1 or active site inhibited-thrombin (DEGR-thrombin). Overall, these data demonstrate that the Gla domain of FII linked to kringle 1 and 2 is necessary for the ability of FII to protect FVa from APC cleavage and support the general concept that assembly of the FII activation complex (FXa*FVa*FII*lipid surface) protects FVa from APC inactivation so that the procoagulant, thrombin generating pathway can act unhindered by APC. Only following FII activation and dissociation of the FII Gla domain fragments from the FII-ase complex, can APC inactivate FVa and down-regulate thrombin generation.


Assuntos
Coagulação Sanguínea , Fator Va/metabolismo , Proteína C/metabolismo , Protrombina/metabolismo , Animais , Ligação Competitiva , Precursores Enzimáticos/metabolismo , Fator VIIIa/metabolismo , Fator Va/genética , Fator Xa/metabolismo , Humanos , Kringles , Mutação , Fragmentos de Peptídeos/metabolismo , Fosfolipídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Trombina/metabolismo , Fatores de Tempo
17.
Biochemistry ; 47(48): 12835-43, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-18991406

RESUMO

The prothrombinase complex catalyzes the activation of prothrombin to alpha-thrombin. We have repetitively shown that amino acid region (695)DYDY(698) from the COOH terminus of the heavy chain of factor Va regulates the rate of cleavage of prothrombin at Arg(271) by prothrombinase. We have also recently demonstrated that amino acid region (334)DY(335) is required for the optimal activity of prothrombinase. To assess the effect of these six amino acid residues on cofactor activity, we created recombinant factor Va molecules combining mutations at amino acid regions 334-335 and 695-698 as follows: factor V(3K) ((334)DY(335) --> KF and (695)DYDY(698) --> KFKF), factor V(KF/4A) ((334)DY(335) --> KF and (695)DYDY(698) --> AAAA), and factor V(6A) ((334)DY(335) --> AA and (695)DYDY(698) --> AAAA). The recombinant factor V molecules were expressed and purified to homogeneity. Factor Va(3K), factor Va(K4/4A), and factor Va(6A) had reduced affinity for factor Xa, when compared to the affinity of the wild-type molecule (factor Va(Wt)) for the enzyme. Prothrombinase assembled with saturating concentrations of factor Va(3K) had a 6-fold reduced second-order rate constant for prothrombin activation compared to the value obtained with prothrombinase assembled with factor Va(Wt), while prothrombinase assembled with saturating concentrations of factor Va(KF/4A) and factor Va(6A) had approximately 1.5-fold reduced second-order rate constants. Overall, the data demonstrate that amino acid region 334-335 together with amino acid region 695-698 from factor Va heavy chain are part of a cooperative mechanism within prothrombinase regulating cleavage and activation of prothrombin by factor Xa.


Assuntos
Aminoácidos/metabolismo , Fator Va/química , Fator Va/metabolismo , Fator Xa/metabolismo , Tromboplastina/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Fator Va/genética , Regulação da Expressão Gênica , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
18.
J Biol Chem ; 283(45): 30531-9, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-18779332

RESUMO

Activated protein C (APC) plays a critical anticoagulant role in vivo by inactivating procoagulant factor Va and factor VIIIa and thus down-regulating thrombin generation. In addition, APC bound to the endothelial cell protein C receptor can initiate protease-activated receptor-1 (PAR-1)-mediated cytoprotective signaling. Protein S constitutes a critical cofactor for the anticoagulant function of APC but is not known to be involved in regulating APC-mediated protective PAR-1 signaling. In this study we utilized a site-directed mutagenesis strategy to characterize a putative protein S binding region within the APC Gla domain. Three single amino acid substitutions within the APC Gla domain (D35T, D36A, and A39V) were found to mildly impair protein S-dependent anticoagulant activity (<2-fold) but retained entirely normal cytoprotective activity. However, a single amino acid substitution (L38D) ablated the ability of protein S to function as a cofactor for this APC variant. Consequently, in assays of protein S-dependent factor Va proteolysis using purified proteins or in the plasma milieu, APC-L38D variant exhibited minimal residual anticoagulant activity compared with wild type APC. Despite the location of Leu-38 in the Gla domain, APC-L38D interacted normally with endothelial cell protein C receptor and retained its ability to trigger PAR-1 mediated cytoprotective signaling in a manner indistinguishable from that of wild type APC. Consequently, elimination of protein S cofactor enhancement of APC anticoagulant function represents a novel and effective strategy by which to separate the anticoagulant and cytoprotective functions of APC for potential therapeutic gain.


Assuntos
Coenzimas/metabolismo , Células Endoteliais/metabolismo , Proteína C/metabolismo , Proteína S/metabolismo , Receptor PAR-1/metabolismo , Transdução de Sinais/fisiologia , Substituição de Aminoácidos , Antígenos CD/genética , Antígenos CD/metabolismo , Sítios de Ligação/genética , Linhagem Celular , Coenzimas/genética , Células Endoteliais/citologia , Receptor de Proteína C Endotelial , Fator VIIIa/genética , Fator VIIIa/metabolismo , Fator Va/genética , Fator Va/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Mapeamento de Peptídeos/métodos , Proteína C/genética , Proteína S/genética , Receptor PAR-1/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
19.
Biochemistry ; 47(30): 7963-74, 2008 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-18590276

RESUMO

Prothrombinase activates prothrombin through initial cleavage at Arg(320) followed by cleavage at Arg(271). This pathway is characterized by the generation of an enzymatically active, transient intermediate, meizothrombin, that has increased chromogenic substrate activity but poor clotting activity. The heavy chain of factor Va contains an acidic region at the COOH terminus (residues 680-709). We have shown that a pentapeptide from this region (DYDYQ) inhibits prothrombin activation by prothrombinase by inhibiting meizothrombin generation. To ascertain the function of these regions, we have created a mutant recombinant factor V molecule that is missing the last 30 amino acids from the heavy chain (factor V(Delta680-709)) and a mutant molecule with the (695)DYDY (698) --> AAAA substitutions (factor V(4A)). The clotting activities of both recombinant mutant factor Va molecules were impaired compared to the clotting activity of wild-type factor Va (factor Va (Wt)). Using an assay employing purified reagents, we found that prothrombinase assembled with factor Va(Delta680-709) displayed an approximately 39% increase in k cat, while prothrombinase assembled with factor Va(4A) exhibited an approximately 20% increase in k cat for the activation of prothrombin as compared to prothrombinase assembled with factor Va(Wt). Gel electrophoresis analyzing prothrombin activation by prothrombinase assembled with the mutant molecules revealed a delay in prothrombin activation with persistence of meizothrombin. Our data demonstrate that the COOH-terminal region of factor Va heavy chain is indeed crucial for coordinated prothrombin activation by prothrombinase because it regulates meizothrombin cleavage at Arg(271) and suggest that this portion of factor Va is partially responsible for the enhanced procoagulant function of prothrombinase.


Assuntos
Fator Va/metabolismo , Oligopeptídeos/metabolismo , Tromboplastina/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Células COS , Chlorocebus aethiops , Eletroforese em Gel de Poliacrilamida , Precursores Enzimáticos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fator V/química , Fator V/genética , Fator V/metabolismo , Fator Va/química , Fator Va/genética , Hirudinas/química , Hirudinas/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Mutação , Oligopeptídeos/química , Reação em Cadeia da Polimerase , Protrombina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Trombina/química , Trombina/metabolismo
20.
J Biol Chem ; 283(33): 22573-81, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18519572

RESUMO

Inactivation of factor Va (FVa) by activated protein C (APC) is a key reaction in the down-regulation of thrombin formation. FVa inactivation by APC is correlated with a loss of FXa cofactor activity as a result of three proteolytic cleavages in the FVa heavy chain at Arg306, Arg506, and Arg679. Recently, we have shown that heparin specifically inhibits the APC-mediated cleavage at Arg506 and stimulates cleavage at Arg306. Three-dimensional molecular models of APC docked at the Arg306 and Arg506 cleavage sites in FVa have identified several FVa amino acids that may be important for FVa inactivation by APC in the absence and presence of heparin. Mutagenesis of Lys320, Arg321, and Arg400 to Ala resulted in an increased inactivation rate by APC at Arg306, which indicates the importance of these residues in the FVa-APC interaction. No heparin-mediated stimulation of Arg306 cleavage was observed for these mutants, and stimulation by protein S was similar to that of wild type FVa. With this, we have now demonstrated that a cluster of basic residues in FVa comprising Lys320, Arg321, and Arg400 is required for the heparin-mediated stimulation of cleavage at Arg306 by APC. Furthermore, mutations that were introduced near the Arg506 cleavage site had a significant but modest effect on the rate of APC-catalyzed FVa inactivation, suggesting an extended interaction surface between the FVa Arg506 site and APC.


Assuntos
Epitopos/análise , Fator Va/imunologia , Fator Va/metabolismo , Heparina/metabolismo , Proteína C/metabolismo , Substituição de Aminoácidos , DNA Complementar/genética , Fator Va/genética , Regulação da Expressão Gênica , Variação Genética , Humanos , Proteína S/metabolismo , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Trombina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...