Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(20): e2321711121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38713624

RESUMO

During development, neural stem cells in the cerebral cortex, also known as radial glial cells (RGCs), generate excitatory neurons, followed by production of cortical macroglia and inhibitory neurons that migrate to the olfactory bulb (OB). Understanding the mechanisms for this lineage switch is fundamental for unraveling how proper numbers of diverse neuronal and glial cell types are controlled. We and others recently showed that Sonic Hedgehog (Shh) signaling promotes the cortical RGC lineage switch to generate cortical oligodendrocytes and OB interneurons. During this process, cortical RGCs generate intermediate progenitor cells that express critical gliogenesis genes Ascl1, Egfr, and Olig2. The increased Ascl1 expression and appearance of Egfr+ and Olig2+ cortical progenitors are concurrent with the switch from excitatory neurogenesis to gliogenesis and OB interneuron neurogenesis in the cortex. While Shh signaling promotes Olig2 expression in the developing spinal cord, the exact mechanism for this transcriptional regulation is not known. Furthermore, the transcriptional regulation of Olig2 and Egfr has not been explored. Here, we show that in cortical progenitor cells, multiple regulatory programs, including Pax6 and Gli3, prevent precocious expression of Olig2, a gene essential for production of cortical oligodendrocytes and astrocytes. We identify multiple enhancers that control Olig2 expression in cortical progenitors and show that the mechanisms for regulating Olig2 expression are conserved between the mouse and human. Our study reveals evolutionarily conserved regulatory logic controlling the lineage switch of cortical neural stem cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Córtex Cerebral , Receptores ErbB , Proteínas Hedgehog , Proteínas do Tecido Nervoso , Células-Tronco Neurais , Neurogênese , Fator de Transcrição 2 de Oligodendrócitos , Fator de Transcrição PAX6 , Animais , Neurogênese/fisiologia , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Camundongos , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Fator de Transcrição PAX6/metabolismo , Fator de Transcrição PAX6/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Proteínas do Olho/metabolismo , Proteínas do Olho/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição Box Pareados/metabolismo , Fatores de Transcrição Box Pareados/genética , Neuroglia/metabolismo , Neuroglia/citologia , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais , Bulbo Olfatório/metabolismo , Bulbo Olfatório/citologia , Linhagem da Célula , Humanos
2.
Mol Biol Rep ; 51(1): 115, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227267

RESUMO

BACKGROUND: Recent studies have shown that the expression of bHLH transcription factors Hes1, Ascl1, and Oligo2 has an oscillating balance in neural stem cells (NSCs) to maintain their self-proliferation and multi-directional differentiation potential. This balance can be disrupted by exogenous stimulation. Our previous work has identified that electrical stimulation could induce neuronal differentiation of mouse NSCs. METHODS: To further evaluate if physiological electric fields (EFs)-induced neuronal differentiation is related to the expression patterns of bHLH transcription factors Hes1, Ascl1, and Oligo2, mouse embryonic brain NSCs were used to investigate the expression changes of Ascl1, Hes1 and Oligo2 in mRNA and protein levels during EF-induced neuronal differentiation. RESULTS: Our results showed that NSCs expressed high level of Hes1, while expression of Ascl1 and Oligo2 stayed at very low levels. When NSCs exited proliferation, the expression of Hes1 in differentiated cells began to decrease and oscillated at the low expression level. Oligo2 showed irregular changes in low expression level. EF-stimulation significantly increased the expression of Ascl1 at mRNA and protein levels accompanied by an increased percentage of neuronal differentiation. What's more, over-expression of Hes1 inhibited the neuronal differentiation induced by EFs. CONCLUSION: EF-stimulation directed neuronal differentiation of NSCs by promoting the continuous accumulation of Ascl1 expression and decreasing the expression of Hes1.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Encéfalo , Fator de Transcrição 2 de Oligodendrócitos , Fatores de Transcrição HES-1 , Animais , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Estimulação Elétrica , RNA Mensageiro/genética , Fatores de Transcrição HES-1/genética , Fator de Transcrição 2 de Oligodendrócitos/genética
3.
Clinics (Sao Paulo) ; 78: 100120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37001387

RESUMO

OBJECTIVES: The incidence of cerebellar Glioblastoma Multiforme (cGBM) is rare. Database like TCGA have not distinguish cGBM from GBM, our knowledge on cGBM gene expression characteristics is limited. The expression status of Oligodendrocyte Lineage Transcription factor 2 (OLIG2) and its clinical significance in cGBM is still unclear. METHODS: The clinical data and tissue specimens of 73 cGBM patients were retrospectively studied. The association between OLIG2 expression level and the demographic characteristics of cGBM patients was identified by the Chi-Square test. The survival curves were drawn by Kaplan-Meier analysis. The independent prognostic factors was calculated according to Cox regression analysis. RESULTS: The OLIG2 high expression was observed in about 57.5% (42/73) of the cGBM patients. Patients with high OLIG2 expression levels had a higher alive ratio at the end of follow-up (alive ratio: 70.6% vs. 29.4%, p = 0.04). The median survival time was 21 months and 13 months for high and low expression of OLIG2 (p < 0 .05). Univariate analysis and Multivariate analysis indicated that EOR (HR = 3.89, 95% CI 1.23‒12.26, p = 0.02), low OLIG2 expression (HR = 5.26, 95% CI 1.13‒24.59, p = 0.04), and without adjuvant therapy (HR = 4.95, 95% CI 1.22‒20.00, p = 0.03) were independent risk factors for the OS of cGBM patients. CONCLUSION: High expression level of OLIG2 could be used as an independent favorable prognosis indicator in cGBM patients and be recognized as a characteristic biomarker of cGBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Prognóstico , Estudos Retrospectivos , Estimativa de Kaplan-Meier , Terapia Combinada , Fator de Transcrição 2 de Oligodendrócitos/genética
4.
Eur J Neurosci ; 57(1): 5-16, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370145

RESUMO

In the present study, we examined neural circuit formation in the forebrain of the Olig2 knockout (Olig2-KO) mouse model and found disruption of the anterior commissure at the late foetal stage. Axon bundles of the anterior commissure encountered the wall of the third ventricle and ceased axonal extension. L1-CAM immunohistochemistry showed that Olig2-KO mice lose decussation formation in the basal forebrain. DiI tracing revealed that the thin bundles of the anterior commissure axons crossed the midline but ceased further extension into the deep part of the contralateral side. Furthermore, some fractions of DiI-labelled axons were oriented dorsolaterally, which was not observed in the control mouse forebrain. The rostral part of the third ventricle was much wider in the Olig2-KO mice than in wild-type mice, which likely resulted in the delay of midline fusion and subsequent delay and malformation of the anterior commissure. We analysed gene expression alterations in the Olig2-KO mice using a public database and found multiple genes, which are related to axon guidance and epithelial-mesenchymal transition, showing subtle expression changes. These results suggest that Olig2 is essential for anterior commissure formation, likely by regulating multiple biological processes.


Assuntos
Axônios , Prosencéfalo , Animais , Camundongos , Prosencéfalo/metabolismo , Axônios/fisiologia , Camundongos Knockout , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo
5.
J Neurochem ; 165(3): 303-317, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36547371

RESUMO

Cells possess intrinsic features that are inheritable via epigenetic regulation, such as DNA methylation and histone modification. These inheritable features maintain a unique gene expression pattern, underlying cellular memory. Because of the degradation or displacement of mitotic chromosomes, most transcription factors do not contribute to cellular memory. However, accumulating in vitro evidence indicates that some transcription factors can be retained in mitotic chromosomes called as bookmarking. Such transcription factors may contribute to a novel third mechanism of cellular memory. Since most findings of transcription factor bookmarking have been reported in vitro, little is currently known in vivo. In the neural tube of mouse embryos, we discovered that OLIG2, a basic helix loop helix (bHLH) transcription factor that regulates proliferation of neural progenitors and the cell fate of motoneurons and oligodendrocytes, binds to chromatin through every cell cycle including M-phase. OLIG2 chromosomal localization coincides with mitotic cell features such as the phosphorylation of histone H3, KI67, and nuclear membrane breakdown. Chromosomal localization of OLIG2 is regulated by an N-terminus triple serine motif. Photobleaching analysis revealed slow OLIG2 mobility, suggesting a high affinity of OLIG2 to DNA. In Olig2 N-terminal deletion mutant mice, motoneurons and oligodendrocyte progenitor numbers are reduced in the neural tube, suggesting that the bookmarking regulatory domain is important for OLIG2 function. We conclude that OLIG2 is a de novo in vivo bookmarking transcription factor. Our results demonstrate the presence of in vivo bookmarking in a living organism and illustrate a novel function of transcription factors.


Assuntos
Epigênese Genética , Fatores de Transcrição , Camundongos , Animais , Fatores de Transcrição/genética , Tubo Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Oligodendroglia/metabolismo
6.
Commun Biol ; 5(1): 1095, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241911

RESUMO

Transcription factors (TFs) have been introduced to drive the highly efficient differentiation of human-induced pluripotent stem cells (hiPSCs) into lineage-specific oligodendrocytes (OLs). However, effective strategies currently rely mainly on genome-integrating viruses. Here we show that a synthetic modified messenger RNA (smRNA)-based reprogramming method that leads to the generation of transgene-free OLs has been developed. An smRNA encoding a modified form of OLIG2, in which the serine 147 phosphorylation site is replaced with alanine, OLIG2S147A, is designed to reprogram hiPSCs into OLs. We demonstrate that repeated administration of the smRNA encoding OLIG2 S147A lead to higher and more stable protein expression. Using the single-mutant OLIG2 smRNA morphogen, we establish a 6-day smRNA transfection protocol, and glial induction lead to rapid NG2+ OL progenitor cell (OPC) generation (>70% purity) from hiPSC. The smRNA-induced NG2+ OPCs can mature into functional OLs in vitro and promote remyelination in vivo. Taken together, we present a safe and efficient smRNA-driven strategy for hiPSC differentiation into OLs, which may be utilized for therapeutic OPC/OL transplantation in patients with neurodegenerative disease.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Alanina , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças Neurodegenerativas/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/farmacologia , Oligodendroglia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serina/metabolismo , Fatores de Transcrição/metabolismo
7.
J Neurosci ; 42(45): 8542-8555, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36198499

RESUMO

The oligodendrocyte (OL) lineage transcription factor Olig2 is expressed throughout oligodendroglial development and is essential for oligodendroglial progenitor specification and differentiation. It was previously reported that deletion of Olig2 enhanced the maturation and myelination of immature OLs and accelerated the remyelination process. However, by analyzing multiple Olig2 conditional KO mouse lines (male and female), we conclude that Olig2 has the opposite effect and is required for OL maturation and remyelination. We found that deletion of Olig2 in immature OLs driven by an immature OL-expressing Plp1 promoter resulted in defects in OL maturation and myelination, and did not enhance remyelination after demyelination. Similarly, Olig2 deletion during premyelinating stages in immature OLs using Mobp or Mog promoter-driven Cre lines also did not enhance OL maturation in the CNS. Further, we found that Olig2 was not required for myelin maintenance in mature OLs but was critical for remyelination after lysolecithin-induced demyelinating injury. Analysis of genomic occupancy in immature and mature OLs revealed that Olig2 targets the enhancers of key myelination-related genes for OL maturation from immature OLs. Together, by leveraging multiple immature OL-expressing Cre lines, these studies indicate that Olig2 is essential for differentiation and myelination of immature OLs and myelin repair. Our findings raise fundamental questions about the previously proposed role of Olig2 in opposing OL myelination and highlight the importance of using Cre-dependent reporter(s) for lineage tracing in studying cell state progression.SIGNIFICANCE STATEMENT Identification of the regulators that promote oligodendrocyte (OL) myelination and remyelination is important for promoting myelin repair in devastating demyelinating diseases. Olig2 is expressed throughout OL lineage development. Ablation of Olig2 was reported to induce maturation, myelination, and remyelination from immature OLs. However, lineage-mapping analysis of Olig2-ablated cells was not conducted. Here, by leveraging multiple immature OL-expressing Cre lines, we observed no evidence that Olig2 ablation promotes maturation or remyelination of immature OLs. Instead, we find that Olig2 is required for immature OL maturation, myelination, and myelin repair. These data raise fundamental questions about the proposed inhibitory role of Olig2 against OL maturation and remyelination. Our findings highlight the importance of validating genetic manipulation with cell lineage tracing in studying myelination.


Assuntos
Doenças Desmielinizantes , Remielinização , Animais , Feminino , Masculino , Camundongos , Diferenciação Celular , Doenças Desmielinizantes/metabolismo , Bainha de Mielina/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Camundongos Knockout
8.
Nagoya J Med Sci ; 84(2): 260-268, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35967956

RESUMO

A number of genomic mutations that are thought to be strongly involved in the development of schizophrenia (SCZ) and autism spectrum disorder (ASD) have been identified. Abnormalities involving oligodendrocytes have been reported in SCZ, and as a related gene, oligodendrocyte lineage transcription factor 2 (OLIG2) has been reported to be strongly associated with SCZ. In this study, based on the common disease-rare variant hypothesis, target sequencing of candidate genes was performed to identify rare mutations with a high effect size and the possibility that the identified mutations may increase the risks of SCZ and ASD in the Japanese population. In this study, the exon region of OLIG2 was targeted; 370 patients with SCZ and 192 with ASD were subjected to next-generation sequencing. As a result, one rare missense mutation (A33T) was detected. We used the Sanger method to validate this missense mutation with a low frequency (<1%), and then carried out a genetic association analysis involving 3299 unrelated individuals (1447 with SCZ, 380 with ASD, and 1472 healthy controls) to clarify whether A33T was associated with SCZ or ASD. A33T was not found in either case group, and in only one control. We did not find evidence that p.A33T is involved in the onset of ASD or SCZ; however, associations with this variant need to be evaluated in larger samples to confirm our results.


Assuntos
Transtorno do Espectro Autista , Fator de Transcrição 2 de Oligodendrócitos , Esquizofrenia , Transtorno do Espectro Autista/genética , Humanos , Mutação , Mutação de Sentido Incorreto/genética , Fator de Transcrição 2 de Oligodendrócitos/genética , Esquizofrenia/genética
9.
J Neuropathol Exp Neurol ; 81(9): 707-716, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35856894

RESUMO

Isocitrate dehydrogenase (IDH) mutant gliomas are associated with a better prognosis in comparison to adult IDH wild-type glioma and glioma-CpG island methylator phenotypes. Although OLIG2 is mainly expressed in oligodendrocytes in normal adult brain, it is expressed in both astrocytomas and oligodendrogliomas. Utilizing the clinical, DNA methylation, and RNA-sequencing data from the Cancer Genome Atlas (TCGA) for lower-grade glioma and glioblastoma cohorts, we explored the association between IDH mutation status and OLIG2 expression on transcription, DNA methylation, and gene target levels. Compared to IDH wild-type gliomas, IDH mutant gliomas showed consistently higher expression of OLIG2 transcripts. OLIG2 overexpression is a good surrogate marker for IDH mutation with an AUC of 0.90. At the DNA methylation level, IDH-mutant gliomas showed hyper- and hypomethylation foci upstream of the OLIG2 transcription start site. Underexpressed OLIG2 target genes in IDH mutant glioma were enriched in cell cycle-related pathways. Thus, the differential expression of OLIG2 between IDH mutant and wild-type gliomas reflects involvement in multiple pathways in tumorigenesis.


Assuntos
Neoplasias Encefálicas , Glioma , Isocitrato Desidrogenase/genética , Fator de Transcrição 2 de Oligodendrócitos/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Metilação de DNA/genética , Glioma/genética , Glioma/metabolismo , Humanos , Isocitrato Desidrogenase/metabolismo , Mutação/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo
10.
Clin Cancer Res ; 28(19): 4278-4291, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35736214

RESUMO

PURPOSE: Patients with MYC-amplified medulloblastoma (MB) have poor prognosis and frequently develop recurrence, thus new therapeutic approaches to prevent recurrence are needed. EXPERIMENTAL DESIGN: We evaluated OLIG2 expression in a panel of mouse Myc-driven MB tumors, patient MB samples, and patient-derived xenograft (PDX) tumors and analyzed radiation sensitivity in OLIG2-high and OLIG2-low tumors in PDX lines. We assessed the effect of inhibition of OLIG2 by OLIG2-CRISPR or the small molecule inhibitor CT-179 combined with radiotherapy on tumor progression in PDX models. RESULTS: We found that MYC-associated MB can be stratified into OLIG2-high and OLIG2-low tumors based on OLIG2 protein expression. In MYC-amplified MB PDX models, OLIG2-low tumors were sensitive to radiation and rarely relapsed, whereas OLIG2-high tumors were resistant to radiation and consistently developed recurrence. In OLIG2-high tumors, irradiation eliminated the bulk of tumor cells; however, a small number of tumor cells comprising OLIG2- tumor cells and rare OLIG2+ tumor cells remained in the cerebellar tumor bed when examined immediately post-irradiation. All animals harboring residual-resistant tumor cells developed relapse. The relapsed tumors mirrored the cellular composition of the primary tumors with enriched OLIG2 expression. Further studies demonstrated that OLIG2 was essential for recurrence, as OLIG2 disruption with CRISPR-mediated deletion or with the small molecule inhibitor CT-179 prevented recurrence from the residual radioresistant tumor cells. CONCLUSIONS: Our studies reveal that OLIG2 is a biomarker and an effective therapeutic target in a high-risk subset of MYC-amplified MB, and OLIG2 inhibitor combined with radiotherapy represents a novel effective approach for treating this devastating disease.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Animais , Biomarcadores , Linhagem Celular Tumoral , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Modelos Animais de Doenças , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/radioterapia , Camundongos , Recidiva Local de Neoplasia/genética , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/uso terapêutico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
11.
Nat Commun ; 13(1): 1423, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301318

RESUMO

OLIG2 is a transcription factor that activates the expression of myelin-associated genes in the oligodendrocyte-lineage cells. However, the mechanisms of myelin gene inactivation are unclear. Here, we uncover a non-canonical function of OLIG2 in transcriptional repression to modulate myelinogenesis by functionally interacting with tri-methyltransferase SETDB1. Immunoprecipitation and chromatin-immunoprecipitation assays show that OLIG2 recruits SETDB1 for H3K9me3 modification on the Sox11 gene, which leads to the inhibition of Sox11 expression during the differentiation of oligodendrocytes progenitor cells (OPCs) into immature oligodendrocytes (iOLs). Tissue-specific depletion of Setdb1 in mice results in the hypomyelination during development and remyelination defects in the injured rodents. Knockdown of Sox11 by siRNA in rat primary OPCs or depletion of Sox11 in the oligodendrocyte lineage in mice could rescue the hypomyelination phenotype caused by the loss of OLIG2. In summary, our work demonstrates that the OLIG2-SETDB1 complex can mediate transcriptional repression in OPCs, affecting myelination.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Roedores , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Camundongos , Bainha de Mielina/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Oligodendroglia/metabolismo , Ratos
12.
Development ; 149(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35132995

RESUMO

Distinct neural stem cells (NSCs) reside in different regions of the subventricular zone (SVZ) and generate multiple olfactory bulb (OB) interneuron subtypes in the adult brain. However, the molecular mechanisms underlying such NSC heterogeneity remain largely unknown. Here, we show that the basic helix-loop-helix transcription factor Olig2 defines a subset of NSCs in the early postnatal and adult SVZ. Olig2-expressing NSCs exist broadly but are most enriched in the ventral SVZ along the dorsoventral axis complementary to dorsally enriched Gsx2-expressing NSCs. Comparisons of Olig2-expressing NSCs from early embryonic to adult stages using single cell transcriptomics reveal stepwise developmental changes in their cell cycle and metabolic properties. Genetic studies further show that cross-repression contributes to the mutually exclusive expression of Olig2 and Gsx2 in NSCs/progenitors during embryogenesis, but that their expression is regulated independently from each other in adult NSCs. Finally, lineage-tracing and conditional inactivation studies demonstrate that Olig2 plays an important role in the specification of OB interneuron subtypes. Altogether, our study demonstrates that Olig2 defines a unique subset of adult NSCs enriched in the ventral aspect of the adult SVZ.


Assuntos
Interneurônios/metabolismo , Ventrículos Laterais/crescimento & desenvolvimento , Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , Bulbo Olfatório/crescimento & desenvolvimento , Bulbo Olfatório/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Animais , Ciclo Celular/genética , Linhagem da Célula/genética , Células Cultivadas , Feminino , Técnicas de Inativação de Genes , Ventrículos Laterais/embriologia , Masculino , Camundongos , Camundongos Knockout , Neurogênese/genética , Bulbo Olfatório/embriologia , Fator de Transcrição 2 de Oligodendrócitos/genética , Transdução de Sinais/genética , Transcriptoma/genética
13.
J Mol Neurosci ; 72(5): 939-946, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35132566

RESUMO

Gliomas are common tumors that occur in the brain, accounting for 80% of all malignant brain tumors. Oligodendrocyte transcription factor 2 (OLIG2) is a key transcription factor and strongly expressed in gliomas, which drives proliferation and invasion of glioma cells. Our previous studies have shown that histone lysine (K) demethylase 6B (KDM6B) promotes glioma development. The data also showed that OLIG2 content was positively correlated with KDM6B. Based on this, we proposed that KDM6B may play biological roles by regulating OLIG2 expression. Subsequently, many experiments were performed including specific inhibitor treatment, gene knockdown, and chromatin immunoprecipitation (ChIP) array. These results indicated that inhibition of KDM6B enzymatic activity with GSK-J4 reduces OLIG2 gene expression and protein content. The KDM6B knockdown experiment yielded similar results, that is, it reduces the mRNA and protein level of OLIG2 in glioma cells. ChIP assay showed that the promoter of OLIG2 can be bound by KDM6B, which catalyzes the demethylation of H3K27me3 and increases the expression of OLIG2. This study reveals a new regulatory mechanism of OLIG2 by KDM6B, which has important implications for the future development of drugs for gliomas and other neurological diseases.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/genética , Epigênese Genética , Glioma/genética , Histona Desmetilases/genética , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Fator de Transcrição 2 de Oligodendrócitos/genética
14.
Can J Physiol Pharmacol ; 100(2): 107-116, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34935529

RESUMO

Demyelination disorder is an unusual pathologic event, which occurs in the central nervous system (CNS). Multiple sclerosis (MS) is an inflammatory demyelinating disease that affects the CNS, and it is the leading cause of disability in young adults. Lysolecithin (LPC) is one of the best toxin-induced demyelination models. In this study, a suitable model is created, and the effect of fluoxetine treatment is examined on this model. In this case, it was assumed that daily fluoxetine treatment had increased the endogenous remyelination in the LPC model. This study was focused on investigating the influence of the fluoxetine dose of 5 or 10 mg/kg per day for 1 and 4 weeks on LPC-induced neurotoxicity in the corpus callosum region. It was performed as a demyelinating model in male Wistar rats. After 3 days, fluoxetine was injected intraperitoneally (5 or 10 mg/kg per day) for 1 and 4 weeks in each group. After completing the treatment course, the corpus callosum was removed to examine the gene expression and histological analysis was performed. The results of the histopathological study of hematoxylin and eosin staining of the corpus callosum showed that in 1 and 4-week treatment groups, fluoxetine has reduced the level of inflammation at the LPC injection site (5 and 10 mg/kg per day). Fluoxetine treatment in the luxol fast blue (LFB) staining of the corpus callosum has been led to an increase in myelination capacity in all doses and times. The results of the genetic study showed that the fluoxetine has significantly reduced the expression level of tumor necrosis factor-α, nuclear factor κß, and induced nitric oxide synthase in comparison with the untreated LPC group. Also, the fluoxetine treatment has enhanced the expression level of the forkhead box P3 (FOXP3) gene in comparison with the untreated group. Fluoxetine has increased the expression level of myelination and neurotrophic genes such as myelin basic protein (MBP), oligodendrocyte transcription factor 2 (OLIG2), and brain-derived neurotrophic factor (BDNF). The outcomes demonstrated that fluoxetine reduces inflammation and strengthens the endogenous myelination in the LPC-induced demyelination model; however, supplementary studies are required for specifying the details of its mechanisms.


Assuntos
Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Modelos Animais de Doenças , Fluoxetina/uso terapêutico , Lisofosfatidilcolinas/efeitos adversos , Lisofosfatidilcolinas/toxicidade , Ratos Wistar , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Fluoxetina/administração & dosagem , Fluoxetina/farmacologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica/efeitos dos fármacos , Masculino , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
15.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34948016

RESUMO

Glioblastoma (GBM) remains the leading cause of cancer-related deaths with the lowest five-year survival rates among all of the human cancers. Multiple factors contribute to its poor outcome, including intratumor heterogeneity, along with migratory and invasive capacities of tumour cells. Over the last several years Doublecortin (DCX) has been one of the debatable factors influencing GBM cells' migration. To resolve DCX's ambiguous role in GBM cells' migration, we set to analyse the expression patterns of DCX along with Nestin (NES) and Oligodendrocyte lineage transcription factor 2 (OLIG2) in 17 cases of GBM, using immunohistochemistry, followed by an analysis of single-cell RNA-seq data. Our results showed that only a small subset of DCX positive (DCX+) cells was present in the tumour. Moreover, no particular pattern emerged when analysing DCX+ cells relative position to the tumour margin. By looking into single-cell RNA-seq data, the majority of DCX+ cells were classified as non-cancerous, with a small subset of cells that could be regarded as glioma stem cells. In conclusion, our findings support the notion that glioma cells express DCX; however, there is no clear evidence to prove that DCX participates in GBM cell migration.


Assuntos
Neoplasias Encefálicas/metabolismo , Proteína Duplacortina/metabolismo , Perfilação da Expressão Gênica/métodos , Glioblastoma/metabolismo , Nestina/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Neoplasias Encefálicas/genética , Movimento Celular , Proteína Duplacortina/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Heurística , Humanos , Processamento de Imagem Assistida por Computador , Microscopia Confocal , Metástase Neoplásica , Células-Tronco Neoplásicas/metabolismo , Nestina/genética , Fator de Transcrição 2 de Oligodendrócitos/genética , Análise de Sequência de RNA , Análise de Célula Única , Análise de Sobrevida
16.
Cell Rep ; 37(1): 109695, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610310

RESUMO

The function of poly(ADP-ribosyl) polymerase 1 (PARP1) in myelination and remyelination of the central nervous system (CNS) remains enigmatic. Here, we report that PARP1 is an intrinsic driver for oligodendroglial development and myelination. Genetic PARP1 depletion impairs the differentiation of oligodendrocyte progenitor cells (OPCs) into oligodendrocytes and impedes CNS myelination. Mechanistically, PARP1-mediated PARylation activity is not only necessary but also sufficient for OPC differentiation. At the molecular level, we identify the RNA-binding protein Myef2 as a PARylated target, which controls OPC differentiation through the PARylation-modulated derepression of myelin protein expression. Furthermore, PARP1's enzymatic activity is necessary for oligodendrocyte and myelin regeneration after demyelination. Together, our findings suggest that PARP1-mediated PARylation activity may be a potential therapeutic target for promoting OPC differentiation and remyelination in neurological disorders characterized by arrested OPC differentiation and remyelination failure such as multiple sclerosis.


Assuntos
Diferenciação Celular , Sistema Nervoso Central/metabolismo , Bainha de Mielina/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli ADP Ribosilação/fisiologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Sistema Nervoso Central/crescimento & desenvolvimento , Cuprizona/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Bainha de Mielina/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células Precursoras de Oligodendrócitos/citologia , Células Precursoras de Oligodendrócitos/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/deficiência , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Oligodendroglia/fisiologia , Poli(ADP-Ribose) Polimerase-1/deficiência , Poli(ADP-Ribose) Polimerase-1/genética , RNA/metabolismo , Remielinização/efeitos dos fármacos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
17.
J Transl Med ; 19(1): 404, 2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565408

RESUMO

BACKGROUND: The molecular profiling of glioblastoma (GBM) based on transcriptomic analysis could provide precise treatment and prognosis. However, current subtyping (classic, mesenchymal, neural, proneural) is time-consuming and cost-intensive hindering its clinical application. A simple and efficient method for classification was imperative. METHODS: In this study, to simplify GBM subtyping more efficiently, we applied a random forest algorithm to conduct 26 genes as a cluster featured with hub genes, OLIG2 and CD276. Functional enrichment analysis and Protein-protein interaction were performed using the genes in this gene cluster. The classification efficiency of the gene cluster was validated by WGCNA and LASSO algorithms, and tested in GSE84010 and Gravandeel's GBM datasets. RESULTS: The gene cluster (n = 26) could distinguish mesenchymal and proneural excellently (AUC = 0.92), which could be validated by multiple algorithms (WGCNA, LASSO) and datasets (GSE84010 and Gravandeel's GBM dataset). The gene cluster could be functionally enriched in DNA elements and T cell associated pathways. Additionally, five genes in the signature could predict the prognosis well (p = 0.0051 for training cohort, p = 0.065 for test cohort). CONCLUSIONS: Our study proved the accuracy and efficiency of random forest classifier for GBM subtyping, which could provide a convenient and efficient method for subtyping Proneural and Mesenchymal GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Antígenos B7 , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/diagnóstico , Glioblastoma/genética , Humanos , Família Multigênica , Fator de Transcrição 2 de Oligodendrócitos/genética , Prognóstico
18.
PLoS One ; 16(8): e0256207, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34403440

RESUMO

Thyroid hormones are messengers that bind to specific nuclear receptors and regulate a wide range of physiological processes in the early stages of vertebrate embryonic development, including neurodevelopment and myelogenesis. We here tested the effects of reduced T3 availability upon the myelination process by treating zebrafish embryos with low concentrations of iopanoic acid (IOP) to block T4 to T3 conversion. Black Gold II staining showed that T3 deficiency reduced the myelin density in the forebrain, midbrain, hindbrain and the spinal cord at 3 and 7 dpf. These observations were confirmed in 3 dpf mbp:egfp transgenic zebrafish, showing that the administration of IOP reduced the fluorescent signal in the brain. T3 rescue treatment restored brain myelination and reversed the changes in myelin-related gene expression induced by IOP exposure. NG2 immunostaining revealed that T3 deficiency reduced the amount of oligodendrocyte precursor cells in 3 dpf IOP-treated larvae. Altogether, the present results show that inhibition of T4 to T3 conversion results in hypomyelination, suggesting that THs are part of the key signaling molecules that control the timing of oligodendrocyte differentiation and myelin synthesis from very early stages of brain development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Larva/genética , Bainha de Mielina/genética , Tiroxina/deficiência , Tri-Iodotironina/deficiência , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Antígenos/genética , Antígenos/metabolismo , Embrião não Mamífero , Desenvolvimento Embrionário , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ácido Iopanoico/farmacologia , Larva/citologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Mesencéfalo/citologia , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/crescimento & desenvolvimento , Mesencéfalo/metabolismo , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Prosencéfalo/citologia , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/crescimento & desenvolvimento , Prosencéfalo/metabolismo , Proteoglicanas/genética , Proteoglicanas/metabolismo , Rombencéfalo/citologia , Rombencéfalo/efeitos dos fármacos , Rombencéfalo/crescimento & desenvolvimento , Rombencéfalo/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo , Tri-Iodotironina/farmacologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
Stem Cell Reports ; 16(8): 1968-1984, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34270934

RESUMO

Neural and oligodendrocyte precursor cells (NPCs and OPCs) in the subventricular zone (SVZ) of the brain contribute to oligodendrogenesis throughout life, in part due to direct regulation by chemokines. The role of the chemokine fractalkine is well established in microglia; however, the effect of fractalkine on SVZ precursor cells is unknown. We show that murine SVZ NPCs and OPCs express the fractalkine receptor (CX3CR1) and bind fractalkine. Exogenous fractalkine directly enhances OPC and oligodendrocyte genesis from SVZ NPCs in vitro. Infusion of fractalkine into the lateral ventricle of adult NPC lineage-tracing mice leads to increased newborn OPC and oligodendrocyte formation in vivo. We also show that OPCs secrete fractalkine and that inhibition of endogenous fractalkine signaling reduces oligodendrocyte formation in vitro. Finally, we show that fractalkine signaling regulates oligodendrogenesis in cerebellar slices ex vivo. In summary, we demonstrate a novel role for fractalkine signaling in regulating oligodendrocyte genesis from postnatal CNS precursor cells.


Assuntos
Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Ventrículos Laterais/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Transdução de Sinais , Animais , Receptor 1 de Quimiocina CX3C/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Quimiocina CX3CL1/farmacologia , Expressão Gênica/efeitos dos fármacos , Ventrículos Laterais/citologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Células Precursoras de Oligodendrócitos/citologia , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Oligodendroglia/citologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
20.
Histol Histopathol ; 36(6): 675-684, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34013967

RESUMO

OBJECTIVES: Neuronal damage is an important pathological mechanism in neonatal hypoxic-ischemic brain damage (HIBD). We found in our previous studies that oligodendrocyte transcription factor 2 (Olig2) downregulation was able to increase cell survival in the brain. However, the specific mechanism has yet to be clarified. METHODS: Sprague-Dawley rats aged 3 d were randomly divided into three groups: the normal control group, the Olig2-RNAi group, and the RNAi-negative control group. The normal control group received no treatment, the Olig2-RNAi group received the Olig2 RNAi adenovirus, and the RNAi-negative control group was given the control adenovirus after the completion of the HIBD model. Infarct lesions and their volumes were observed by triphenyltetrazolium chloride (TTC) staining 3 d after the completion of the adenovirus local injection. The condition of the tissue was characterized by hematoxylin-eosin staining 7 d after the model was established, and cell viability was determined by azure methylene blue staining. Subcellular damage was analyzed by transmission electron microscopy. Rotarod analysis was performed to detect moving behavior ability and an MWM assay was conducted to evaluate the memory. RESULTS: TTC staining showed a smaller brain injury area in the Olig2-RNAi group than in the RNAi-negative control group. Hematoxylin-eosin staining indicated the presence of severe cell injury in the hippocampal region after HIBD, which improved after Olig2 knockdown. Azure methylene blue staining and electron microscopy results suggested that the cells improved after Olig2 knockdown. The rats stayed longer on the rotating rod, and their latency in the water maze test was gradually shortened relative to that of the rats in the Olig2-RNAi negative control group. CONCLUSION: Olig2 knockdown can promote the repair of hypoxic-ischemic brain damage in newborn rats.


Assuntos
Hipóxia-Isquemia Encefálica , Neurônios , Fator de Transcrição 2 de Oligodendrócitos , Animais , Animais Recém-Nascidos , Encéfalo/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Córtex Cerebral/ultraestrutura , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/prevenção & controle , Neurônios/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Fármacos Neuroprotetores , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Interferência de RNA , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...