Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
PLoS One ; 15(11): e0242380, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33201916

RESUMO

Thyroid hormone (T3) inhibits thyrotropin-releasing hormone (TRH) synthesis in the hypothalamic paraventricular nucleus (PVN). Although the T3 receptor (TR) ß2 is known to mediate the negative regulation of the prepro-TRH gene, its molecular mechanism remains unknown. Our previous studies on the T3-dependent negative regulation of the thyrotropin ß subunit (TSHß) gene suggest that there is a tethering mechanism, whereby liganded TRß2 interferes with the function of the transcription factor, GATA2, a critical activator of the TSHß gene. Interestingly, the transcription factors Sim1 and Arnt2, the determinants of PVN differentiation in the hypothalamus, are reported to induce expression of TRß2 and GATA2 in cultured neuronal cells. Here, we confirmed the expression of the GATA2 protein in the TRH neuron of the rat PVN using immunohistochemistry with an anti-GATA2 antibody. According to an experimental study from transgenic mice, a region of the rat prepro-TRH promoter from nt. -547 to nt. +84 was able to mediate its expression in the PVN. We constructed a chloramphenicol acetyltransferase (CAT) reporter gene containing this promoter sequence (rTRH(547)-CAT) and showed that GATA2 activated the promoter in monkey kidney-derived CV1 cells. Deletion and mutation analyses identified a functional GATA-responsive element (GATA-RE) between nt. -357 and nt. -352. When TRß2 was co-expressed, T3 reduced GATA2-dependent promoter activity to approximately 30%. Unexpectedly, T3-dependent negative regulation was maintained after mutation of the reported negative T3-responsive element, site 4. T3 also inhibited the GATA2-dependent transcription enhanced by cAMP agonist, 8-bromo-cAMP. A rat thyroid medullary carcinoma cell line, CA77, is known to express the preproTRH mRNA. Using a chromatin immunoprecipitation assay with this cell line where GATA2 expression plasmid was transfected, we observed the recognition of the GATA-RE by GATA2. We also confirmed GATA2 binding using gel shift assay with the probe for the GATA-RE. In CA77 cells, the activity of rTRH(547)-CAT was potentiated by overexpression of GATA2, and it was inhibited in a T3-dependent manner. These results suggest that GATA2 transactivates the rat prepro-TRH gene and that liganded TRß2 interferes with this activation via a tethering mechanism as in the case of the TSHß gene.


Assuntos
Fator de Transcrição GATA2/metabolismo , Receptores beta dos Hormônios Tireóideos/metabolismo , Hormônio Liberador de Tireotropina/metabolismo , Animais , Linhagem Celular , Fator de Transcrição GATA2/fisiologia , Regulação da Expressão Gênica/genética , Genes Reporter/genética , Ligantes , Masculino , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Regiões Promotoras Genéticas/genética , Precursores de Proteínas , Ratos , Ratos Wistar , Receptores dos Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Hormônios Tireóideos , Tireotropina Subunidade beta/metabolismo , Hormônio Liberador de Tireotropina/genética , Fatores de Transcrição , Ativação Transcricional , Tri-Iodotironina/metabolismo
3.
Genes Cells ; 25(9): 607-614, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32562431

RESUMO

Catecholamine synthesized in the sympathoadrenal system, including sympathetic neurons and adrenal chromaffin cells, is vital for cardiovascular homeostasis. It has been reported that GATA2, a zinc finger transcription factor, is expressed in murine sympathoadrenal progenitor cells. However, a physiological role for GATA2 in adrenal chromaffin cells has not been established. In this study, we demonstrate that GATA2 is specifically expressed in adrenal chromaffin cells. We examined the consequences of Gata2 loss-of-function mutations, exploiting a Gata2 conditional knockout allele crossed to neural crest-specific Wnt1-Cre transgenic mice (Gata2 NC-CKO). The vast majority of Gata2 NC-CKO embryos died by embryonic day 14.5 (e14.5) and exhibited a decrease in catecholamine-producing adrenal chromaffin cells, implying that a potential catecholamine defect might lead to the observed embryonic lethality. When intercrossed pregnant dams were fed with synthetic adrenaline analogs, the lethality of the Gata2 NC-CKO embryos was partially rescued, indicating that placental transfer of the adrenaline analogs complements the lethal catecholamine deficiency in the Gata2 NC-CKO embryos. These results demonstrate that GATA2 participates in the development of neuroendocrine adrenaline biosynthesis, which is essential for fetal survival.


Assuntos
Células Cromafins/metabolismo , Fator de Transcrição GATA2/fisiologia , Glândulas Suprarrenais/anatomia & histologia , Medula Suprarrenal/metabolismo , Animais , Epinefrina/fisiologia , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Genes Letais , Camundongos , Camundongos Transgênicos , Crista Neural
4.
Mol Immunol ; 123: 32-39, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32413787

RESUMO

At present, most studies on the relationship between hepatitis B virus (HBV) and IL-33/ST2 axis focus on clinical detection, but the underlying molecular mechanisms of HBx and IL-33/ST2 axis regulation and Th cell function regulation have not been explored. In this study, serum samples of patients with chronic hepatitis B (CHB) and HBV-related liver cancer (HBV-HCC), and healthy controls, as well as the supernatant solutions of HL7702-WT, HL7702-NC, and HL7702-HBx cells were collected to detect the content of soluble ST2 (sST2). The contents of Th1 cytokines (TNF-α and TNF-γ) and Th2 cytokines (IL-6 and IL-10) in the supernatant of different co-culture groups were detected. The effects of GATA2 on ST2 promoter transcription were investigated by upregulation or interference with GATA2 expression, dual-luciferase reporting, and ChIP experiments. The combined detection of sST2 and FIB-4 was beneficial to the non-invasive diagnosis of liver fibrosis. HBx promotes sST2 expression in liver cells, upregulates Th2 cell function, and inhibits Th1 cell function through IL-33/ST2 axis. HBx interacts with GATA2 to influence the activity of ST2 promoter. Serum sST2 detection is an invaluable indicator for the assessment of the progress of HBV infectious diseases, and the IL-33/ST2 axis plays an important role in changing the cellular immune function caused by HBV infection.


Assuntos
Fator de Transcrição GATA2/fisiologia , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Transativadores/farmacologia , Adulto , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Estudos de Casos e Controles , Células Cultivadas , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Vírus da Hepatite B/fisiologia , Hepatite B Crônica/complicações , Hepatite B Crônica/genética , Hepatite B Crônica/patologia , Humanos , Interleucina-33/fisiologia , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Cirrose Hepática/virologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Masculino , Pessoa de Meia-Idade , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Proteínas Virais Reguladoras e Acessórias
5.
Stem Cell Reports ; 13(1): 31-47, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31178416

RESUMO

GATA2 is essential for the endothelial-to-hematopoietic transition (EHT) and generation of hematopoietic stem cells (HSCs). It is poorly understood how GATA2 controls the development of human pluripotent stem cell (hPSC)-derived HS-like cells. Here, using human embryonic stem cells (hESCs) in which GATA2 overexpression was induced by doxycycline (Dox), we elucidated the dual functions of GATA2 in definitive hematopoiesis before and after the emergence of CD34+CD45+CD90+CD38- HS-like cells. Specifically, GATA2 promoted expansion of hemogenic precursors via the EHT and then helped to maintain HS-like cells in a quiescent state by regulating cell cycle. RNA sequencing showed that hPSC-derived HS-like cells were very similar to human fetal liver-derived HSCs. Our findings will help to elucidate the mechanism that controls the early stages of human definitive hematopoiesis and may help to develop a strategy to generate hPSC-derived HSCs.


Assuntos
Técnicas de Cultura de Células , Fator de Transcrição GATA2/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Transdiferenciação Celular , Técnicas de Cocultura , Doxiciclina/farmacologia , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Regulação da Expressão Gênica , Hematopoese , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos
6.
Genes Cells ; 23(9): 753-766, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30088690

RESUMO

The generation of mouse hematopoietic stem cells from hemogenic endothelial cells (HECs) in the aorta/gonad/mesonephros region of developing embryos requires a zinc finger transcription factor Gata2. In the previous study, an enforced expression of Gata2 in vitro promoted the production of HECs from mesodermal cells differentiated from mouse embryonic stem cells (ESCs). Our research group has previously demonstrated that the enforced expression of Gata2 in ESC-derived HECs enhances erythroid and megakaryocyte differentiation and inhibits macrophage differentiation. However, the manner in which the multiple functions of Gata2 are regulated remains unclear. Mouse ESCs differentiate into various types of hematopoietic cells when cocultured with OP9 stromal cells (OP9 system). Using this system and the inducible gene cassette exchange system, which facilitates the establishment of ESCs carrying inducible transgenes under an identical gene expression regulatory unit, the domain-specific functions of Gata2 were systematically dissected in this study. We determined that the N-terminal (amino acid 1-110) region of Gata2 was an erythroid-inducing region, both the middle (amino acid 111-200) and C-terminal (amino acid 413-480) regions were megakaryocyte-inducing regions. Furthermore, the present data strongly suggest that intramolecular antagonistic interactions between each of these regions fine-tune the biological functions of Gata2.


Assuntos
Diferenciação Celular , Fator de Transcrição GATA2/fisiologia , Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Embrionárias Murinas/citologia , Células Estromais/citologia , Animais , Células Cultivadas , Técnicas de Cocultura , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas/metabolismo , Domínios Proteicos , Células Estromais/metabolismo
7.
Development ; 144(5): 876-888, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28232602

RESUMO

GATA transcription factors are implicated in establishing cell fate during mammalian development. In early mammalian embryos, GATA3 is selectively expressed in the extraembryonic trophoblast lineage and regulates gene expression to promote trophoblast fate. However, trophoblast-specific GATA3 function is dispensable for early mammalian development. Here, using dual conditional knockout mice, we show that genetic redundancy of Gata3 with paralog Gata2 in trophoblast progenitors ensures the successful progression of both pre- and postimplantation mammalian development. Stage-specific gene deletion in trophoblasts reveals that loss of both GATA genes, but not either alone, leads to embryonic lethality prior to the onset of their expression within the embryo proper. Using ChIP-seq and RNA-seq analyses, we define the global targets of GATA2/GATA3 and show that they directly regulate a large number of common genes to orchestrate stem versus differentiated trophoblast fate. In trophoblast progenitors, GATA factors directly regulate BMP4, Nodal and Wnt signaling components that promote embryonic-extraembryonic signaling cross-talk, which is essential for the development of the embryo proper. Our study provides genetic evidence that impairment of trophoblast-specific GATA2/GATA3 function could lead to early pregnancy failure.


Assuntos
Fator de Transcrição GATA2/fisiologia , Fator de Transcrição GATA3/fisiologia , Placenta/fisiologia , Células-Tronco/citologia , Trofoblastos/citologia , Animais , Diferenciação Celular , Linhagem da Célula , Implantação do Embrião , Desenvolvimento Embrionário , Feminino , Deleção de Genes , Humanos , Camundongos , Camundongos Knockout , Gravidez , Prenhez , Análise de Sequência de RNA
8.
Nat Rev Urol ; 14(1): 38-48, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27872477

RESUMO

Advanced prostate cancer is a classic example of the intractability and consequent lethality that characterizes metastatic carcinomas. Novel treatments have improved the survival of men with prostate cancer; however, advanced prostate cancer invariably becomes resistant to these therapies and ultimately progresses to a lethal metastatic stage. Consequently, detailed knowledge of the molecular mechanisms that control prostate cancer cell survival and progression towards this lethal stage of disease will benefit the development of new therapeutics. The transcription factor endothelial transcription factor GATA-2 (GATA2) has been reported to have a key role in driving prostate cancer aggressiveness. In addition to being a pioneer transcription factor that increases androgen receptor (AR) binding and activity, GATA2 regulates a core subset of clinically relevant genes in an AR-independent manner. Functionally, GATA2 overexpression in prostate cancer increases cellular motility and invasiveness, proliferation, tumorigenicity, and resistance to standard therapies. Thus, GATA2 has a multifaceted function in prostate cancer aggressiveness and is a highly attractive target in the development of novel treatments against lethal prostate cancer.


Assuntos
Biomarcadores Tumorais/fisiologia , Fator de Transcrição GATA2/fisiologia , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/mortalidade , Humanos , Masculino , Invasividade Neoplásica/diagnóstico , Invasividade Neoplásica/genética , Neoplasias da Próstata/diagnóstico
9.
Cancer Res ; 77(4): 1021-1034, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28011622

RESUMO

Serum levels of miR-194 have been reported to predict prostate cancer recurrence after surgery, but its functional contributions to this disease have not been studied. Herein, it is demonstrated that miR-194 is a driver of prostate cancer metastasis. Prostate tissue levels of miR-194 were associated with disease aggressiveness and poor outcome. Ectopic delivery of miR-194 stimulated migration, invasion, and epithelial-mesenchymal transition in human prostate cancer cell lines, and stable overexpression of miR-194 enhanced metastasis of intravenous and intraprostatic tumor xenografts. Conversely, inhibition of miR-194 activity suppressed the invasive capacity of prostate cancer cell lines in vitro and in vivo Mechanistic investigations identified the ubiquitin ligase suppressor of cytokine signaling 2 (SOCS2) as a direct, biologically relevant target of miR-194 in prostate cancer. Low levels of SOCS2 correlated strongly with disease recurrence and metastasis in clinical specimens. SOCS2 downregulation recapitulated miR-194-driven metastatic phenotypes, whereas overexpression of a nontargetable SOCS2 reduced miR-194-stimulated invasion. Targeting of SOCS2 by miR-194 resulted in derepression of the oncogenic kinases FLT3 and JAK2, leading to enhanced ERK and STAT3 signaling. Pharmacologic inhibition of ERK and JAK/STAT pathways reversed miR-194-driven phenotypes. The GATA2 transcription factor was identified as an upstream regulator of miR-194, consistent with a strong concordance between GATA2 and miR-194 levels in clinical specimens. Overall, these results offer new insights into the molecular mechanisms of metastatic progression in prostate cancer. Cancer Res; 77(4); 1021-34. ©2016 AACR.


Assuntos
MicroRNAs/fisiologia , Neoplasias da Próstata/patologia , Proteínas Supressoras da Sinalização de Citocina/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Fator de Transcrição GATA2/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias da Próstata/genética , Fator de Transcrição STAT3/fisiologia , Proteínas Supressoras da Sinalização de Citocina/fisiologia
10.
Blood ; 127(11): 1426-37, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26834239

RESUMO

The Gata2 transcription factor is a pivotal regulator of hematopoietic cell development and maintenance, highlighted by the fact that Gata2 haploinsufficiency has been identified as the cause of some familial cases of acute myelogenous leukemia/myelodysplastic syndrome and in MonoMac syndrome. Genetic deletion in mice has shown that Gata2 is pivotal to the embryonic generation of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs). It functions in the embryo during endothelial cell to hematopoietic cell transition to affect hematopoietic cluster, HPC, and HSC formation. Gata2 conditional deletion and overexpression studies show the importance of Gata2 levels in hematopoiesis, during all developmental stages. Although previous studies of cell populations phenotypically enriched in HPCs and HSCs show expression of Gata2, there has been no direct study of Gata2 expressing cells during normal hematopoiesis. In this study, we generate a Gata2Venus reporter mouse model with unperturbed Gata2 expression to examine the hematopoietic function and transcriptome of Gata2 expressing and nonexpressing cells. We show that all the HSCs are Gata2 expressing. However, not all HPCs in the aorta, vitelline and umbilical arteries, and fetal liver require or express Gata2. These Gata2-independent HPCs exhibit a different functional output and genetic program, including Ras and cyclic AMP response element-binding protein pathways and other Gata factors, compared with Gata2-dependent HPCs. Our results, indicating that Gata2 is of major importance in programming toward HSC fate but not in all cells with HPC fate, have implications for current reprogramming strategies.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Animais , Aorta/citologia , Aorta/embriologia , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Linhagem da Célula , Células Cultivadas , Técnicas de Reprogramação Celular , Fator de Transcrição GATA2/deficiência , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/fisiologia , Genes Reporter , Vetores Genéticos/genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/classificação , Células-Tronco Hematopoéticas/fisiologia , Fígado/citologia , Fígado/embriologia , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transcriptoma , Transgenes , Artérias Umbilicais/citologia , Artérias Umbilicais/embriologia
11.
Oncogene ; 35(33): 4335-44, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-26751772

RESUMO

Hormonal regulation of gene expression by androgen receptor (AR) is tightly controlled by many transcriptional cofactors, including pioneer factors FOXA1 and GATA2, which, however, exhibit distinct expression patterns and functional roles in prostate cancer. Here, we examined how FOXA1, GATA2 and AR crosstalk and regulate hormone-dependent gene expression in prostate cancer cells. Chromatin immunoprecipitation sequencing analysis revealed that FOXA1 reprograms both AR and GATA2 cistrome by preferably recruiting them to FKHD-containing genomic sites. By contrast, GATA2 is unable to shift AR or FOXA1 to GATA motifs. Rather, GATA2 co-occupancy enhances AR and FOXA1 binding to nearby ARE and FKHD sites, respectively. Similarly, AR increases, but not reprograms, GATA2 and FOXA1 cistromes. Concordantly, GATA2 and AR strongly enhance the transcriptional program of each other, whereas FOXA1 regulates GATA2- and AR-mediated gene expression in a context-dependent manner due to its reprogramming effects. Taken together, our data delineated for the first time the distinct mechanisms by which GATA2 and FOXA1 regulate AR cistrome and suggest that FOXA1 acts upstream of GATA2 and AR in determining hormone-dependent gene expression in prostate cancer.


Assuntos
Fator de Transcrição GATA2/fisiologia , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/fisiologia , Neoplasias da Próstata/genética , Receptores Androgênicos/fisiologia , Linhagem Celular Tumoral , Humanos , Masculino , Transcrição Gênica
13.
PLoS One ; 10(11): e0142400, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26571013

RESUMO

The inhibition of thyrotropin (thyroid stimulating hormone; TSH) by thyroid hormone (T3) and its receptor (TR) is the central mechanism of the hypothalamus-pituitary-thyroid axis. Two transcription factors, GATA2 and Pit-1, determine thyrotroph differentiation and maintain the expression of the ß subunit of TSH (TSHß). We previously reported that T3-dependent repression of the TSHß gene is mediated by GATA2 but not by the reported negative T3-responsive element (nTRE). In thyrotrophs, T3 also represses mRNA of the type-2 deiodinase (D2) gene, where no nTRE has been identified. Here, the human D2 promoter fused to the CAT or modified Renilla luciferase gene was co-transfected with Pit-1 and/or GATA2 expression plasmids into cell lines including CV1 and thyrotroph-derived TαT1. GATA2 but not Pit-1 activated the D2 promoter. Two GATA responsive elements (GATA-REs) were identified close to cAMP responsive element. The protein kinase A activator, forskolin, synergistically enhanced GATA2-dependent activity. Gel-shift and chromatin immunoprecipitation assays with TαT1 cells indicated that GATA2 binds to these GATA-REs. T3 repressed the GATA2-induced activity of the D2 promoter in the presence of the pituitary-specific TR, TRß2. The inhibition by T3-bound TRß2 was dominant over the synergism between GATA2 and forskolin. The D2 promoter is also stimulated by GATA4, the major GATA in cardiomyocytes, and this activity was repressed by T3 in the presence of TRα1. These data indicate that the GATA-induced activity of the D2 promoter is suppressed by T3-bound TRs via a tethering mechanism, as in the case of the TSHß gene.


Assuntos
Fator de Transcrição GATA2/fisiologia , Regulação da Expressão Gênica , Iodeto Peroxidase/metabolismo , Receptores beta dos Hormônios Tireóideos/metabolismo , Tireotrofos/metabolismo , Tireotropina Subunidade beta/metabolismo , Animais , Linhagem Celular , Coriocarcinoma/metabolismo , Imunoprecipitação da Cromatina , Colforsina/química , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA4/metabolismo , Deleção de Genes , Haplorrinos , Humanos , Ligantes , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Elementos de Resposta , Transdução de Sinais , Ativação Transcricional , Tri-Iodotironina/metabolismo , Iodotironina Desiodinase Tipo II
14.
Dev Biol ; 407(1): 1-11, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26365900

RESUMO

Primitive erythropoiesis is regulated in a non cell-autonomous fashion across evolution from frogs to mammals. In Xenopus laevis, signals from the overlying ectoderm are required to induce the mesoderm to adopt an erythroid fate. Previous studies in our lab identified the transcription factor GATA2 as a key regulator of this ectodermal signal. To identify GATA2 target genes in the ectoderm required for red blood cell formation in the mesoderm, we used microarray analysis to compare gene expression in ectoderm from GATA2 depleted and wild type embryos. Our analysis identified components of the non-canonical and canonical Wnt pathways as being reciprocally up- and down-regulated downstream of GATA2 in both mesoderm and ectoderm. We show that up-regulation of canonical Wnt signaling during gastrulation blocks commitment to a hematopoietic fate while down-regulation of non-canonical Wnt signaling impairs erythroid differentiation. Our results are consistent with a model in which GATA2 contributes to inhibition of canonical Wnt signaling, thereby permitting progenitors to exit the cell cycle and commit to a hematopoietic fate. Subsequently, activation of non-canonical Wnt signaling plays a later role in enabling these progenitors to differentiate as mature red blood cells.


Assuntos
Eritropoese , Fator de Transcrição GATA2/fisiologia , Via de Sinalização Wnt/fisiologia , Proteínas de Xenopus/fisiologia , Xenopus laevis/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/análise , Linhagem da Célula , Gastrulação , Xenopus laevis/embriologia
15.
Exp Hematol ; 43(7): 565-77.e1-10, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25907033

RESUMO

The transcription factor GATA2 is highly expressed in hematopoietic stem cells and is downregulated during lineage maturation. Gain of function mutations, loss of function mutations, and overexpression of GATA2 have been reported in acute myeloid leukemia. In previous studies, we and others showed that GATA2 overexpression at high levels, similar to that seen in hematopoietic stem cells, blocked differentiation of hematopoietic stem cells and progenitors. To better understand the effects of GATA2, we designed a Tamoxifen-inducible GATA2-estrogen receptor (ERT) vector. In the absence of Tamoxifen, small amounts of GATA2-ERT were still able to enter the nucleus in mouse bone marrow (BM) cells, providing us with a tool to test the effects of low-level GATA2 overexpression. We observed that this low-level GATA2 overexpression enhanced self-renewal of myeloid progenitors in vitro and resulted in immortalization of BM cells to myeloid cell lines. Continuous GATA2-ERT expression was required for the proliferation of these immortalized lines. Myeloid expansion and a block in T and B lineage differentiation were observed in mice transplanted with GATA2-ERT-expressing BM cells. Myeloid expansion occurred after the granulocyte monocyte progenitor stage, and lymphoid block was distal to the common lymphoid progenitor in transgenic mice. GATA2 appeared to induce growth via downstream activation of Nmyc and Hoxa9. Our results demonstrate that GATA2 overexpression at low level confers self-renewal capacity to myeloid progenitors and is relevant to myeloid leukemia development.


Assuntos
Células da Medula Óssea/patologia , Transformação Celular Neoplásica/genética , Fator de Transcrição GATA2/fisiologia , Regulação Leucêmica da Expressão Gênica , Linfopoese/genética , Células Mieloides/patologia , Mielopoese/genética , Animais , Linfócitos B/patologia , Células da Medula Óssea/metabolismo , Divisão Celular , Núcleo Celular/metabolismo , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Fator de Transcrição GATA2/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Genes Sintéticos , Genes myc , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Células Mieloides/metabolismo , Receptores de Estrogênio/genética , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/patologia , Tamoxifeno/farmacologia
16.
J Neurochem ; 134(1): 21-38, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25810277

RESUMO

Monoamine oxidase A (MAOA) plays important roles in the pathogenesis of several neurological and cardiovascular disorders. The mechanism of transcriptional regulation of MAOA under basal and pathological conditions, however, remains incompletely understood. Here, we report systematic identification and characterization of cis elements and transcription factors that govern the expression of MAOA gene. Extensive computational analysis of MAOA promoter, followed by 5'-promoter deletion/reporter assays, revealed that the -71/-40 bp domain was sufficient for its basal transcription. Gel-shift and chromatin immunoprecipitation assays provided evidence of interactions of the transcription factors GATA-binding protein 2 (GATA2), Sp1 and TATA-binding protein (TBP) with this proximal promoter region. Consistently, over-expression of GATA2, Sp1 and TBP augmented MAOA promoter activity in a coordinated manner. In corroboration, siRNA-mediated down-regulation of GATA2/Sp1/TBP repressed the endogenous MAOA expression as well as transfected MAOA promoter activity. Tumor necrosis factor-α and forskolin activated MAOA transcription that was reversed by Sp1 siRNA; in support, tumor necrosis factor-α- and forskolin-induced activities were enhanced by ectopic over-expression of Sp1. On the other hand, MAOA transcription was diminished upon exposure of neuroblasts or cardiac myoblasts to ischemia-like conditions because of reduced binding of GATA2/Sp1/TBP with MAOA promoter. In conclusion, this study revealed previously unknown roles of GATA2, Sp1 and TBP in modulating MAOA expression under basal as well as pathophysiological conditions such as inflammation and ischemia, thus providing new insights into the molecular basis of aberrant MAOA expression in neuronal/cardiovascular disease states. Dysregulation of monoamine oxidase A (MAOA) have been implicated in several behavioral and neuronal disease states. Here, we identified three crucial transcription factors (GATA2, Sp1 and TBP) that regulate MAOA gene expression in a coordinated manner. Aberrant MAOA expression under pathophysiological conditions including inflammation and ischemia is mediated by altered binding of GATA2/Sp1/TBP with MAOA proximal promoter. Thus, these findings provide new insights into pathogenesis of several common diseases. GATA2, GATA-binding protein 2; Sp1, specificity protein 1; TBP, TATA-binding protein.


Assuntos
Fator de Transcrição GATA2/fisiologia , Isquemia/metabolismo , Monoaminoxidase/fisiologia , Fator de Transcrição Sp1/fisiologia , Proteína de Ligação a TATA-Box/fisiologia , Animais , Regulação da Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Inflamação/genética , Inflamação/metabolismo , Isquemia/genética , Camundongos , Dados de Sequência Molecular
17.
Proc Natl Acad Sci U S A ; 111(51): 18261-6, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25489091

RESUMO

The androgen receptor (AR) is a key driver of prostate cancer (PC), even in the state of castration-resistant PC (CRPC) and frequently even after treatment with second-line hormonal therapies such as abiraterone and enzalutamide. The persistence of AR activity via both ligand-dependent and ligand-independent mechanisms (including constitutively active AR splice variants) highlights the unmet need for alternative approaches to block AR signaling in CRPC. We investigated the transcription factor GATA-binding protein 2 (GATA2) as a regulator of AR signaling and an actionable therapeutic target in PC. We demonstrate that GATA2 directly promotes expression of both full-length and splice-variant AR, resulting in a strong positive correlation between GATA2 and AR expression in both PC cell lines and patient specimens. Conversely, GATA2 expression is repressed by androgen and AR, suggesting a negative feedback regulatory loop that, upon androgen deprivation, derepresses GATA2 to contribute to AR overexpression in CRPC. Simultaneously, GATA2 is necessary for optimal transcriptional activity of both full-length and splice-variant AR. GATA2 colocalizes with AR and Forkhead box protein A1 on chromatin to enhance recruitment of steroid receptor coactivators and formation of the transcriptional holocomplex. In agreement with these important functions, high GATA2 expression and transcriptional activity predicted worse clinical outcome in PC patients. A GATA2 small molecule inhibitor suppressed the expression and transcriptional function of both full-length and splice-variant AR and exerted potent anticancer activity against PC cell lines. We propose pharmacological inhibition of GATA2 as a first-in-field approach to target AR expression and function and improve outcomes in CRPC.


Assuntos
Fator de Transcrição GATA2/fisiologia , Coativadores de Receptor Nuclear/metabolismo , Receptores Androgênicos/metabolismo , Proliferação de Células , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Masculino , Prognóstico , Receptores Androgênicos/fisiologia , Transdução de Sinais , Transcrição Gênica/fisiologia
18.
Mol Cell Biol ; 34(11): 1929-41, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24636993

RESUMO

The transcription factor GATA2 plays pivotal roles in early renal development, but its distribution and physiological functions in adult kidney are largely unknown. We examined the GATA2 expression pattern in the adult kidney by tracing green fluorescent protein (GFP) fluorescence in Gata2(GFP/+) mice that recapitulate endogenous GATA2 expression and found a robust GFP expression specifically in the renal medulla. Upon purification of the GFP-positive cells, we found that collecting duct (CD)-specific markers, including aquaporin 2 (Aqp2), an important channel for water reabsorption from urine, were abundantly expressed. To address the physiological function of GATA2 in the CD cells, we generated renal tubular cell-specific Gata2-deficient mice (Gata2-CKO) by crossing Gata2 floxed mice with inducible Pax8-Cre mice. We found that the Gata2-CKO mice showed a significant decrease in Aqp2 expression. The Gata2-CKO mice exhibited high 24-h urine volume and low urine osmolality, two important signs of diabetes insipidus. We introduced biotin-tagged GATA2 into a mouse CD-derived cell line and conducted chromatin pulldown assays, which revealed direct GATA2 binding to conserved GATA motifs in the Aqp2 promoter region. A luciferase reporter assay using an Aqp2 promoter-reporter showed that GATA2 trans activates Aqp2 through the GATA motifs. These results demonstrate that GATA2 regulates the Aqp2 gene expression in CD cells and contributes to the maintenance of the body water homeostasis.


Assuntos
Aquaporina 2/genética , Água Corporal/metabolismo , Fator de Transcrição GATA2/fisiologia , Regulação da Expressão Gênica , Medula Renal/metabolismo , Túbulos Renais Coletores/metabolismo , Animais , Linhagem Celular , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA3/metabolismo , Proteínas de Fluorescência Verde/biossíntese , Homeostase/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Concentração Osmolar , Regiões Promotoras Genéticas , Urina/fisiologia
19.
Mol Cell Biol ; 34(10): 1812-26, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24615013

RESUMO

Although previous studies have shown that GATA1 is required for mast cell differentiation, the effects of the complete ablation of GATA1 in mast cells have not been examined. Using conditional Gata1 knockout mice (Gata1(-/y)), we demonstrate here that the complete ablation of GATA1 has a minimal effect on the number and distribution of peripheral tissue mast cells in adult mice. The Gata1(-/y) bone marrow cells were capable of differentiating into mast cells ex vivo. Microarray analyses showed that the repression of GATA1 in bone marrow mast cells (BMMCs) has a small impact on the mast cell-specific gene expression in most cases. Interestingly, however, the expression levels of mast cell tryptases in the mouse chromosome 17A3.3 were uniformly reduced in the GATA1 knockdown cells, and GATA1 was found to bind to a 500-bp region at the 5' end of this locus. Revealing a sharp contrast to that observed in the Gata1-null BMMCs, GATA2 deficiency resulted in a significant loss of the c-Kit(+) FcεRIα(+) mast cell fraction and a reduced expression of several mast cell-specific genes. Collectively, GATA2 plays a more important role than GATA1 in the regulation of most mast cell-specific genes, while GATA1 might play specific roles in mast cell functions.


Assuntos
Diferenciação Celular , Fator de Transcrição GATA1/fisiologia , Fator de Transcrição GATA2/fisiologia , Mastócitos/fisiologia , Animais , Sequência de Bases , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células Cultivadas , Cromossomos de Mamíferos , Meios de Cultura , Regulação Enzimológica da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Transcriptoma , Triptases/genética , Triptases/metabolismo
20.
Leukemia ; 28(4): 770-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24002588

RESUMO

Different mechanisms for CBFß-MYH11 function in acute myeloid leukemia with inv(16) have been proposed such as tethering of RUNX1 outside the nucleus, interference with transcription factor complex assembly and recruitment of histone deacetylases, all resulting in transcriptional repression of RUNX1 target genes. Here, through genome-wide CBFß-MYH11-binding site analysis and quantitative interaction proteomics, we found that CBFß-MYH11 localizes to RUNX1 occupied promoters, where it interacts with TAL1, FLI1 and TBP-associated factors (TAFs) in the context of the hematopoietic transcription factors ERG, GATA2 and PU.1/SPI1 and the coregulators EP300 and HDAC1. Transcriptional analysis revealed that upon fusion protein knockdown, a small subset of the CBFß-MYH11 target genes show increased expression, confirming a role in transcriptional repression. However, the majority of CBFß-MYH11 target genes, including genes implicated in hematopoietic stem cell self-renewal such as ID1, LMO1 and JAG1, are actively transcribed and repressed upon fusion protein knockdown. Together these results suggest an essential role for CBFß-MYH11 in regulating the expression of genes involved in maintaining a stem cell phenotype.


Assuntos
Inversão Cromossômica , Cromossomos Humanos Par 16 , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Subunidade beta de Fator de Ligação ao Core/fisiologia , Leucemia Mieloide Aguda/genética , Cadeias Pesadas de Miosina/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Sítios de Ligação , Fator de Transcrição GATA2/fisiologia , Histona Desacetilases/fisiologia , Humanos , Regiões Promotoras Genéticas , Proteína Proto-Oncogênica c-fli-1/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...