Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Mediators Inflamm ; 2021: 3698386, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34545275

RESUMO

Coronary artery disease (CAD) has been the leading cause of morbidity and mortality worldwide, and its pathogenesis is closely related with the proliferation and migration of vascular smooth muscle cell (VSMC). We previously reported a truncated GATA4 protein lacking C-terminus induced by p.S335X mutation in cardiomyocyte from ventricular septal defect (VSD) patients. However, it is still unclear whether GATA4 p.S335X mutation could influence the development of CAD. GATA4 wild-type (WT) and p.S335X mutant (MU) overexpression plasmids were constructed and transfected transiently into rat coronary artery smooth muscle cell (RCSMC) to observe the proliferative and migratory abilities by MTS and wound healing assay, respectively. PCR array was used to preliminarily detect the expression of phenotypic modulation-related genes, and QRT-PCR was then carried out to verify the screened differentially expressed genes (DEGs). The results showed that, when stimulated by fetal bovine serum (10%) for 24 h or tumor necrosis factor-α (10 or 30 ng/ml) for 10 or 24 h, deletion of GATA4 C-terminus by p.S335X mutation in GATA4 enhanced the proliferation of RCSMC, without alteration of the migration capability. Twelve DEGs, including Fas, Hbegf, Itga5, Aimp1, Cxcl1, Il15, Il2rg, Il7, Tnfsf10, Il1r1, Irak1, and Tlr3, were screened and identified as phenotypic modulation-related genes. Our data might be beneficial for further exploration regarding the mechanisms of GATA4 p.S335X mutation on the phenotypic modulation of coronary VSMC.


Assuntos
Vasos Coronários/fisiologia , Fator de Transcrição GATA4/genética , Músculo Liso Vascular/citologia , Mutação , Miócitos de Músculo Liso/fisiologia , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Doença da Artéria Coronariana/etiologia , Fator de Transcrição GATA4/fisiologia , Músculo Liso Vascular/fisiologia , Fenótipo , Ratos
2.
Bone ; 144: 115819, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33338666

RESUMO

GATA4 is a transcription factor that regulates osteoblast differentiation. However, GATA4 is expressed at a higher level in mesenchymal stem cells (MSCs) than in osteoblasts. Therefore, the role of GATA4 in limb bud mesenchyme differentiation was investigated in mice by knocking out Gata4 using Cre-recombinase controlled by the Prx1 promoter (herein called Gata4 Prx-cKO mice). µCT analysis of the Gata4 Prx-cKO mice showed a decrease in trabecular bone properties compared with wildtype (Gata4fl/fl) littermates. Gata4 Prx-cKO mice have fewer MSCs as measured by CFU-F assays, mesenchymal progenitor cells (MPC2) (flow cytometry of Sca1+/CD45-/CD34-/CD44hi) and nestin immunofluorescence. Gata4 Prx-cKO bone marrow-derived MSCs have a significant reduction in WNT ligands, including WNT10B, and WNT signalosome components compared to control cells. Chromatin immunoprecipitation demonstrates that GATA4 is recruited to enhancers near Wnt3a, Wnt10b, Fzd6 and Dkk1. GATA4 also directly represses YAP in wildtype cells, and the absence of Gata4 leads to increased YAP expression. Together, we show that the decrease in MSCs is due to loss of Gata4 and a WNT10B-dependent positive autoregulatory loop. This leads to a concurrent increase of YAP and less activated ß-catenin. These results explain the decreased trabecular bone in Gata4 Prx-cKO mice. We suggest that WNT signalosome activity in MSCs requires Gata4 and Wnt10b expression for lineage specification.


Assuntos
Fator de Transcrição GATA4/fisiologia , Células-Tronco Mesenquimais , Via de Sinalização Wnt , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Camundongos , Proteínas do Tecido Nervoso , Osteoblastos/metabolismo , Osteogênese , Proteínas Wnt , beta Catenina/metabolismo
3.
Dev Biol ; 461(2): 124-131, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32035085

RESUMO

Development of multi-chambered heart is associated with spatio-temporal regulation of gene expression. A basic helix-loop-helix transcription factor Hey2 is specifically expressed in the embryonic mouse ventricles and is indispensable for ventricular myocyte differentiation, compartment identity and morphogenesis of the heart. However, how Hey2 transcription is precisely regulated in the heart remains unclear. In this study, we identified a distal Hey2 enhancer conserved in the mouse and human to possess specific transcriptional activity in ventricular free wall myocytes at the looping stage of cardiac development. Deletion of the enhancer significantly decreased endogenous Hey2 expression in the ventricular myocardium but not in other tissues of mouse embryos. Mutation/deletion of the conserved binding sites for T-box and Gata proteins, but not NK-2 proteins, abolished the enhancer activity, and Tbx20 null mice completely lost the enhancer activity in the embryonic ventricles. Luciferase reporter analysis suggested that the ventricular enhancer activity was controlled by Tbx20 through its DNA binding and cooperative function with cardiac Gata proteins. These results delineate a regulatory mechanism of ventricular Hey2 expression and help fully understand molecular cascades in myocardial cell differentiation and cardiac morphogenesis during embryonic development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Elementos Facilitadores Genéticos , Fator de Transcrição GATA4/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Ventrículos do Coração/embriologia , Proteínas Repressoras/biossíntese , Proteínas com Domínio T/fisiologia , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sequência Conservada , Genes Reporter , Ventrículos do Coração/metabolismo , Humanos , Mamíferos/genética , Camundongos , Camundongos Transgênicos , Proteínas Repressoras/genética , Alinhamento de Sequência , Deleção de Sequência , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
4.
J Gastroenterol Hepatol ; 34(12): 2196-2205, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30995348

RESUMO

BACKGROUND AND AIM: The high mortality and poor prognosis of hepatocellular carcinoma (HCC) have raised the public attention. Gene therapy is considered as a promising treatment option for cancer; thus, finding a new therapeutic target for HCC is urgently needed. GATA4 is a tumor suppressor gene in multiple cancers, but its role in HCC is unclear. In this study, we explored the function of GATA4 in HCC. METHODS: Reverse transcription-polymerase chain reaction and quantitative polymerase chain reaction were used to detect the mRNA expression of GATA4 in HCC cells and tissues. Cell viability, transwell, colony formation, and flow cytometry assays were applied to examine different aspects of biological effects of GATA4 in vitro. Xenografts, immunohistochemistry, and terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick-end labeling assays were performed to evaluate the effect of GATA4 on tumorigenicity in vivo. Western blotting, immunofluorescence, and ß-galactosidase staining were used to investigate the mechanism underlying the function of GATA4. RESULTS: We found that GATA4 was silenced in 15/19 (79%) HCC tissues. Restoring the expression of GATA4 induced G0 /G1 phase arrest, promoted apoptosis, suppressed HCC proliferation in vitro, and inhibited HCC tumor growth in vivo. Our data further showed that the ectopic expression of GATA4 induced cellular senescence through regulating nuclear factor-κB and inducing mesenchymal-to-epithelial transition. CONCLUSIONS: Our data demonstrated that by inducing cellular senescence and mesenchymal-to-epithelial transition, GATA4 plays a crucial role as a tumor suppressor in HCC. It may thus be a potential cancer therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Senescência Celular/fisiologia , Fator de Transcrição GATA4/fisiologia , Neoplasias Hepáticas/patologia , Animais , Apoptose/genética , Apoptose/fisiologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Senescência Celular/genética , Regulação para Baixo/fisiologia , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Fator de Transcrição GATA4/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Inativação Gênica , Xenoenxertos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos Nus , NF-kappa B/fisiologia , Invasividade Neoplásica , Transplante de Neoplasias , RNA Mensageiro/genética , RNA Neoplásico/genética , Transdução de Sinais/fisiologia , Células Tumorais Cultivadas
5.
Hypertension ; 73(2): 390-398, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30580686

RESUMO

The heart manifests hypertrophic growth in response to elevation of afterload pressure. Cardiac myocyte growth involves new protein synthesis and membrane expansion, of which a number of cellular quality control machineries are stimulated to maintain function and homeostasis. The unfolded protein response is potently induced during cardiac hypertrophy to enhance protein-folding capacity and eliminate terminally misfolded proteins. However, whether the unfolded protein response directly regulates cardiac myocyte growth remains to be fully determined. Here, we show that GRP78 (glucose-regulated protein of 78 kDa)-an endoplasmic reticulum-resident chaperone and a critical unfolded protein response regulator-is induced by cardiac hypertrophy. Importantly, overexpression of GRP78 in cardiomyocytes is sufficient to potentiate hypertrophic stimulus-triggered growth. At the in vivo level, TG (transgenic) hearts overexpressing GRP78 mount elevated hypertrophic growth in response to pressure overload. We went further to show that GRP78 increases GATA4 (GATA-binding protein 4) level, which may stimulate Anf (atrial natriuretic factor) expression and promote cardiac hypertrophic growth. Silencing of GATA4 in cultured neonatal rat ventricular myocytes significantly diminishes GRP78-mediated growth response. Our results, therefore, reveal that protein-folding chaperone GRP78 may directly enhance cardiomyocyte growth by stimulating cardiac-specific transcriptional factor GATA4.


Assuntos
Fator de Transcrição GATA4/fisiologia , Proteínas de Choque Térmico/fisiologia , Miócitos Cardíacos/patologia , Animais , Chaperona BiP do Retículo Endoplasmático , Hipertrofia , Camundongos , Camundongos Endogâmicos C57BL , Dobramento de Proteína , Serina-Treonina Quinases TOR/fisiologia , Resposta a Proteínas não Dobradas
6.
Reproduction ; 156(4): 343­351, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30306767

RESUMO

Reduced contractility of the testicular peritubular myoid (PTM) cells may contribute to human male subfertility or infertility. Transcription factor GATA4 in Sertoli and Leydig cells is essential for murine spermatogenesis, but limited attention has been paid to the potential role of GATA4 in PTM cells. In primary cultures of mouse PTM cells, siRNA knockdown of GATA4 increased the contractile activity, while GATA4 overexpression significantly attenuated the contractility of PTM cells using a collagen gel contraction assay. Using RNA sequencing and qRT-PCR, we identified a set of genes that exhibited opposite expressional alternation between Gata4 siRNA vs nontargeting siRNA-treated PTM cells and Gata4 adenovirus vs control adenovirus-treated PTM cells. Notably, ion channels, smooth muscle function, cytokines and chemokines, cytoskeleton, adhesion and extracellular matrix were the top four enriched pathways, as revealed by cluster analysis. Natriuretic peptide type B (NPPB) content was significantly upregulated by GATA4 overexpression in both PTM cells and their culture supernatant. More importantly, the addition of 100 µM NPPB could abolish the promoting effect of Gata4 silencing on PTM cell contraction. Taken together, we suggest that the inhibitory action of GATA4 on PTM cell contraction is mediated at least partly by regulating genes belonging to smooth muscle contraction pathway (e.g. Nppb).


Assuntos
Fator de Transcrição GATA4/fisiologia , Testículo/fisiologia , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Canais Iônicos/genética , Canais Iônicos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular , Peptídeo Natriurético Encefálico/metabolismo , Cultura Primária de Células , Espermatogênese , Testículo/citologia
7.
Circ Res ; 122(8): 1069-1083, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29475983

RESUMO

RATIONALE: Multilineage-differentiating stress enduring (Muse) cells, pluripotent marker stage-specific embryonic antigen-3+ cells, are nontumorigenic endogenous pluripotent-like stem cells obtainable from various tissues including the bone marrow. Their therapeutic efficiency has not been validated in acute myocardial infarction. OBJECTIVE: The main objective of this study is to clarify the efficiency of intravenously infused rabbit autograft, allograft, and xenograft (human) bone marrow-Muse cells in a rabbit acute myocardial infarction model and their mechanisms of tissue repair. METHODS AND RESULTS: In vivo dynamics of Nano-lantern-labeled Muse cells showed preferential homing of the cells to the postinfarct heart at 3 days and 2 weeks, with ≈14.5% of injected GFP (green fluorescent protein)-Muse cells estimated to be engrafted into the heart at 3 days. The migration and homing of the Muse cells was confirmed pharmacologically (S1PR2 [sphingosine monophosphate receptor 2]-specific antagonist JTE-013 coinjection) and genetically (S1PR2-siRNA [small interfering ribonucleic acid]-introduced Muse cells) to be mediated through the S1P (sphingosine monophosphate)-S1PR2 axis. They spontaneously differentiated into cells positive for cardiac markers, such as cardiac troponin-I, sarcomeric α-actinin, and connexin-43, and vascular markers. GCaMP3 (GFP-based Ca calmodulin probe)-labeled Muse cells that engrafted into the ischemic region exhibited increased GCaMP3 fluorescence during systole and decreased fluorescence during diastole. Infarct size was reduced by ≈52%, and the ejection fraction was increased by ≈38% compared with vehicle injection at 2 months, ≈2.5 and ≈2.1 times higher, respectively, than that induced by mesenchymal stem cells. These effects were partially attenuated by the administration of GATA4-gene-silenced Muse cells. Muse cell allografts and xenografts efficiently engrafted and recovered functions, and allografts remained in the tissue and sustained functional recovery for up to 6 months without immunosuppression. CONCLUSIONS: Muse cells may provide reparative effects and robust functional recovery and may, thus, provide a novel strategy for the treatment of acute myocardial infarction.


Assuntos
Lisofosfolipídeos/fisiologia , Infarto do Miocárdio/cirurgia , Células-Tronco Pluripotentes/transplante , Receptores de Lisoesfingolipídeo/fisiologia , Esfingosina/análogos & derivados , Aloenxertos , Animais , Autoenxertos , Diferenciação Celular , Movimento Celular/fisiologia , Fator de Transcrição GATA4/antagonistas & inibidores , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/fisiologia , Sobrevivência de Enxerto , Proteínas de Fluorescência Verde/análise , Xenoenxertos , Humanos , Luciferases/análise , Proteínas Luminescentes/análise , Masculino , Infarto do Miocárdio/patologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Pirazóis/farmacologia , Piridinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Coelhos , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/genética , Proteínas Recombinantes de Fusão/análise , Especificidade da Espécie , Esfingosina/fisiologia , Receptores de Esfingosina-1-Fosfato
8.
Mol Med Rep ; 17(1): 1485-1492, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29138836

RESUMO

Endothelial dysfunction is one of the most common complications associated with diabetes and may lead to atherosclerosis. Conflicting reports indicate that NADPH oxidase 4 (NOX4) induces hydrogen peroxide production and cytotoxicity, but also has a protective effect on endothelial dysfunction. The present study aimed to identify the transcription factor responsible for NOX4 expression using a transcription factor activation profiling plate array and chromatin immunoprecipitation. Data from these analyses indicated that GATA­binding protein 4 (GATA4) was able to mediate NOX4 transcription and is downregulated in human umbilical vein endothelial cells (HUVECs) that were exposed to hyperglycemic conditions as well as in the endothelial cells of a mouse diabetes model. Overexpression of GATA4 was demonstrated to lead to increased expression of NOX4 mRNA and protein. Furthermore, GATA4 overexpression resulted in increased nitric oxide (NO) production through the upregulation of endothelial NO synthase phosphorylation. Treatment with simvastatin, a drug known to preserve endothelial function through an unknown mechanism, improved endothelial cell function by upregulating GATA4 expression in HUVECs exposed to hyperglycemia. Results from these experiments demonstrated that GATA4 may inhibit diabetes­induced endothelial dysfunction by acting as a transcription factor for NOX4 expression and increasing NO production. Thus, the present study revealed a novel molecular mechanism underlying endothelial dysfunction in diabetes and identified GATA4 as a potential therapeutic target.


Assuntos
Diabetes Mellitus Experimental/enzimologia , Angiopatias Diabéticas/enzimologia , Fator de Transcrição GATA4/fisiologia , Hiperglicemia/enzimologia , NADPH Oxidase 4/genética , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Angiopatias Diabéticas/etiologia , Indução Enzimática , Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Hiperglicemia/complicações , Hiperglicemia/patologia , Masculino , Camundongos Endogâmicos C57BL , NADPH Oxidase 4/metabolismo , Óxido Nítrico/metabolismo , Sinvastatina/farmacologia
9.
J Mol Histol ; 48(3): 187-197, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28393293

RESUMO

Osteoblasts play a major role in bone remodeling and are regulated by transcription factors. GATA4, a zinc finger transcription factor from the GATA family, has an unclear role in osteoblast differentiation. In this study, the role of GATA4 in osteoblast differentiation was studied both in vitro and in vivo by GATA4 knockdown. GATA4 expression increased during osteoblast differentiation. GATA4 knockdown in osteoblast precursor cells reduced alkaline phosphatase activity and decreased the formation of calcified nodule in an osteogenic-induced cell culture system. In vivo, micro-CT showed that local injection of lentivirus-delivered GATA4 shRNA caused reduced new bone formation during tooth movement. Histological analyses such as total collagen and Goldner's trichrome staining confirmed these results. In vivo immunohistochemical analysis showed reduced expression of osterix (OSX), osteopontin (OPN), and osteocalcin (OCN) in the shGATA4 group (P < 0.05). Consistently, both western blotting and quantitative reverse-transcription PCR proved that expression of osteogenesis-related genes, including OSX, OPN, and OCN, was significantly repressed in the shGATA4 group in vitro (P < 0.01). For further analysis of the pathways involved in this process, we examined the MAPK signaling pathway, and found knockdown of GATA4, downregulated p38 signaling pathways (P < 0.01). Collectively, these results imply GATA4 is a regulator of osteoblastic differentiation via the p38 signaling pathways.


Assuntos
Remodelação Óssea , Diferenciação Celular , Fator de Transcrição GATA4/fisiologia , Sistema de Sinalização das MAP Quinases , Osteoblastos/citologia , Animais , Células Cultivadas , Fator de Transcrição GATA4/genética , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C57BL , Osteoblastos/fisiologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/farmacologia
10.
PLoS One ; 12(4): e0176296, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28426816

RESUMO

Gonad morphogenesis relies on the correct spatiotemporal expression of a number of genes that together fulfill the differentiation of the bipotential gonad into testes or ovaries. As such, the transcription factors WT1 and GATA4 are pivotal for proper gonadal development. Here we address the contributions of GATA4 and WT1 to the sex differentiation phase in testes and ovaries. We applied an ex vivo technique for cultivating gonads in hanging droplets of media that were supplemented with vivo-morpholinos to knockdown WT1 and GATA4 either alone or in combination at the same developmental stage. We show that WT1 is equally important for both, the initial establishment and the maintenance of the sex-specific gene expression signature in testes and ovaries. We further identified Foxl2 as a novel putative downstream target gene of WT1. Moreover, knockdown of WT1 reduced mRNA levels of several molecular components of the hedgehog signaling pathway in XY gonads, whereas Gata4 vivo-morpholino treatment increased transcripts of Dhh and Ptch1 in embryonic testes. The data suggest that for its proper function, WT1 relies on the correct expression of the GATA4 protein. Furthermore, GATA4 down-regulates several ovarian promoting genes in testes, such as Ctnnb1, Fst, and Bmp2, suggesting that this repression is required for maintaining the male phenotype. In conclusion, this study provides novel insights into the role of WT1 and GATA4 during the sex differentiation phase and represents an approach that can be applied to assess other proteins with as yet unknown functions during gonadal development.


Assuntos
Fator de Transcrição GATA4/fisiologia , Técnicas de Silenciamento de Genes , Gônadas/citologia , Morfolinos/farmacologia , Proteínas Repressoras/fisiologia , Animais , Feminino , Fator de Transcrição GATA4/genética , Gônadas/metabolismo , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Repressoras/genética , Proteínas WT1
11.
Reproduction ; 153(2): 211-220, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27864336

RESUMO

Generation of male germ cells from pluripotent cells could provide male gametes for treating male infertility and offer an ideal model for unveiling molecular mechanisms of spermatogenesis. However, the influence and exact molecular mechanisms, especially downstream effectors of BMP4 signaling pathways, in male germ cell differentiation of the induce pluripotent stem (iPS) cells, remain unknown. This study was designed to explore the role and mechanism of BMP4 signaling in the differentiation of mouse iPS cells to male germ cells. Embryoid body (EB) formation and recombinant BMP4 or Noggin were utilized to evaluate the effect of BMP4 on male germ cell generation from mouse iPS cells. Germ cell-specific genes and proteins as well as the downstream effectors of BMP4 signaling pathway were assessed using real-time PCR and Western blots. We found that BMP4 ligand and its multiple receptors, including BMPR1a, BMPR1b and BMPR2, were expressed in mouse iPS cells. Real-time PCR and Western blots revealed that BMP4 could upregulate the levels of genes and proteins for germ cell markers in iPS cells-derived EBs, whereas Noggin decreased their expression in these cells. Moreover, Smad1/5 phosphorylation, Gata4 transcription and the transcripts of Id1 and Id2 were enhanced by BMP4 but decreased when exposed to Noggin. Collectively, these results suggest that BMP4 promotes the generation of male germ cells from iPS cells via Smad1/5 pathway and the activation of Gata4, Id1 and Id2 This study thus offers novel insights into molecular mechanisms underlying male germ cell development.


Assuntos
Proteína Morfogenética Óssea 4/fisiologia , Diferenciação Celular/fisiologia , Células Germinativas/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Western Blotting , Proteína Morfogenética Óssea 4/genética , Linhagem Celular , Fator de Transcrição GATA4/fisiologia , Expressão Gênica , Células-Tronco Pluripotentes Induzidas/fisiologia , Proteína 1 Inibidora de Diferenciação/fisiologia , Proteína 2 Inibidora de Diferenciação/fisiologia , Masculino , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Proteína Smad1/fisiologia , Proteína Smad5/fisiologia , Espermatozoides/citologia
12.
Hum Reprod ; 31(6): 1300-14, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27083540

RESUMO

STUDY QUESTION: What are the functional characteristics and transcriptional regulators of human trophoblast progenitor cells (TBPCs)? SUMMARY ANSWER: TBPC lines established from the human smooth chorion by cell sorting for integrin α4 expressed markers of stemness and trophoblast (TB) stage-specific antigens, invaded Matrigel substrates and contributed to the cytotrophoblasts (CTBs) layer of smooth chorion explants with high-mobility group protein HMGI-C (HMGA2) and transcription factor GATA-4 (GATA4) controlling their progenitor state and TB identity. WHAT IS KNOWN ALREADY: Previously, we reported the derivation of TBPC lines by trypsinization of colonies that formed in cultures of chorionic mesenchyme cells that were treated with an activin nodal inhibitor. Microarray analyses showed that, among integrins, α4 was most highly expressed, and identified HMGA2 and GATA4 as potential transcriptional regulators. STUDY DESIGN, SIZE, DURATION: The aim of this study was to streamline TBPC derivation across gestation. High-cell surface expression of integrin α4 enabled the use of a fluorescence-activated cell sorter (FACS) approach for TBPC isolation from the human smooth chorion (n = 6 lines). To confirm their TBPC identity, we profiled their expression of stemness and TB markers, and growth factor receptors. At a functional level, we assayed their invasive capacity (n = 3) and tropism for the CTB layer of the smooth chorion (n = 3). At a molecular level, we studied the roles of HMGA2 and GATA4. PARTICIPANTS/MATERIALS, SETTINGS, METHODS: Cells were enzymatically disassociated from the human smooth chorion across gestation. FACS was used to isolate the integrin α4-positive population. In total, we established six TBPC lines, two per trimester. Their identity was determined by immunolocalization of a suite of antigens. Function was assessed via Matrigel invasion and co-culture with explants of the human smooth chorion. An siRNA approach was used to down-regulate HMGA2 and GATA4 expression and the results were confirmed by immunoblotting and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses. The endpoints analyzed included proliferation, as determined by 5-bromo-2'-deoxyuridine (BrDU) incorporation, and the expression of stage-specific antigens and hormones, as determined by qRT-PCR and immunostaining approaches. MAIN RESULTS AND THE ROLE OF CHANCE: As with the original cell lines, the progenitors expressed a combination of human embryonic stem cell and TB markers. Upon differentiation, they primarily formed CTBs, which were capable of Matrigel invasion. Co-culture of the cells with smooth chorion explants enabled their migration through the mesenchyme after which they intercalated within the chorionic CTB layer. Down-regulation of HMGA2 showed that this DNA-binding protein governed their self-renewal. Both HMGA2 and GATA4 had pleitropic effects on the cells' progenitor state and TB identity. LIMITATIONS, REASONS FOR CAUTION: This study supported our hypothesis that TBPCs from the chorionic mesenchyme can contribute to the subpopulation of CTBs that reside in the smooth chorion. In the absence of in vivo data, which is difficult to obtain in humans, the results have the limitations common to all in vitro studies. WIDER IMPLICATIONS OF THE FINDINGS: The accepted view is that progenitors reside among the villous CTB subpopulation. Here, we show that TBPCs also reside in the mesenchymal layer of the smooth chorion throughout gestation. We theorize that they can contribute to the CTB layer in this region. This phenomenon may be particularly important in pathological situations when CTBs of the smooth chorion might provide a functional reserve for CTBs of the placenta proper. STUDY FUNDING/COMPETING INTERESTS: Research reported in this publication was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health under award P50HD055764. O.G., N.L., K.O., A.P., T.G.-G., M.K., A.B., M.G. have nothing to disclose. S.J.F. received licensing fees and royalties from SeraCare Life Sciences for trisomic TBPC lines that were derived according to the methods described in this manuscript. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Fator de Transcrição GATA4/fisiologia , Integrina alfa4/metabolismo , Trofoblastos/metabolismo , Diferenciação Celular , Linhagem Celular , Córion/citologia , Córion/metabolismo , Técnicas de Cocultura , Citometria de Fluxo , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Proteína HMGA2/fisiologia , Humanos , Integrina alfa4/genética , Elementos Reguladores de Transcrição
13.
Development ; 143(5): 780-6, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26932670

RESUMO

GATA4 and GATA6 are zinc finger transcription factors that have important functions in several mesodermal and endodermal organs, including heart, liver and pancreas. In humans, heterozygous mutations of either factor are associated with pancreatic agenesis; however, homozygous deletion of both Gata4 and Gata6 is necessary to disrupt pancreas development in mice. In this study, we demonstrate that arrested pancreatic development in Gata4(fl/fl); Gata6(fl/fl); Pdx1:Cre (pDKO) embryos is accompanied by the transition of ventral and dorsal pancreatic fates into intestinal or stomach lineages, respectively. These results indicate that GATA4 and GATA6 play essential roles in maintaining pancreas identity by regulating foregut endodermal fates. Remarkably, pancreatic anlagen derived from pDKO embryos also display a dramatic upregulation of hedgehog pathway components, which are normally absent from the presumptive pancreatic endoderm. Consistent with the erroneous activation of hedgehog signaling, we demonstrate that GATA4 and GATA6 are able to repress transcription through the sonic hedgehog (Shh) endoderm-specific enhancer MACS1 and that GATA-binding sites within this enhancer are necessary for this repressive activity. These studies establish the importance of GATA4/6-mediated inhibition of hedgehog signaling as a major mechanism regulating pancreatic endoderm specification during patterning of the gut tube.


Assuntos
Endoderma/fisiologia , Fator de Transcrição GATA4/fisiologia , Fator de Transcrição GATA6/fisiologia , Pâncreas/embriologia , Animais , Sequência de Bases , Padronização Corporal , Linhagem da Célula , Imunoprecipitação da Cromatina , Coenzima A Ligases/fisiologia , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA6/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Heterozigoto , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/fisiologia , Mutação , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Transdução de Sinais
14.
Yakugaku Zasshi ; 136(2): 151-6, 2016.
Artigo em Japonês | MEDLINE | ID: mdl-26831785

RESUMO

Various stresses on the heart, such as myocardial infarction and hemodynamic overload, activate the sympathetic nervous system and the renin-angiotensin system, ultimately reach the nuclei of cardiomyocytes, and change the pattern of gene expression associated with cardiac hypertrophy. Although present pharmacological therapy for heart failure targets such extracellular molecules, mortality due to heart failure is still high. A zinc finger protein, GATA4, is one of the hypertrophy-responsive transcription factors, forms a functional protein complex with an intrinsic histone acetyltransferase, p300, and regulates pathological cardiac hypertrophy. Disruption of this complex results in the inhibition of cardiac hypertrophy and heart failure in vivo. To establish a more effective therapy for heart failure, we have been analyzing a common nuclear pathway within cardiomyocytes. We identified 73 GATA4 binding proteins by tandem-affinity purification and mass spectrometric analysis. Noble GATA4 binding partners, such as cyclin-dependent kinase-9 (Cdk9: the core factor of positive transcription elongation factor b) and retinoblastoma-association protein 48/46 (RbAp48/46: the co-repressor complexes containing HDAC1/2), regulate the p300/GATA4-mediated signaling pathway and hypertrophic responses. Further analysis of p300/GATA4 complex is expected to identify target molecules for heart failure therapy.


Assuntos
Cardiomegalia/tratamento farmacológico , Cardiomegalia/genética , Fator de Transcrição GATA4/fisiologia , Terapia de Alvo Molecular , Proteômica , Quinase 9 Dependente de Ciclina , Fator de Transcrição GATA4/isolamento & purificação , Histona Acetiltransferases , Humanos , Complexos Multiproteicos , Ligação Proteica , Proteína 4 de Ligação ao Retinoblastoma , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição de p300-CBP
15.
Mech Dev ; 139: 31-41, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26776863

RESUMO

The mechanisms that govern specification of various cell types that constitute vertebrate heart are not fully understood. Whilst most studies of heart development have utilised the mouse embryo, we have used an alternative model, embryos of the frog Xenopus laevis, which permits direct experimental manipulation of a non-essential heart. We show that in this model pluripotent animal cap explants injected with cardiogenic factor GATA4 mRNA express pan-myocardial as well as ventricular and proepicardial markers. We found that cardiac cell fate diversification, as assessed by ventricular and proepicardial markers, critically depends on tissue integrity, as it is disrupted by dissociation but can be fully restored by inhibition of the BMP pathway and partially by Dkk-1. Ventricular and proepicardial cell fates can also be restored in reaggregated GATA4-expressing cells upon transplantation into a host embryo. The competence of the host embryo to induce ventricular and proepicardial markers gradually decreases with the age of the transplant and is lost by the onset of myocardial differentiation at the late tailbud stage (st. 28). The influence of the host on the transplant was not limited to diversification of cardiac cell fates, but also included induction of growth and rhythmic beating, resulting in generation of a secondary heart-like structure. Our results additionally show that efficient generation of secondary heart requires normal axial patterning of the host embryo. Furthermore, secondary hearts can be induced in a wide range of locations within the host, arguing that the host embryo provides a permissive environment for development of cardiac patterning, growth and physiological maturation. Our results have implications for a major goal of cardiac regenerative medicine, differentiation of ventricular myocardium.


Assuntos
Diferenciação Celular , Ventrículos do Coração/embriologia , Miócitos Cardíacos/fisiologia , Animais , Embrião não Mamífero/citologia , Fator de Transcrição GATA4/fisiologia , Ventrículos do Coração/citologia , Miocárdio/citologia , Técnicas de Cultura de Tecidos , Proteínas de Xenopus/fisiologia , Xenopus laevis
16.
Dev Biol ; 410(1): 24-35, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26719127

RESUMO

Adult intestinal tissues, exposed to the external environment, play important roles including barrier and nutrient-absorption functions. These functions are ensured by adequately controlled rapid-cell metabolism. GATA transcription factors play essential roles in the development and maintenance of adult intestinal tissues both in vertebrates and invertebrates. We investigated the roles of GATAe, the Drosophila intestinal GATA factor, in adult midgut homeostasis with its first-generated knock-out mutant as well as cell type-specific RNAi and overexpression experiments. Our results indicate that GATAe is essential for proliferation and maintenance of intestinal stem cells (ISCs). Also, GATAe is involved in the differentiation of enterocyte (EC) and enteroendocrine (ee) cells in both Notch (N)-dependent and -independent manner. The results also indicate that GATAe has pivotal roles in maintaining normal epithelial homeostasis of the Drosophila adult midgut through interaction of N signaling. Since recent reports showed that mammalian GATA-6 regulates normal and cancer stem cells in the adult intestinal tract, our data also provide information on the evolutionally conserved roles of GATA factors in stem-cell regulation.


Assuntos
Diferenciação Celular , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Fatores de Transcrição GATA/fisiologia , Intestinos/citologia , Células-Tronco/citologia , Envelhecimento , Animais , Drosophila melanogaster/citologia , Fator de Transcrição GATA4/fisiologia , Fator de Transcrição GATA6/fisiologia
17.
Dev Biol ; 410(2): 213-222, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26687508

RESUMO

Gata4 and Gata6 are closely related transcription factors that are essential for the development of a number of embryonic tissues. While they have nearly identical DNA-binding domains and similar patterns of expression, Gata4 and Gata6 null embryos have strikingly different embryonic lethal phenotypes. To determine whether the lack of redundancy is due to differences in protein function or Gata4 and Gata6 expression domains, we generated mice that contained the Gata6 cDNA in place of the Gata4 genomic locus. Gata4(Gata6/Gata6) embryos survived through embryonic day (E)12.5 and successfully underwent ventral folding morphogenesis, demonstrating that Gata6 is able to replace Gata4 function in extraembryonic tissues. Surprisingly, Gata6 is unable to replace Gata4 function in the septum transversum mesenchyme or the epicardium, leading to liver agenesis and lethal heart defects in Gata4(Gata6/Gata6) embryos. These studies suggest that Gata4 has evolved distinct functions in the development of these tissues that cannot be performed by Gata6, even when it is provided in the identical expression domain. Our work has important implications for the respective mechanisms of Gata function during development, as well as the functional evolution of these essential transcription factors.


Assuntos
Fator de Transcrição GATA4/fisiologia , Coração/embriologia , Fígado/embriologia , Animais , DNA Complementar/genética , Fator de Transcrição GATA4/genética , Células HEK293 , Humanos , Camundongos
18.
Biochim Biophys Acta ; 1849(12): 1411-22, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26477491

RESUMO

Intestinal epithelial cells are exposed to luminal bacterial threat and require adequate defense mechanisms to ensure host protection and epithelium regeneration against possible deleterious damage. Differentiated intestinal epithelial cells produce antimicrobial and regenerative components that protect against such challenges. Few intestinal specific transcription factors have been identified to control the switching from repression to activation of this class of gene. Herein, we show that gene transcription of some regenerating islet-derived (REG) family members is dependent on the transcription factor GATA-4. Silencing of GATA-4 expression in cultured intestinal epithelial cells identified Reg3ß as a target gene using an unbiased approach of gene expression profiling. Co-transfection and RNA interference assays identified complex GATA-4-interactive transcriptional components required for the activation or repression of Reg3ß gene activity. Conditional deletion of Gata4 in the mouse intestinal epithelium supported its regulatory role for Reg1, Reg3α, Reg3ß and Reg3γ genes. Reg1 dramatic down-modulation of expression in Gata4 conditional null mice was associated with a significant decrease in intestinal epithelial cell migration. Altogether, these results identify a novel and complex role for GATA-4 in the regulation of REG family members gene expression.


Assuntos
Células Epiteliais/metabolismo , Fator de Transcrição GATA4/fisiologia , Regulação da Expressão Gênica/genética , Mucosa Intestinal/citologia , Família Multigênica , Transcrição Gênica , Animais , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Fator de Transcrição CDX2 , Diferenciação Celular/genética , Linhagem Celular , Técnicas de Cocultura , Fator de Transcrição GATA4/classificação , Fator de Transcrição GATA4/deficiência , Fator de Transcrição GATA4/genética , Genes Reporter , Proteínas de Homeodomínio/metabolismo , Lectinas Tipo C/metabolismo , Litostatina/metabolismo , Camundongos , Camundongos Knockout , Mutagênese Sítio-Dirigida , Proteínas Associadas a Pancreatite , Estrutura Terciária de Proteína , Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
19.
Oncotarget ; 6(35): 37012-27, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26473289

RESUMO

Sertoli cells, the primary somatic cell in the seminiferous epithelium, provide the spermatogonial stem cell (SSC) microenvironment (niche) through physical support and the expression of paracrine factors. However, the regulatory mechanisms within the SSC niche, which is primarily controlled by Sertoli cells, remain largely unknown. GATA4 is a Sertoli cell marker, involved in genital ridge initiation, sex determination and differentiation during the embryonic stage. Here, we showed that neonatal mice with a targeted disruption of Gata4 in Sertoli cells (Gata4(flox/flox); Amh-Cre; hereafter termed Gata4 cKO) displayed a loss of the establishment and maintenance of the SSC pool and apoptosis of both gonocyte-derived differentiating spermatogonia and meiotic spermatocytes. Thus, progressive germ cell depletion and a Sertoli-cell-only syndrome were observed as early as the first wave of murine spermatogenesis. Transplantation of germ cells from postnatal day 5 (P5) Gata4 cKO mice into Kit(W/W-v) recipient seminiferous tubules restored spermatogenesis. In addition, microarray analyses of P5 Gata4 cKO mouse testes showed alterations in chemokine signaling factors, including Cxcl12, Ccl3, Cxcr4 (CXCL12 receptor), Ccr1 (CCL3 receptor), Ccl9, Xcl1 and Ccrl2. Deletion of Gata4 in Sertoli cells markedly attenuated Sertoli cell chemotaxis, which guides SSCs or prospermatogonia to the stem cell niche. Finally, we showed that GATA4 transcriptionally regulated Cxcl12 and Ccl9, and the addition of CXCL12 and CCL9 to an in vitro testis tissue culture system increased the number of PLZF+ undifferentiated spermatogonia within Gata4 cKO testes. Together, these results reveal a novel role for GATA4 in controlling the SSC niche via the transcriptional regulation of chemokine signaling shortly after birth.


Assuntos
Quimiocina CXCL12/metabolismo , Quimiocinas CC/metabolismo , Fator de Transcrição GATA4/fisiologia , Proteínas Inflamatórias de Macrófagos/metabolismo , Células de Sertoli/patologia , Espermatogônias/patologia , Nicho de Células-Tronco , Células-Tronco/patologia , Animais , Animais Recém-Nascidos , Western Blotting , Diferenciação Celular , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocinas CC/genética , Quimiotaxia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Luciferases/metabolismo , Proteínas Inflamatórias de Macrófagos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células de Sertoli/metabolismo , Transdução de Sinais , Espermatogênese , Espermatogônias/metabolismo , Células-Tronco/metabolismo
20.
Histol Histopathol ; 30(12): 1487-98, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26100648

RESUMO

Bone marrow mesenchymal stromal cells (BMSCs) have potential applications in cell and gene therapies for cardiac disease. The cardiac-specific transcription factors GATA-binding protein 4 (GATA4) and T-Box protein 5 (TBX5) are considered to be pivotal in cardiogenesis. The aim of this study was to investigate the effects of GATA4 and TBX5 on cardiomyogenic differentiation of BMSCs. The BMSCs were initially isolated and identified. Vectors harboring cardiac transcription factor genes GATA4 and TBX5 or empty vectors were transferred into BMSCs. Cardiomyogenic cells differentiated from BMSCs were identified by expression of cardiac-specific markers including cardiac troponin T, connexin 43, ß-myosin heavy chain, and myosin light chain-2 using immunocytochemical staining, western blotting, and quantitative real-time PCR. The ultrastructures of the differentiated cells were examined by transmission electron microscopy, which were similar to those of fetal cardiomyocytes. The differentiated cells exhibited L-type calcium current activities reflective of the electrophysiological characteristics of cardiomyocytes. These findings indicate that exogenous expression of cardiac-specific transcription factors GATA4 and TBX5 enhance cardiomyogenic differentiation of BMSCs.


Assuntos
Células da Medula Óssea/fisiologia , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/fisiologia , Células-Tronco Mesenquimais/fisiologia , Miócitos Cardíacos/fisiologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/fisiologia , Adipócitos/fisiologia , Animais , Diferenciação Celular/fisiologia , Fenômenos Eletrofisiológicos , Osteócitos/fisiologia , Osteogênese/fisiologia , Plasmídeos/genética , Células-Tronco Pluripotentes/fisiologia , Ratos , Ratos Sprague-Dawley , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...