Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.379
Filtrar
1.
J Neuroinflammation ; 21(1): 119, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715061

RESUMO

BACKGROUND: Cerebral malaria (CM) is the most lethal complication of malaria, and survivors usually endure neurological sequelae. Notably, the cytotoxic effect of infiltrating Plasmodium-activated CD8+ T cells on cerebral microvasculature endothelial cells is a prominent feature of the experimental CM (ECM) model with blood-brain barrier disruption. However, the damage effect of CD8+ T cells infiltrating the brain parenchyma on neurons remains unclear. Based on the immunosuppressive effect of the PD-1/PD-L1 pathway on T cells, our previous study demonstrated that the systemic upregulation of PD-L1 to inhibit CD8+ T cell function could effectively alleviate the symptoms of ECM mice. However, it has not been reported whether neurons can suppress the pathogenic effect of CD8+ T cells through the PD-1/PD-L1 negative immunomodulatory pathway. As the important inflammatory factor of CM, interferons can induce the expression of PD-L1 via different molecular mechanisms according to the neuro-immune microenvironment. Therefore, this study aimed to investigate the direct interaction between CD8+ T cells and neurons, as well as the mechanism of neurons to alleviate the pathogenic effect of CD8+ T cells through up-regulating PD-L1 induced by IFNs. METHODS: Using the ECM model of C57BL/6J mice infected with Plasmodium berghei ANKA (PbA), morphological observations were conducted in vivo by electron microscope and IF staining. The interaction between the ECM CD8+ T cells (immune magnetic bead sorting from spleen of ECM mice) and primary cultured cortical neurons in vitro was observed by IF staining and time-lapse photography. RNA-seq was performed to analyze the signaling pathway of PD-L1 upregulation in neurons induced by IFNß or IFNγ, and verified through q-PCR, WB, IF staining, and flow cytometry both in vitro and in vivo using IFNAR or IFNGR gene knockout mice. The protective effect of adenovirus-mediated PD-L1 IgGFc fusion protein expression was verified in ECM mice with brain stereotaxic injection in vivo and in primary cultured neurons via viral infection in vitro. RESULTS: In vivo, ECM mice showed infiltration of activated CD8+ T cells and neuronal injury in the brain parenchyma. In vitro, ECM CD8+ T cells were in direct contact with neurons and induced axonal damage, as an active behavior. The PD-L1 protein level was elevated in neurons of ECM mice and in primary cultured neurons induced by IFNß, IFNγ, or ECM CD8+ T cells in vitro. Furthermore, the IFNß or IFNγ induced neuronal expression of PD-L1 was mediated by increasing STAT1/IRF1 pathway via IFN receptors. The increase of PD-L1 expression in neurons during PbA infection was weakened after deleting the IFNAR or IFNGR. Increased PD-L1 expression by adenovirus partially protected neurons from CD8+ T cell-mediated damage both in vitro and in vivo. CONCLUSION: Our study demonstrates that both type I and type II IFNs can induce neurons to upregulate PD-L1 via the STAT1/IRF1 pathway mediated by IFN receptors to protect against activated CD8+ T cell-mediated damage, providing a targeted pathway to alleviate neuroinflammation during ECM.


Assuntos
Antígeno B7-H1 , Linfócitos T CD8-Positivos , Malária Cerebral , Camundongos Endogâmicos C57BL , Neurônios , Fator de Transcrição STAT1 , Regulação para Cima , Animais , Camundongos , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Fator Regulador 1 de Interferon/metabolismo , Interferon gama/metabolismo , Malária Cerebral/imunologia , Malária Cerebral/metabolismo , Malária Cerebral/patologia , Camundongos Knockout , Neurônios/metabolismo , Plasmodium berghei , Transdução de Sinais/fisiologia , Fator de Transcrição STAT1/metabolismo , Regulação para Cima/efeitos dos fármacos
2.
Nat Commun ; 15(1): 4418, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806459

RESUMO

The mechanisms by which the number of memory CD8 T cells is stably maintained remains incompletely understood. It has been postulated that maintaining them requires help from CD4 T cells, because adoptively transferred memory CD8 T cells persist poorly in MHC class II (MHCII)-deficient mice. Here we show that chronic interferon-γ signals, not CD4 T cell-deficiency, are responsible for their attrition in MHCII-deficient environments. Excess IFN-γ is produced primarily by endogenous colonic CD8 T cells in MHCII-deficient mice. IFN-γ neutralization restores the number of memory CD8 T cells in MHCII-deficient mice, whereas repeated IFN-γ administration or transduction of a gain-of-function STAT1 mutant reduces their number in wild-type mice. CD127high memory cells proliferate actively in response to IFN-γ signals, but are more susceptible to attrition than CD127low terminally differentiated effector memory cells. Furthermore, single-cell RNA-sequencing of memory CD8 T cells reveals proliferating cells that resemble short-lived, terminal effector cells and documents global downregulation of gene signatures of long-lived memory cells in MHCII-deficient environments. We propose that chronic IFN-γ signals deplete memory CD8 T cells by compromising their long-term survival and by diverting self-renewing CD127high cells toward terminal differentiation.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Memória Imunológica , Interferon gama , Fator de Transcrição STAT1 , Animais , Linfócitos T CD8-Positivos/imunologia , Interferon gama/metabolismo , Interferon gama/imunologia , Linfócitos T CD4-Positivos/imunologia , Camundongos , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/deficiência , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Transdução de Sinais , Camundongos Knockout , Células T de Memória/imunologia , Células T de Memória/metabolismo , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Proliferação de Células , Transferência Adotiva
3.
Cell Death Dis ; 15(5): 369, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806478

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is frequently overexpressed in patients with acute myeloid leukemia (AML). STAT3 exists in two distinct alternatively spliced isoforms, the full-length isoform STAT3α and the C-terminally truncated isoform STAT3ß. While STAT3α is predominantly described as an oncogenic driver, STAT3ß has been suggested to act as a tumor suppressor. To elucidate the role of STAT3ß in AML, we established a mouse model of STAT3ß-deficient, MLL-AF9-driven AML. STAT3ß deficiency significantly shortened survival of leukemic mice confirming its role as a tumor suppressor. Furthermore, RNA sequencing revealed enhanced STAT1 expression and interferon (IFN) signaling upon loss of STAT3ß. Accordingly, STAT3ß-deficient leukemia cells displayed enhanced sensitivity to blockade of IFN signaling through both an IFNAR1 blocking antibody and the JAK1/2 inhibitor Ruxolitinib. Analysis of human AML patient samples confirmed that elevated expression of IFN-inducible genes correlated with poor overall survival and low STAT3ß expression. Together, our data corroborate the tumor suppressive role of STAT3ß in a mouse model in vivo. Moreover, they provide evidence that its tumor suppressive function is linked to repression of the STAT1-mediated IFN response. These findings suggest that the STAT3ß/α mRNA ratio is a significant prognostic marker in AML and holds crucial information for targeted treatment approaches. Patients displaying a low STAT3ß/α mRNA ratio and unfavorable prognosis could benefit from therapeutic interventions directed at STAT1/IFN signaling.


Assuntos
Leucemia Mieloide Aguda , Fator de Transcrição STAT3 , Animais , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Humanos , Fator de Transcrição STAT3/metabolismo , Camundongos , Transdução de Sinais , Interferons/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Camundongos Endogâmicos C57BL , Receptor de Interferon alfa e beta/metabolismo , Receptor de Interferon alfa e beta/genética , Linhagem Celular Tumoral , Nitrilas , Pirazóis , Pirimidinas
4.
Immunohorizons ; 8(5): 384-396, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38809232

RESUMO

The mammalian Siglec receptor sialoadhesin (Siglec1, CD169) confers innate immunity against the encapsulated pathogen group B Streptococcus (GBS). Newborn lung macrophages have lower expression levels of sialoadhesin at birth compared with the postnatal period, increasing their susceptibility to GBS infection. In this study, we investigate the mechanisms regulating sialoadhesin expression in the newborn mouse lung. In both neonatal and adult mice, GBS lung infection reduced Siglec1 expression, potentially delaying acquisition of immunity in neonates. Suppression of Siglec1 expression required interactions between sialic acid on the GBS capsule and the inhibitory host receptor Siglec-E. The Siglec1 gene contains multiple STAT binding motifs, which could regulate expression of sialoadhesin downstream of innate immune signals. Although GBS infection reduced STAT1 expression in the lungs of wild-type newborn mice, we observed increased numbers of STAT1+ cells in Siglece-/- lungs. To test if innate immune activation could increase sialoadhesin at birth, we first demonstrated that treatment of neonatal lung macrophages ex vivo with inflammatory activators increased sialoadhesin expression. However, overcoming the low sialoadhesin expression at birth using in vivo prenatal exposures or treatments with inflammatory stimuli were not successful. The suppression of sialoadhesin expression by GBS-Siglec-E engagement may therefore contribute to disease pathogenesis in newborns and represent a challenging but potentially appealing therapeutic opportunity to augment immunity at birth.


Assuntos
Animais Recém-Nascidos , Camundongos Knockout , Ácido N-Acetilneuramínico , Fator de Transcrição STAT1 , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico , Infecções Estreptocócicas , Streptococcus agalactiae , Animais , Camundongos , Streptococcus agalactiae/imunologia , Ácido N-Acetilneuramínico/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Imunidade Inata , Camundongos Endogâmicos C57BL , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Feminino , Macrófagos/imunologia , Macrófagos/metabolismo , Lectinas/metabolismo , Lectinas/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Antígenos CD/metabolismo , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos B
5.
Sci Rep ; 14(1): 11124, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750107

RESUMO

Influenza is a significant public health and economic threat around the world. Epidemiological studies have demonstrated a close association between influenza pandemics and cardiovascular mortality. Moreover, it has been shown that there is a decrease in cardiovascular mortality in high-risk patients following vaccination with the influenza vaccine. Here, we have investigated the role of anti-viral STAT1 signaling in influenza-induced myocarditis. Wild-type mice (C57BL/6) were infected with either influenza A/PR/8/34 or control, and cellular response and gene expression analysis from the heart samples were assessed 7 days later. The expression of interferon response genes STAT1, STAT2, Mx1, OASL2, ISG15, chemokines CCL2, CCL3, CXCL9 and CXCL10, and the frequency of neutrophils (CD45+CD11b+Ly6G+) and CD4+ T cells (CD45+CD4+) were all significantly increased in influenza-infected mice when compared to vehicle controls. These data suggest that influenza infection induces interferons, inflammatory chemokines, and cellular recruitment during influenza infection. We further investigated the role of STAT1 in influenza-induced myocarditis. The frequency of neutrophils and the levels of lipocalin 2 were significantly increased in STAT1-/- mice when compared to WT controls. Finally, we investigated the role of Lcn2 in viral-induced myocarditis. We found that in the absence of Lcn2, there was preserved cardiac function in Lcn2-/- mice when compared to WT controls. These data suggest that the absence of Lcn2 is cardioprotective during viral-induced myocarditis.


Assuntos
Lipocalina-2 , Camundongos Endogâmicos C57BL , Miocardite , Infecções por Orthomyxoviridae , Fator de Transcrição STAT1 , Animais , Miocardite/virologia , Miocardite/metabolismo , Miocardite/etiologia , Lipocalina-2/metabolismo , Lipocalina-2/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Camundongos , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Neutrófilos/metabolismo , Neutrófilos/imunologia , Masculino , Camundongos Knockout
6.
J Transl Med ; 22(1): 460, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750462

RESUMO

BACKGROUND: Chaperonin Containing TCP1 Subunit 6 A (CCT6A) is a prominent protein involved in the folding and stabilization of newly synthesized proteins. However, its roles and underlying mechanisms in lung adenocarcinoma (LUAD), one of the most aggressive cancers, remain elusive. METHODS: Our study utilized in vitro cell phenotype experiments to assess CCT6A's impact on the proliferation and invasion capabilities of LUAD cell lines. To delve into CCT6A's intrinsic mechanisms affecting glycolysis and proliferation in lung adenocarcinoma, we employed transcriptomic sequencing and liquid chromatography-mass spectrometry analysis. Co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (CHIP) assays were also conducted to substantiate the mechanism. RESULTS: CCT6A was found to be significantly overexpressed in LUAD and associated with a poorer prognosis. The silencing of CCT6A inhibited the proliferation and migration of LUAD cells and elevated apoptosis rates. Mechanistically, CCT6A interacted with STAT1 protein, forming a complex that enhances the stability of STAT1 by protecting it from ubiquitin-mediated degradation. This, in turn, facilitated the transcription of hexokinase 2 (HK2), a critical enzyme in aerobic glycolysis, thereby stimulating LUAD's aerobic glycolysis and progression. CONCLUSION: Our findings reveal that the CCT6A/STAT1/HK2 axis orchestrated a reprogramming of glucose metabolism and thus promoted LUAD progression. These insights position CCT6A as a promising candidate for therapeutic intervention in LUAD treatment.


Assuntos
Adenocarcinoma de Pulmão , Proliferação de Células , Chaperonina com TCP-1 , Progressão da Doença , Glicólise , Hexoquinase , Neoplasias Pulmonares , Fator de Transcrição STAT1 , Humanos , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/genética , Hexoquinase/metabolismo , Fator de Transcrição STAT1/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Chaperonina com TCP-1/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Apoptose , Transdução de Sinais , Invasividade Neoplásica
7.
J Transl Med ; 22(1): 474, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764020

RESUMO

BACKGROUND: The initiation of fibroblast growth factor 1 (FGF1) expression coincident with the decrease of FGF2 expression is a well-documented event in prostate cancer (PCa) progression. Lactate dehydrogenase A (LDHA) and LDHB are essential metabolic products that promote tumor growth. However, the relationship between FGF1/FGF2 and LDHA/B-mediated glycolysis in PCa progression is not reported. Thus, we aimed to explore whether FGF1/2 could regulate LDHA and LDHB to promote glycolysis and explored the involved signaling pathway in PCa progression. METHODS: In vitro studies used RT‒qPCR, Western blot, CCK-8 assays, and flow cytometry to analyze gene and protein expression, cell viability, apoptosis, and cell cycle in PCa cell lines. Glycolysis was assessed by measuring glucose consumption, lactate production, and extracellular acidification rate (ECAR). For in vivo studies, a xenograft mouse model of PCa was established and treated with an FGF pathway inhibitor, and tumor growth was monitored. RESULTS: FGF1, FGF2, and LDHA were expressed at high levels in PCa cells, while LDHB expression was low. FGF1/2 positively modulated LDHA and negatively modulated LDHB in PCa cells. The depletion of FGF1, FGF2, or LDHA reduced cell proliferation, induced cell cycle arrest, and inhibited glycolysis. LDHB overexpression showed similar inhibitory effect on PCa cells. Mechanistically, we found that FGF1/2 positively regulated STAT1 and STAT1 transcriptionally activated LDHA expression while suppressed LDHB expression. Furthermore, the treatment of an FGF pathway inhibitor suppressed PCa tumor growth in mice. CONCLUSION: The FGF pathway facilitates glycolysis by activating LDHA and suppressing LDHB in a STAT1-dependent manner in PCa.


Assuntos
Fatores de Crescimento de Fibroblastos , Glicólise , L-Lactato Desidrogenase , Neoplasias da Próstata , Fator de Transcrição STAT1 , Transdução de Sinais , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Humanos , Animais , L-Lactato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Fator de Transcrição STAT1/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Camundongos Nus , Proliferação de Células , Camundongos , Regulação Neoplásica da Expressão Gênica , Fator 2 de Crescimento de Fibroblastos/metabolismo , Apoptose , Lactato Desidrogenase 5/metabolismo , Isoenzimas
8.
PLoS Pathog ; 20(5): e1012020, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38743761

RESUMO

Scrub typhus is an acute febrile disease due to Orientia tsutsugamushi (Ot) infection and can be life-threatening with organ failure, hemorrhage, and fatality. Yet, little is known as to how the host reacts to Ot bacteria at early stages of infection; no reports have addressed the functional roles of type I versus type II interferon (IFN) responses in scrub typhus. In this study, we used comprehensive intradermal (i.d.) inoculation models and two clinically predominant Ot strains (Karp and Gilliam) to uncover early immune events. Karp infection induced sequential expression of Ifnb and Ifng in inflamed skin and draining lymph nodes at days 1 and 3 post-infection. Using double Ifnar1-/-Ifngr1-/- and Stat1-/- mice, we found that deficiency in IFN/STAT1 signaling resulted in lethal infection with profound pathology and skin eschar lesions, which resembled to human scrub typhus. Further analyses demonstrated that deficiency in IFN-γ, but not IFN-I, resulted in impaired NK cell and macrophage activation and uncontrolled bacterial growth and dissemination, leading to metabolic dysregulation, excessive inflammatory cell infiltration, and exacerbated tissue damage. NK cells were found to be the major cellular source of innate IFN-γ, contributing to the initial Ot control in the draining lymph nodes. In vitro studies with dendritic cell cultures revealed a superior antibacterial effect offered by IFN-γ than IFN-ß. Comparative in vivo studies with Karp- and Gilliam-infection revealed a crucial role of IFN-γ signaling in protection against progression of eschar lesions and Ot infection lethality. Additionally, our i.d. mouse models of lethal infection with eschar lesions are promising tools for immunological study and vaccine development for scrub typhus.


Assuntos
Interferon gama , Camundongos Knockout , Orientia tsutsugamushi , Tifo por Ácaros , Transdução de Sinais , Animais , Tifo por Ácaros/imunologia , Tifo por Ácaros/microbiologia , Orientia tsutsugamushi/imunologia , Camundongos , Interferon gama/metabolismo , Interferon gama/imunologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Pele/microbiologia , Pele/patologia , Pele/imunologia , Fator de Transcrição STAT1/metabolismo
9.
Nat Commun ; 15(1): 4484, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802340

RESUMO

Deciphering the intricate dynamic events governing type I interferon (IFN) signaling is critical to unravel key regulatory mechanisms in host antiviral defense. Here, we leverage TurboID-based proximity labeling coupled with affinity purification-mass spectrometry to comprehensively map the proximal human proteomes of all seven canonical type I IFN signaling cascade members under basal and IFN-stimulated conditions. This uncovers a network of 103 high-confidence proteins in close proximity to the core members IFNAR1, IFNAR2, JAK1, TYK2, STAT1, STAT2, and IRF9, and validates several known constitutive protein assemblies, while also revealing novel stimulus-dependent and -independent associations between key signaling molecules. Functional screening further identifies PJA2 as a negative regulator of IFN signaling via its E3 ubiquitin ligase activity. Mechanistically, PJA2 interacts with TYK2 and JAK1, promotes their non-degradative ubiquitination, and limits the activating phosphorylation of TYK2 thereby restraining downstream STAT signaling. Our high-resolution proximal protein landscapes provide global insights into the type I IFN signaling network, and serve as a valuable resource for future exploration of its functional complexities.


Assuntos
Interferon Tipo I , Janus Quinase 1 , Receptor de Interferon alfa e beta , Fator de Transcrição STAT2 , Transdução de Sinais , TYK2 Quinase , Ubiquitinação , Humanos , Interferon Tipo I/metabolismo , TYK2 Quinase/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Janus Quinase 1/metabolismo , Fosforilação , Fator de Transcrição STAT2/metabolismo , Células HEK293 , Fator de Transcrição STAT1/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Proteoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
10.
Technol Cancer Res Treat ; 23: 15330338241250298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706215

RESUMO

Objective: Ubiquitin-specific peptidase 39 (USP39) plays a carcinogenic role in many cancers, but little research has been conducted examining whether it is involved in head and neck squamous cell carcinoma (HNSCC). Therefore, this study explored the functional role of USP39 in HNSCC. Method: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify differentially expressed proteins (DEPs) between the HNSCC tumor and adjacent healthy tissues. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to assess the functional enrichment of DEPs. Immunohistochemistry was used to detect protein expression. The viability and migration of two HNSCC cell lines, namely CAL27 and SCC25, were detected using the cell counting kit-8 assay and a wound healing assay, respectively. Quantitative real-time PCR was used to detect the expression level of signal transducer and activator of transcription 1 (STAT1) mRNA. Results: LC-MS/MS results identified 590 DEPs between HNSCC and adjacent tissues collected from 4 patients. Through GO and KEGG pathway analyses, 34 different proteins were found to be enriched in the spliceosome pathway. The expression levels of USP39 and STAT1 were significantly higher in HNSCC tumor tissue than in adjacent healthy tissue as assessed by LC-MS/MS analysis, and the increased expression of USP39 and STAT1 protein was confirmed by immunohistochemistry in clinical samples collected from 7 additional patients with HNSCC. Knockdown of USP39 or STAT1 inhibited the viability and migration of CAL27 and SCC25 cells. In addition, USP39 knockdown inhibited the expression of STAT1 mRNA in these cells. Conclusion: Our findings indicated that USP39 knockdown may inhibit HNSCC viability and migration by suppressing STAT1 expression. The results of this study suggest that USP39 may be a potential new target for HNSCC clinical therapy or a new biomarker for HNSCC.


Assuntos
Movimento Celular , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço , Fator de Transcrição STAT1 , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteases Específicas de Ubiquitina , Humanos , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Movimento Celular/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Linhagem Celular Tumoral , Proteases Específicas de Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Sobrevivência Celular/genética , Espectrometria de Massas em Tandem , Proliferação de Células , Cromatografia Líquida , Feminino , Masculino , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Proteômica/métodos
11.
PLoS Pathog ; 20(5): e1011820, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718306

RESUMO

The production of IFN-γ is crucial for control of multiple enteric infections, but its impact on intestinal epithelial cells (IEC) is not well understood. Cryptosporidium parasites exclusively infect epithelial cells and the ability of interferons to activate the transcription factor STAT1 in IEC is required for parasite clearance. Here, the use of single cell RNA sequencing to profile IEC during infection revealed an increased proportion of mid-villus enterocytes during infection and induction of IFN-γ-dependent gene signatures that was comparable between uninfected and infected cells. These analyses were complemented by in vivo studies, which demonstrated that IEC expression of the IFN-γ receptor was required for parasite control. Unexpectedly, treatment of Ifng-/- mice with IFN-γ showed the IEC response to this cytokine correlates with a delayed reduction in parasite burden but did not affect parasite development. These data sets provide insight into the impact of IFN-γ on IEC and suggest a model in which IFN-γ signalling to uninfected enterocytes is important for control of Cryptosporidium.


Assuntos
Criptosporidiose , Interferon gama , Mucosa Intestinal , Camundongos Knockout , Animais , Interferon gama/metabolismo , Interferon gama/imunologia , Criptosporidiose/imunologia , Criptosporidiose/parasitologia , Camundongos , Mucosa Intestinal/parasitologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Cryptosporidium , Células Epiteliais/parasitologia , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Enterócitos/parasitologia , Enterócitos/metabolismo , Enterócitos/imunologia , Camundongos Endogâmicos C57BL , Receptor de Interferon gama , Fator de Transcrição STAT1/metabolismo , Receptores de Interferon/metabolismo , Receptores de Interferon/genética , Transdução de Sinais
12.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791551

RESUMO

Rotavirus is the main cause of acute diarrhea in children up to five years of age. In this regard, probiotics are commonly used to treat or prevent gastroenteritis including viral infections. The anti-rotavirus effect of Bifidobacterium longum and Chlorella sorokiniana, by reducing viral infectivity and improving IFN-type I response, has been previously reported. The present study aimed to study the effect of B. longum and/or C. sorokiniana on modulating the antiviral cellular immune response mediated by IFN-γ, IL-10, SOCS3, STAT1, and STAT2 genes in rotavirus-infected cells. To determine the mRNA relative expression of these genes, HT-29 cells were treated with B. longum and C. sorokiniana alone or in combination, followed by rotavirus infection. In addition, infected cells were treated with B. longum and/or C. sorokiniana. Cellular RNA was purified, used for cDNA synthesis, and amplified by qPCR. Our results demonstrated that the combination of B. longum and C. sorokiniana stimulates the antiviral cellular immune response by upregulating IFN-γ and may block pro-inflammatory cytokines by upregulating IL-10 and SOCS3. The results of our study indicated that B. longum, C. sorokiniana, or their combination improve antiviral cellular immune response and might modulate pro-inflammatory responses.


Assuntos
Bifidobacterium longum , Chlorella , Interferon gama , Interleucina-10 , Probióticos , Infecções por Rotavirus , Rotavirus , Proteína 3 Supressora da Sinalização de Citocinas , Humanos , Interleucina-10/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Interferon gama/metabolismo , Probióticos/farmacologia , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/virologia , Chlorella/virologia , Células HT29 , Fator de Transcrição STAT1/metabolismo
13.
J Ethnopharmacol ; 330: 118223, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38642624

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Leonurus japonicus Houtt. (Labiatae), commonly known as Chinese motherwort, is a herbaceous flowering plant that is native to Asia. It is widely acknowledged in traditional medicine for its diuretic, hypoglycemic, antiepileptic properties and neuroprotection. Currently, Leonurus japonicus (Leo) is included in the Pharmacopoeia of the People's Republic of China. Traditional Chinese Medicine (TCM) recognizes Leo for its myriad pharmacological attributes, but its efficacy against ICH-induced neuronal apoptosis is unclear. AIMS OF THE STUDY: This study aimed to identify the potential targets and regulatory mechanisms of Leo in alleviating neuronal apoptosis after ICH. MATERIALS AND METHODS: The study employed network pharmacology, UPLC-Q-TOF-MS technique, molecular docking, pharmacodynamic studies, western blotting, and immunofluorescence techniques to explore its potential mechanisms. RESULTS: Leo was found to assist hematoma absorption, thus improving the neurological outlook in an ICH mouse model. Importantly, molecular docking highlighted JAK as Leo's potential therapeutic target in ICH scenarios. Further experimental evidence demonstrated that Leo adjusts JAK1 and STAT1 phosphorylation, curbing Bax while augmenting Bcl-2 expression. CONCLUSION: Leo showcases potential in mitigating neuronal apoptosis post-ICH, predominantly via the JAK/STAT mechanism.


Assuntos
Apoptose , Hemorragia Cerebral , Leonurus , Simulação de Acoplamento Molecular , Farmacologia em Rede , Neurônios , Animais , Apoptose/efeitos dos fármacos , Leonurus/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Camundongos , Masculino , Hemorragia Cerebral/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Janus Quinase 1/metabolismo , Fator de Transcrição STAT1/metabolismo , Modelos Animais de Doenças
14.
Nat Immunol ; 25(5): 847-859, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658806

RESUMO

Immune cells need to sustain a state of constant alertness over a lifetime. Yet, little is known about the regulatory processes that control the fluent and fragile balance that is called homeostasis. Here we demonstrate that JAK-STAT signaling, beyond its role in immune responses, is a major regulator of immune cell homeostasis. We investigated JAK-STAT-mediated transcription and chromatin accessibility across 12 mouse models, including knockouts of all STAT transcription factors and of the TYK2 kinase. Baseline JAK-STAT signaling was detected in CD8+ T cells and macrophages of unperturbed mice-but abrogated in the knockouts and in unstimulated immune cells deprived of their normal tissue context. We observed diverse gene-regulatory programs, including effects of STAT2 and IRF9 that were independent of STAT1. In summary, our large-scale dataset and integrative analysis of JAK-STAT mutant and wild-type mice uncovered a crucial role of JAK-STAT signaling in unstimulated immune cells, where it contributes to a poised epigenetic and transcriptional state and helps prepare these cells for rapid response to immune stimuli.


Assuntos
Homeostase , Janus Quinases , Macrófagos , Camundongos Knockout , Fatores de Transcrição STAT , Transdução de Sinais , Animais , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Camundongos Endogâmicos C57BL , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , TYK2 Quinase/metabolismo , TYK2 Quinase/genética , Regulação da Expressão Gênica
15.
Cell Rep ; 43(4): 114111, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38615319

RESUMO

The efficacy of immunotherapy against colorectal cancer (CRC) is impaired by insufficient immune cell recruitment into the tumor microenvironment. Our study shows that targeting circDNA2v, a circular RNA commonly overexpressed in CRC, can be exploited to elicit cytotoxic T cell recruitment. circDNA2v functions through binding to IGF2BP3, preventing its ubiquitination, and prolonging the IGF2BP3 half-life, which in turn sustains mRNA levels of the protooncogene c-Myc. Targeting circDNA2v by gene silencing downregulates c-Myc to concordantly induce tumor cell senescence and the release of proinflammatory mediators. Production of CXCL10 and interleukin-9 by CRC cells is elicited through JAK-STAT1 signaling, in turn promoting the chemotactic and cytolytic activities of CD8+ T cells. Clinical evidence associates increased circDNA2v expression in CRC tissues with reductions in CD8+ T cell infiltration and worse outcomes. The regulatory relationship between circDNA2v, cellular senescence, and tumor-infiltrating lymphocytes thus provides a rational approach for improving immunotherapy in CRC.


Assuntos
Senescência Celular , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , RNA Circular/genética , RNA Circular/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Linhagem Celular Tumoral , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Camundongos , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/imunologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Fator de Transcrição STAT1/metabolismo
16.
Proc Natl Acad Sci U S A ; 121(17): e2402226121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621137

RESUMO

Since its discovery over three decades ago, signal transducer and activator of transcription 1 (STAT1) has been extensively studied as a central mediator for interferons (IFNs) signaling and antiviral defense. Here, using genetic and biochemical assays, we unveil Thr748 as a conserved IFN-independent phosphorylation switch in Stat1, which restricts IFN signaling and promotes innate inflammatory responses following the recognition of the bacterial-derived toxin lipopolysaccharide (LPS). Genetically engineered mice expressing phospho-deficient threonine748-to-alanine (T748A) mutant Stat1 are resistant to LPS-induced lethality. Of note, T748A mice exhibited undisturbed IFN signaling, as well as total expression of Stat1. Further, the T748A point mutation of Stat1 recapitulates the safeguard effect of the genetic ablation of Stat1 following LPS-induced lethality, indicating that the Thr748 phosphorylation contributes inflammatory functionalities of Stat1. Mechanistically, LPS-induced Toll-like receptor 4 endocytosis activates a cell-intrinsic IκB kinase-mediated Thr748 phosphorylation of Stat1, which promotes macrophage inflammatory response while restricting the IFN and anti-inflammatory responses. Depletion of macrophages restores the sensitivity of the T748A mice to LPS-induced lethality. Together, our study indicates a phosphorylation-dependent modular functionality of Stat1 in innate immune responses: IFN phospho-tyrosine dependent and inflammatory phospho-threonine dependent. Better understanding of the Thr748 phosphorylation of Stat1 may uncover advanced pharmacologically targetable molecules and offer better treatment modalities for sepsis, a disease that claims millions of lives annually.


Assuntos
Lipopolissacarídeos , Transdução de Sinais , Animais , Camundongos , Fosforilação , Lipopolissacarídeos/farmacologia , Interferons/metabolismo , Inflamação/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
17.
Int Immunopharmacol ; 133: 112153, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38678669

RESUMO

LPS induced sepsis is a complex process involving various immune cells and signaling molecules. Dysregulation of macrophage polarization and ROS production contributed to the pathogenesis of sepsis. PGP is a transmembrane transporter responsible for the efflux of a number of drugs and also expressed in murine macrophages. Natural products have been shown to decrease inflammation and expression of efflux transporters. However, no treatment is currently available to treat LPS induced sepsis. Verapamil and Tangeretin also reported to attenuate lipopolysaccharide-induced inflammation. However, the effects of verapamil or tangeretin on lipopolysaccharide (LPS)-induced sepsis and its detailed anti-inflammatory mechanism have not been reported. Here, we have determined that verapamil and tangeretin protects against LPS-induced sepsis by suppressing M1 macrophages populations and also through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression in macrophages. An hour before LPS (10 mg/kg) was administered; mice were given intraperitoneal injections of either verapamil (5 mg/kg) or tangeretin (5 mg/kg). The peritoneal macrophages from different experimental groups of mice were isolated. Hepatic, pulmonary and splenic morphometric analyses revealed that verapamil and tangeretin decreased the infiltration of neutrophils into the tissues. Verapamil and tangeritin also enhanced the activity of SOD, CAT, GRX and GSH level in all the tissues tested. verapamil or tangeretin pre-treated mice shifted M1 macrophages to M2 type possibly through the inhibition of P-glycoprotein expression via downregulating STAT1/STAT3 and upregulating SOCS3 expression. Hence, both these drugs have shown protective effects in sepsis via suppressing iNOS, COX-2, oxidative stress and NF-κB signaling in macrophages. Therefore, in our study we can summarize that mice were treated with either Vera or Tan before LPS administration cause an elevated IL-10 by the macrophages which enhances the SOCS3 expression, and thereby able to limits STAT1/STAT3 inter-conversion in the macrophages. As a result, NF-κB activity is also getting down regulated and ultimately mitigating the adverse effect of inflammation caused by LPS in resident macrophages. Whether verapamil or tangeretin offers such protection possibly through the inhibition of P-glycoprotein expression in macrophages needs clarification with the bio availability of these drugs under PGP inhibited conditions is a limitation of this study.


Assuntos
Flavonas , Lipopolissacarídeos , Fator de Transcrição STAT1 , Fator de Transcrição STAT3 , Proteína 3 Supressora da Sinalização de Citocinas , Verapamil , Animais , Verapamil/farmacologia , Fator de Transcrição STAT1/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Flavonas/farmacologia , Flavonas/uso terapêutico , Camundongos , Fator de Transcrição STAT3/metabolismo , Masculino , Sepse/tratamento farmacológico , Sepse/imunologia , Sepse/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/imunologia , Células Cultivadas , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
18.
Cell Signal ; 119: 111178, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38640981

RESUMO

STAT1 (Signal Transducer and Activator of Transcription 1), belongs to the STAT protein family, essential for cytokine signaling. It has been reported to have either context dependent oncogenic or tumor suppressor roles in different tumors. Earlier, we demonstrated that Glioblastoma multiforme (GBMs) overexpressing FAT1, an atypical cadherin, had poorer outcomes. Overexpressed FAT1 promotes pro-tumorigenic inflammation, migration/invasion by downregulating tumor suppressor gene, PDCD4. Here, we demonstrate that STAT1 is a novel mediator downstream to FAT1, in downregulating PDCD4 in GBMs. In-silico analysis of GBM databases as well as q-PCR analysis in resected GBM tumors showed positive correlation between STAT1 and FAT1 mRNA levels. Kaplan-Meier analysis showed poorer survival of GBM patients having high FAT1 and STAT1 expression. SiRNA-mediated knockdown of FAT1 decreased STAT1 and increased PDCD4 expression in glioblastoma cells (LN229 and U87MG). Knockdown of STAT1 alone resulted in increased PDCD4 expression. In silico analysis of the PDCD4 promoter revealed four putative STAT1 binding sites (Site1-Site4). ChIP assay confirmed the binding of STAT1 to site1. ChIP-PCR revealed decrease in the binding of STAT1 on the PDCD4 promoter after FAT1 knockdown. Site directed mutagenesis of Site1 resulted in increased PDCD4 luciferase activity, substantiating STAT1 mediated PDCD4 inhibition. EMSA confirmed STAT1 binding to the Site 1 sequence. STAT1 knockdown led to decreased expression of pro-inflammatory cytokines and EMT markers, and reduced migration/invasion of GBM cells. This study therefore identifies STAT1 as a novel downstream mediator of FAT1, promoting pro-tumorigenic activity in GBM, by suppressing PDCD4 expression.


Assuntos
Proteínas Reguladoras de Apoptose , Caderinas , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Proteínas de Ligação a RNA , Fator de Transcrição STAT1 , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Caderinas/metabolismo , Caderinas/genética , Linhagem Celular Tumoral , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Regiões Promotoras Genéticas/genética , Movimento Celular , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia
19.
Comp Med ; 74(2): 121-129, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561234

RESUMO

Chlamydia muridarum (Cm), an intracellular bacterium of historical importance, was recently rediscovered as moderately prevalent in research mouse colonies. Cm was first reported as a causative agent of severe pneumonia in mice about 80 y ago, and while it has been used experimentally to model Chlamydia trachomatis infection of humans, there have been no further reports of clinical disease associated with natural infection. We observed clinical disease and pathology in 2 genetically engi- neered mouse (GEM) strains, Il12rb2 KO and STAT1 KO, with impaired interferon-γ signaling and Th1 CD4+ T cell responses in a colony of various GEM strains known to be colonized with and shedding Cm. Clinical signs included poor condition, hunched posture, and poor fecundity. Histopathology revealed disseminated Cm with lesions in pulmonary, gastrointestinal, and urogenital tissues. The presence of Cm was confirmed using both immunohistochemistry for Cm major outer membrane protein-1 antigen and in situ hybridization using a target probe directed against select regions of Cm strain Nigg. Cm was also found in association with a urothelial papilloma in one mouse. These cases provide additional support for excluding Cm from research mouse colonies.


Assuntos
Infecções por Chlamydia , Chlamydia muridarum , Camundongos Knockout , Fator de Transcrição STAT1 , Animais , Infecções por Chlamydia/patologia , Infecções por Chlamydia/veterinária , Infecções por Chlamydia/microbiologia , Camundongos , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Feminino , Receptores de Interleucina-12/deficiência , Receptores de Interleucina-12/genética , Masculino , Pneumopatias/microbiologia , Pneumopatias/patologia , Pneumopatias/veterinária
20.
J Ethnopharmacol ; 331: 118210, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38641074

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Long-term chronic inflammation often leads to chronic diseases. Although Sophora flavescens has been shown to have anti-inflammatory properties, its detailed molecular mechanism is still unknown. AIM OF STUDY: This study investigated the effect of Radix Sophorae Flavescentis on the LPS-induced inflammatory response in macrophages. MATERIALS AND METHODS: LPS was used to induce the peritoneal macrophages to simulate the inflammatory environment in vitro. Different concentrations of Radix Sophorae Flavescentis-containing (medicated) serum were used for intervention. The peritoneal macrophages were identified by using hematoxylin-eosin and immunofluorescence staining. ELISA was used to measure the TNF-α and IL-6 expression to determine the concentration of LPS. ELISA and Western blot (WB) were used to detect the PGE2 and CFHR2 expression in each group, respectively. The lentiviral vector for interference and overexpression of the CFHR2 gene was constructed, packaged, and transfected into LPS-induced macrophages. The transfection efficiency was verified by WB. Then, ELISA was used to detect the TNF-α, PGE2, and IL-6 expression. WB was used to detect the CFHR2, iNOS, COX-2, TLR2, TLR4, IFN-γ, STAT1, and p-STAT1 expression. RESULTS: The primary isolated cells were identified as macrophages. The LPS-treated macrophages exhibited significantly higher expression of PGE2 and CFHR2, and the inflammatory factors TNF-α and IL-6, as well as iNOS, COX-2, TLR2, TLR4, IFN-γ, STAT1, and p-STAT1 expression compared with the control group (P < 0.05). The TNF-α, PGE2, and IL-6 levels, as well as CFHR2, iNOS, COX-2, TLR2, TLR4, IFN-γ, STAT1, and p-STAT1 expression were considerably lower in the LPS-induced+10% medicated-serum group, LPS-induced+20% medicated-serum group, and shCFHR interference group compared with the LPS group (P < 0.05). CONCLUSION: Radix Sophorae Flavescentis might mediate CFHR2 expression and play an important role in inhibiting the LPS-induced pro-inflammatory response of macrophages. Radix Sophorae Flavescentis could be a potential treatment for LPS-induced related inflammatory diseases.


Assuntos
Anti-Inflamatórios , Lipopolissacarídeos , Sophora , Animais , Sophora/química , Anti-Inflamatórios/farmacologia , Camundongos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Fator de Necrose Tumoral alfa/metabolismo , Dinoprostona/metabolismo , Extratos Vegetais/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/induzido quimicamente , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Masculino , Fator de Transcrição STAT1/metabolismo , Raízes de Plantas , Células Cultivadas , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Sophora flavescens
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...