Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 698
Filtrar
1.
Mol Immunol ; 170: 46-56, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615627

RESUMO

Peritoneal B cells can be divided into B1 cells (CD11b+CD19+) and B2 cells (CD11b-CD19+) based on CD11b expression. B1 cells play a crucial role in the innate immune response by producing natural antibodies and cytokines. B2 cells share similar traits with B1 cells, influenced by the peritoneal environment. However, the response of both B1 and B2 cells to the same stimuli in the peritoneum remains uncertain. We isolated peritoneal B1 and B2 cells from mice and assessed differences in Interleukin-10(IL-10) secretion, apoptosis, and surface molecule expression following exposure to LPS and Interleukin-21(IL-21). Our findings indicate that B1 cells are potent IL-10 producers, possessing surface molecules with an IgMhiCD43+CD21low profile, and exhibit a propensity for apoptosis in vitro. Conversely, B2 cells exhibit lower IL-10 production and surface markers characterized as IgMlowCD43-CD21hi, indicative of some resistance to apoptosis. LPS stimulates MAPK phosphorylation in B1 and B2 cells, causing IL-10 production. Furthermore, LPS inhibits peritoneal B2 cell apoptosis by enhancing Bcl-xL expression. Conversely, IL-21 has no impact on IL-10 production in these cells. Nevertheless, impeding STAT3 phosphorylation permits IL-21 to increase IL-10 production in peritoneal B cells. Moreover, IL-21 significantly raises apoptosis levels in these cells, a process independent of STAT3 phosphorylation and possibly linked to reduced Bcl-xL expression. This study elucidates the distinct functional and response profiles of B1 and B2 cells in the peritoneum to stimuli like LPS and IL-21, highlighting their differential roles in immunological responses and B cell diversity.


Assuntos
Apoptose , Interleucina-10 , Interleucinas , Lipopolissacarídeos , Peritônio , Interleucinas/imunologia , Interleucinas/metabolismo , Animais , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/imunologia , Camundongos , Interleucina-10/imunologia , Interleucina-10/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Peritônio/imunologia , Peritônio/citologia , Subpopulações de Linfócitos B/imunologia , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/imunologia , Linfócitos B/imunologia , Antígeno CD11b/metabolismo , Antígeno CD11b/imunologia , Proteína bcl-X/metabolismo , Proteína bcl-X/imunologia , Fosforilação/efeitos dos fármacos , Antígenos CD19/imunologia , Antígenos CD19/metabolismo
2.
Cell Rep ; 42(7): 112806, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37440406

RESUMO

This study identifies interleukin-6 (IL-6)-independent phosphorylation of STAT3 Y705 at the early stage of infection with several viruses, including influenza A virus (IAV). Such activation of STAT3 is dependent on the retinoic acid-induced gene I/mitochondrial antiviral-signaling protein/spleen tyrosine kinase (RIG-I/MAVS/Syk) axis and critical for antiviral immunity. We generate STAT3Y705F/+ knockin mice that display a remarkably suppressed antiviral response to IAV infection, as evidenced by impaired expression of several antiviral genes, severe lung tissue injury, and poor survival compared with wild-type animals. Mechanistically, STAT3 Y705 phosphorylation restrains IAV pathogenesis by repressing excessive production of interferons (IFNs). Blocking phosphorylation significantly augments the expression of type I and III IFNs, potentiating the virulence of IAV in mice. Importantly, knockout of IFNAR1 or IFNLR1 in STAT3Y705F/+ mice protects the animals from lung injury and reduces viral load. The results indicate that activation of STAT3 by Y705 phosphorylation is vital for establishment of effective antiviral immunity by suppressing excessive IFN signaling induced by viral infection.


Assuntos
Vírus da Influenza A , Infecções por Orthomyxoviridae , Fator de Transcrição STAT3 , Animais , Camundongos , Antivirais , Imunidade Inata , Interferons , Receptores de Interferon , Transdução de Sinais , Infecções por Orthomyxoviridae/imunologia , Fator de Transcrição STAT3/imunologia
3.
Clin Exp Immunol ; 212(2): 107-116, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36652220

RESUMO

The STAT3 story has almost 30 years of evolving history. First identified in 1994 as a pro-inflammatory transcription factor, Signal Transducer and Activator of Transcription 3 (STAT3) has continued to be revealed as a quintessential pleiotropic signalling module spanning fields including infectious diseases, autoimmunity, vaccine responses, metabolism, and malignancy. In 2007, germline heterozygous dominant-negative loss-of-function variants in STAT3 were discovered as the most common cause for a triad of eczematoid dermatitis with recurrent skin and pulmonary infections, first described in 1966. This finding established that STAT3 plays a critical non-redundant role in immunity against some pathogens, as well as in the connective tissue, dental and musculoskeletal systems. Several years later, in 2014, heterozygous activating gain of function germline STAT3 variants were found to be causal for cases of early-onset multiorgan autoimmunity, thereby underpinning the notion that STAT3 function needed to be regulated to maintain immune homeostasis. As we and others continue to interrogate biochemical and cellular perturbations due to inborn errors in STAT3, we will review our current understanding of STAT3 function, mechanisms of disease pathogenesis, and future directions in this dynamic field.


Assuntos
Imunidade , Fator de Transcrição STAT3 , Humanos , Autoimunidade/genética , Autoimunidade/imunologia , Mutação/genética , Fator de Transcrição STAT3/imunologia , Fator de Transcrição STAT3/metabolismo , Imunidade/genética , Imunidade/imunologia , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/imunologia
4.
Int Immunopharmacol ; 113(Pt A): 109424, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36461589

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease of unknown cause and characterized by excessive proliferation of fibroblasts and the irregular remodeling of extracellular matrix (ECM), which ultimately cause the severe distortion of the alveolar architecture. The median survival of IPF patients is 2-5 years. IPF patients are predominantly infiltrated by M2 macrophages during the course of disease development and progression. Predominantly accumulation of M2 macrophages accelerates fibrosis progression by secreting multiple cytokines that promote fibroblast to myofibroblast transition. In the process of M2 macrophage polarization, JAK2/STAT3 signaling plays a key role, thus, targeting activated macrophages to inhibit the pro-fibrotic phenotype is considered as an approach to the potential treatment of IPF. Tacrolimus is a macrolide antibiotic that as a specific inhibitor of T-lymphocyte function and has been used widely as an immunosuppressant in human organ transplantation. In this study we explored the potential effect and mechanism of tacrolimus on pulmonary fibrosis in vivo and vitro. Here, we found that tacrolimus is capable of suppressing M2 macrophages polarization by inhibiting pro-fibrotic factors secreted by M2 macrophages. This effect further alleviates M2-induced myofibroblast activation, thus resulting in a decline of collagen deposition, pro-fibrotic cytokines secretion, recovering of lung function, ultimately relieving the progression of fibrosis in vivo. Mechanistically, we found that tacrolimus can inhibit the activation of JAK2/STAT3 signaling by targeting JAK2. Our findings indicate a potential anti-fibrotic effect of tacrolimus by regulating macrophage polarization and might be meaningful in clinical settings.


Assuntos
Bleomicina , Fibrose Pulmonar Idiopática , Macrófagos , Tacrolimo , Humanos , Bleomicina/efeitos adversos , Citocinas , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/imunologia , Janus Quinase 2/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Fator de Transcrição STAT3/imunologia , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico
5.
Cell Mol Gastroenterol Hepatol ; 14(4): 789-811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35809803

RESUMO

BACKGROUND & AIMS: MUC1 is abnormally expressed in colorectal cancer, including colitis-associated colorectal cancer (CAC), but its role in tumorigenesis is unclear. This study investigated MUC1's effects in murine models of colitis and CAC and elucidated mechanisms of action. METHODS: Colitis and CAC were induced in mice by exposure to dextran sodium sulfate or azoxymethane plus dextran sodium sulphate. Clinical parameters, immune cell infiltration, and tumor development were monitored throughout disease progression. Experiments in knockout mice and bone marrow chimeras were combined with an exploration of immune cell abundance and function. RESULTS: Deficiency of Muc1 suppressed inflammation, inhibited tumor progression, increased abundance of CD8+ T lymphocytes, and reduced abundance of macrophages in colon tumors. Bone marrow chimeras showed promotion of CAC was primarily mediated by Muc1-expressing hematopoietic cells, and that MUC1 promoted a pro-tumoral immunosuppressive macrophage phenotype within tumors. Mechanistic studies revealed that Muc1 deficiency remarkably reduced interleukin-6 levels in the colonic tissues and tumors that was mainly produced by infiltrating macrophages at day 21, 42, and 85. In bone marrow-derived macrophages, MUC1 promoted responsiveness to chemoattractant and promoted activation into a phenotype with high Il6 and Ido1 expression, secreting factors which inhibited CD8+ T cell proliferation. MUC1 potently drives macrophages to produce interleukin-6, which in turn drives a pro-tumorigenic activation of signal transducer and activator of transcription 3 in colon epithelial tumor and stromal cells, ultimately increasing the occurrence and development of CAC. CONCLUSIONS: Our findings provide cellular and molecular mechanisms for the pro-tumorigenic functions of MUC1 in the inflamed colon. Therapeutic strategies to inhibit MUC1 signal transduction warrant consideration for the prevention or therapy of CAC.


Assuntos
Neoplasias Associadas a Colite , Interleucina-6 , Ativação de Macrófagos , Mucina-1 , Fator de Transcrição STAT3 , Animais , Azoximetano/toxicidade , Carcinogênese , Fatores Quimiotáticos , Colite/induzido quimicamente , Colite/genética , Colite/imunologia , Neoplasias Associadas a Colite/genética , Neoplasias Associadas a Colite/imunologia , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Sulfato de Dextrana/toxicidade , Interleucina-6/genética , Interleucina-6/imunologia , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Camundongos , Camundongos Knockout , Mucina-1/genética , Mucina-1/imunologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/imunologia
6.
Int J Hematol ; 115(6): 816-825, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35275353

RESUMO

Acquired chronic pure red cell aplasia (PRCA) develops idiopathically or in association with other medical conditions, including T cell large granular lymphocytic leukemia (T-LGLL) and thymoma. T cell dysregulation is considered a cardinal pathogenesis of PRCA, but genetic-phenotypic associations in T cell abnormalities are largely unclear. We evaluated an extended cohort of 90 patients with acquired PRCA, including 26 with idiopathic, 36 with T-LGLL-associated and 15 with thymoma-associated PRCA, for their T cell immuno-phenotypes, clonalities and STAT3 mutations. TCR repertoire skewing of CD8+ T cells was detected in 37.5% of idiopathic, 66.7% of T-LGLL-associated and 25% of thymoma-associated PRCA patients, and restriction to Vß1 was most prominent (41%). Clonalities of TCRß or γ chain and STAT3 mutational status were statistically associated (P = 0.0398), and they were detected in all three subtypes. The overall response rate to cyclosporin A was 73.9%, without significant difference by subtypes nor STAT3 mutational status. The T cell dysregulations, such as TCR repertoire skewing with predominant Vß1 usage, clonality and STAT3 mutations, were frequently found across the subtypes, and the close associations between them suggest that these T cell derangements reflect a common pathophysiological mechanism among these PRCA subtypes.


Assuntos
Leucemia Linfocítica Granular Grande , Aplasia Pura de Série Vermelha , Fator de Transcrição STAT3 , Timoma , Neoplasias do Timo , Linfócitos T CD8-Positivos/patologia , Humanos , Leucemia Linfocítica Granular Grande/genética , Leucemia Linfocítica Granular Grande/imunologia , Leucemia Linfocítica Granular Grande/patologia , Mutação , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Aplasia Pura de Série Vermelha/genética , Aplasia Pura de Série Vermelha/imunologia , Aplasia Pura de Série Vermelha/patologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/imunologia , Timoma/genética , Timoma/imunologia , Neoplasias do Timo/imunologia
7.
Biomed Environ Sci ; 35(2): 95-106, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35197174

RESUMO

OBJECTIVE: This study aimed to investigate the effects of caprylic acid (C8:0) on lipid metabolism and inflammation, and examine the mechanisms underlying these effects in mice and cells. METHODS: Fifty-six 6-week-old male C57BL/6J mice were randomly allocated to four groups fed a high-fat diet (HFD) without or with 2% C8:0, palmitic acid (C16:0) or eicosapentaenoic acid (EPA). RAW246.7 cells were randomly divided into five groups: normal, lipopolysaccharide (LPS), LPS+C8:0, LPS+EPA and LPS+cAMP. The serum lipid profiles, inflammatory biomolecules, and ABCA1 and JAK2/STAT3 mRNA and protein expression were measured. RESULTS: C8:0 decreased TC and LDL-C, and increased the HDL-C/LDL-C ratio after injection of LPS. Without LPS, it decreased TC in mice ( P < 0.05). Moreover, C8:0 decreased the inflammatory response after LPS treatment in both mice and cells ( P < 0.05). Mechanistic investigations in C57BL/6J mouse aortas after injection of LPS indicated that C8:0 resulted in higher ABCA1 and JAK2/STAT3 expression than that with HFD, C16:0 and EPA, and resulted in lower TNF-α, NF-κB mRNA expression than that with HFD ( P < 0.05). In RAW 264.7 cells, C8:0 resulted in lower expression of pNF-κBP65 than that in the LPS group, and higher protein expression of ABCA1, p-JAK2 and p-STAT3 than that in the LPS and LPS+cAMP groups ( P < 0.05). CONCLUSION: Our studies demonstrated that C8:0 may play an important role in lipid metabolism and the inflammatory response, and the mechanism may be associated with ABCA1 and the p-JAK2/p-STAT3 signaling pathway.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/imunologia , Caprilatos/administração & dosagem , Inflamação/tratamento farmacológico , Janus Quinase 2/imunologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Fator de Transcrição STAT3/imunologia , Transportador 1 de Cassete de Ligação de ATP/genética , Animais , Caprilatos/química , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Humanos , Inflamação/etiologia , Inflamação/imunologia , Inflamação/metabolismo , Janus Quinase 2/genética , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Fator de Transcrição STAT3/genética , Transdução de Sinais
8.
Cell Rep ; 38(3): 110244, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35045292

RESUMO

The active form of vitamin D, 1,25-dihydroxyvitamin D3, induces a stable tolerogenic phenotype in dendritic cells (DCs). This process involves the vitamin D receptor (VDR), which translocates to the nucleus, binds its cognate genomic sites, and promotes epigenetic and transcriptional remodeling. In this study, we report the occurrence of vitamin D-specific DNA demethylation and transcriptional activation at VDR binding sites associated with the acquisition of tolerogenesis in vitro. Differentiation to tolerogenic DCs associates with activation of the IL-6-JAK-STAT3 pathway. We show that JAK2-mediated STAT3 phosphorylation is specific to vitamin D stimulation. VDR and the phosphorylated form of STAT3 interact with each other to form a complex with methylcytosine dioxygenase TET2. Most importantly, pharmacological inhibition of JAK2 reverts vitamin D-induced tolerogenic properties of DCs. This interplay among VDR, STAT3, and TET2 opens up possibilities for modulating DC immunogenic properties in clinics.


Assuntos
Proteínas de Ligação a DNA/imunologia , Células Dendríticas/imunologia , Dioxigenases/imunologia , Tolerância Imunológica/imunologia , Receptores de Calcitriol/imunologia , Fator de Transcrição STAT3/imunologia , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Células Dendríticas/metabolismo , Dioxigenases/metabolismo , Humanos , Receptores de Calcitriol/metabolismo , Fator de Transcrição STAT3/metabolismo
9.
Cancer Sci ; 113(2): 432-445, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34927311

RESUMO

Thrombospondin-1 (TSP1) is generally assumed to suppress the growth of osteosarcoma through inhibiting angiogenesis; however, it is unclear whether TSP1 could affect the antitumor immunity against osteosarcoma. We aimed to explore the immune-related tumor-promoting effects of TSP1 and decipher its underlying mechanism. First, we identified that TSP1 regulated programmed death-ligand 1 (PD-L1) expression, which was related to the CD8+ T cells anergy in osteosarcoma cells. The exact role of PD-L1 in the immunosuppressive effect of TSP1 was then further confirmed by the addition of the PD-L1 neutralizing Ab. With the addition of PD-L1 neutralizing Abs during cocultivation, the inhibition of CD8+ T cells was abolished to a certain extent. Further mechanistic investigations showed that TSP1-induced PD-L1 upregulation was achieved by activation of the signal transducer and activator of transcription 3 (STAT3) pathway. In vivo experiments also indicated that TSP1 overexpression could promote the growth of primary lesions, whereas TSP1 knockdown effectively inhibits the growth of the primary lesion as well as lung metastasis by restoring the antitumor immunity. Thrombospondin-1 knockdown combined with PD-L1 neutralizing Ab achieved a more pronounced antitumor effect. Taken together, our study showed that TSP1 upregulates PD-L1 by activating the STAT3 pathway and, therefore, impairs the antitumor immunity against osteosarcoma.


Assuntos
Antígeno B7-H1/imunologia , Neoplasias Ósseas/imunologia , Tolerância Imunológica , Osteossarcoma/imunologia , Fator de Transcrição STAT3/imunologia , Trombospondina 1/imunologia , Animais , Apoptose , Antígeno B7-H1/genética , Neoplasias Ósseas/patologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Osteossarcoma/patologia , Transdução de Sinais , Trombospondina 1/genética
10.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-927639

RESUMO

OBJECTIVE@#This study aimed to investigate the effects of caprylic acid (C8:0) on lipid metabolism and inflammation, and examine the mechanisms underlying these effects in mice and cells.@*METHODS@#Fifty-six 6-week-old male C57BL/6J mice were randomly allocated to four groups fed a high-fat diet (HFD) without or with 2% C8:0, palmitic acid (C16:0) or eicosapentaenoic acid (EPA). RAW246.7 cells were randomly divided into five groups: normal, lipopolysaccharide (LPS), LPS+C8:0, LPS+EPA and LPS+cAMP. The serum lipid profiles, inflammatory biomolecules, and ABCA1 and JAK2/STAT3 mRNA and protein expression were measured.@*RESULTS@#C8:0 decreased TC and LDL-C, and increased the HDL-C/LDL-C ratio after injection of LPS. Without LPS, it decreased TC in mice ( P < 0.05). Moreover, C8:0 decreased the inflammatory response after LPS treatment in both mice and cells ( P < 0.05). Mechanistic investigations in C57BL/6J mouse aortas after injection of LPS indicated that C8:0 resulted in higher ABCA1 and JAK2/STAT3 expression than that with HFD, C16:0 and EPA, and resulted in lower TNF-α, NF-κB mRNA expression than that with HFD ( P < 0.05). In RAW 264.7 cells, C8:0 resulted in lower expression of pNF-κBP65 than that in the LPS group, and higher protein expression of ABCA1, p-JAK2 and p-STAT3 than that in the LPS and LPS+cAMP groups ( P < 0.05).@*CONCLUSION@#Our studies demonstrated that C8:0 may play an important role in lipid metabolism and the inflammatory response, and the mechanism may be associated with ABCA1 and the p-JAK2/p-STAT3 signaling pathway.


Assuntos
Animais , Humanos , Masculino , Camundongos , Transportador 1 de Cassete de Ligação de ATP/imunologia , Caprilatos/química , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo , Janus Quinase 2/imunologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT3/imunologia , Transdução de Sinais
11.
Front Immunol ; 12: 767939, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858425

RESUMO

The tumor microenvironment (TME) is composed of a heterogenous population of cells that exist alongside the extracellular matrix and soluble components. These components can shape an environment that is conducive to tumor growth and metastatic spread. It is well-established that stromal cancer-associated fibroblasts (CAFs) in the TME play a pivotal role in creating and maintaining a growth-permissive environment for tumor cells. A growing body of work has uncovered that tumor cells recruit and educate CAFs to remodel the TME, however, the mechanisms by which this occurs remain incompletely understood. Recent studies suggest that the signal transducer and activator of transcription 3 (STAT3) is a key transcription factor that regulates the function of CAFs, and their crosstalk with tumor and immune cells within the TME. CAF-intrinsic STAT3 activity within the TME correlates with tumor progression, immune suppression and eventually the establishment of metastases. In this review, we will focus on the roles of STAT3 in regulating CAF function and their crosstalk with other cells constituting the TME and discuss the utility of targeting STAT3 within the TME for therapeutic benefit.


Assuntos
Fibroblastos Associados a Câncer/imunologia , Neoplasias/imunologia , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia , Fibroblastos Associados a Câncer/metabolismo , Comunicação Celular/imunologia , Progressão da Doença , Humanos , Janus Quinases/imunologia , Janus Quinases/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Fosforilação/imunologia , Fator de Transcrição STAT3/metabolismo
12.
Front Immunol ; 12: 773013, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925343

RESUMO

Gardnerella vaginalis is associated with bacterial vaginosis (BV). The virulence factors produced by G. vaginalis are known to stimulate vaginal mucosal immune response, which is largely driven by activated macrophages. While Tilapia piscidin 4 (TP4), an antimicrobial peptide isolated from Nile tilapia, is known to display a broad range of antibacterial functions, it is unclear whether TP4 can affect macrophage polarization in the context of BV. In this study, we used the culture supernatants from G. vaginalis to stimulate differentiation of THP-1 and RAW264.7 cells to an M1 phenotype. The treatment activated the NF-κB/STAT1 signaling pathway, induced reactive nitrogen and oxygen species, and upregulated inflammatory mediators. We then treated the induced M1 macrophages directly with a non-toxic dose of TP4 or co-cultured the M1 macrophages with TP4-treated vaginal epithelial VK2 cells. The results showed that TP4 could not only decrease pro-inflammatory mediators in the M1 macrophages, but it also enriched markers of M2 macrophages. Further, we found that direct treatment with TP4 switched M1 macrophages toward a resolving M2c phenotype via the MAPK/ERK pathway and IL-10-STAT3 signaling. Conversely, tissue repair M2a macrophages were induced by TP4-treated VK2 cells; TP4 upregulated TSG-6 in VK2 cells, which subsequently activated STAT6 and M2a-related gene expression in the macrophages. In conclusion, our results imply that TP4 may be able to attenuate the virulence of G. vaginalis by inducing resolving M2c and tissue repair M2a macrophage polarizations, suggesting a novel strategy for BV therapy.


Assuntos
Anti-Inflamatórios/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Gardnerella vaginalis , Macrófagos/imunologia , Vaginose Bacteriana/imunologia , Animais , Linhagem Celular , Ciclídeos , Citocinas/imunologia , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Modelos Biológicos , Fator de Transcrição STAT3/imunologia
13.
Front Immunol ; 12: 739219, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912331

RESUMO

Active form of vitamin D (VitD) enhances human innate immunity against Mycobacterium tuberculosis (Mtb) infection. Our previous studies showed that MIR337-3p was highly expressed in lymphocytes of tuberculosis (TB) patients. Here, we identified the mechanism of MIR337-3p in the regulation of fast-acting anti-TB immunity by inhibiting VitD-dependent antimicrobial response pathways. While high-level MIR337-3p expression was induced by mycobacterial infection in cellular models and mice, TB patients exhibited significantly increased MIR337-3p in CD14+ monocytes/macrophages, innate-like Vγ2+ T cells, and CD8+ lymphocytes containing natural killer (NK)/innate lymphoid cells. MIR337-3p promoted the mycobacterial entry/infection and replication/growth in host target cells: macrophages and lung epithelial cells. Such MIR337-3p-enhanced pathogenicity coincided with the MIR337-3p depression of VitD-dependent antimicrobial response of cytochrome P450, family 27, subfamily b, polypeptide 1 (CYP27B1)/Beta-defensin 4 (DEFB4A)/ cathelicidin antimicrobial peptide CAMP pathways. Surprisingly, single MIR337-3p species could specifically target both the Toll-like receptor 4 (TLR4) and signal transducer and activator of transcription 3 (STAT3) 3'-untranslated regions (UTRs) to depress the TLR4/MYD88 and STAT3 signals and impair either of the two signals inhibiting the VitD-dependent antimicrobial pathways in macrophages. Concurrently, human peripheral blood mononuclear cells (PBMCs) expressing high-level MIR337-3p exhibited a reduced ability of innate cell populations to mount fast-acting cellular immunity against intracellular mycobacterial infection. Furthermore, a higher expression of Mir337-3p after mycobacterial infection of mice coincided with much greater colony-forming unit (CFU) counts in lungs and even the death of infected animals, whereas Mir337-3p inhibitor treatment of infected mice reduced Mir337-3p levels and reversed Mir337-3p-mediated increases in CFU counts. Thus, TB-driven single MIR337-3p species could specifically target/impair both TLR4/MYD88 and STAT3 activation signals, inhibiting VitD-dependent antimicrobial response and fast-acting anti-TB immunity, leading to enhanced pathogenicity.


Assuntos
Imunidade Inata/imunologia , MicroRNAs/imunologia , Mycobacterium tuberculosis/patogenicidade , Receptores de Calcitriol/imunologia , Tuberculose/imunologia , Animais , Humanos , Imunidade Inata/genética , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/imunologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
14.
Biochemistry (Mosc) ; 86(11): 1489-1501, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34906042

RESUMO

Bronchial asthma is a heterogeneous chronic inflammatory disease of airways. The studies of molecular and cellular mechanisms of bronchial asthma have established that a wide range of immune (T and B cells, eosinophils, neutrophils, macrophages, etc.) and structural (epithelial and endothelial) cells are involved in its pathogenesis. These cells are activated in response to external stimuli (bacteria, viruses, allergens, and other pollutants) and produce pro-inflammatory factors (cytokines, chemokines, metalloproteinases, etc.), which ultimately leads to the initiation of pathological processes in the lungs. Genes encoding transcription factors of the STAT family (signal transducer and activator of transcription), that includes seven representatives, are involved in the cell activation. Recent studies have shown that the transcription factor STAT3 plays an important role in the activation of the abovementioned cells, thus contributing to the development of asthma. In animal studies, selective inhibition of STAT3 significantly reduces the severity of lung inflammation, which indicates its potential as a therapeutic target. In this review, we describe the mechanisms of STAT3 activation and its role in polarization of Th2/Th17 cells and M2 macrophages, as well as in the dysfunction of endothelial cells, which ultimately leads to development of bronchial asthma symptoms, such as infiltration of neutrophils and eosinophils into the lungs, bronchial hyperreactivity, and the respiratory tract remodeling.


Assuntos
Asma/imunologia , Leucócitos/imunologia , Pulmão/imunologia , Fator de Transcrição STAT3/imunologia , Animais , Asma/patologia , Humanos , Leucócitos/patologia , Pulmão/patologia
15.
Front Immunol ; 12: 663177, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867936

RESUMO

Dominant-negative mutations associated with signal transducer and activator of transcription 3 (STAT3) signaling, which controls epithelial proliferation in various tissues, lead to atopic dermatitis in hyper IgE syndrome. This dermatitis is thought to be attributed to defects in STAT3 signaling in type 17 helper T cell specification. However, the role of STAT3 signaling in skin epithelial cells remains unclear. We found that STAT3 signaling in keratinocytes is required to maintain skin homeostasis by negatively controlling the expression of hair follicle-specific keratin genes. These expression patterns correlated with the onset of dermatitis, which was observed in specific pathogen-free conditions but not in germ-free conditions, suggesting the involvement of Toll-like receptor-mediated inflammatory responses. Thus, our study suggests that STAT3-dependent gene expression in keratinocytes plays a critical role in maintaining the homeostasis of skin, which is constantly exposed to microorganisms.


Assuntos
Folículo Piloso/fisiologia , Fator de Transcrição STAT3/fisiologia , Animais , Dermatite Atópica/etiologia , Dermatite Atópica/genética , Dermatite Atópica/imunologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Folículo Piloso/imunologia , Homeostase , Humanos , Queratinócitos/imunologia , Queratinócitos/fisiologia , Queratinas/genética , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT3/deficiência , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/imunologia , Transdução de Sinais , Pele/imunologia , Pele/microbiologia , Fenômenos Fisiológicos da Pele , Células Th17/imunologia
16.
Front Immunol ; 12: 724609, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603297

RESUMO

STAT3 activates transcription of genes that regulate cell growth, differentiation, and survival of mammalian cells. Genetic deletion of Stat3 in T cells has been shown to abrogate Th17 differentiation, suggesting that STAT3 is a potential therapeutic target for Th17-mediated diseases. However, a major impediment to therapeutic targeting of intracellular proteins such as STAT3 is the lack of efficient methods for delivering STAT3 inhibitors into cells. In this study, we developed a novel antibody (SBT-100) comprised of the variable (V) region of a STAT3-specific heavy chain molecule and demonstrate that this 15 kDa STAT3-specific nanobody enters human and mouse cells, and induced suppression of STAT3 activation and lymphocyte proliferation in a concentration-dependent manner. To investigate whether SBT-100 would be effective in suppressing inflammation in vivo, we induced experimental autoimmune uveitis (EAU) in C57BL/6J mice by active immunization with peptide from the ocular autoantigen, interphotoreceptor retinoid binding protein (IRBP651-670). Analysis of the retina by fundoscopy, histological examination, or optical coherence tomography showed that treatment of the mice with SBT-100 suppressed uveitis by inhibiting expansion of pathogenic Th17 cells that mediate EAU. Electroretinographic (ERG) recordings of dark and light adapted a- and b-waves showed that SBT-100 treatment rescued mice from developing significant visual impairment observed in untreated EAU mice. Adoptive transfer of activated IRBP-specific T cells from untreated EAU mice induced EAU, while EAU was significantly attenuated in mice that received IRBP-specific T cells from SBT-100 treated mice. Taken together, these results demonstrate efficacy of SBT-100 in mice and suggests its therapeutic potential for human autoimmune diseases.


Assuntos
Doenças Autoimunes/prevenção & controle , Fator de Transcrição STAT3/imunologia , Células Th17/imunologia , Uveíte/prevenção & controle , Transferência Adotiva , Animais , Autoantígenos/imunologia , Autoantígenos/metabolismo , Doenças Autoimunes/imunologia , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Eletrorretinografia , Proteínas do Olho/imunologia , Proteínas do Olho/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação ao Retinol/imunologia , Proteínas de Ligação ao Retinol/metabolismo , Fator de Transcrição STAT3/metabolismo , Células Th17/patologia , Uveíte/imunologia
17.
Front Immunol ; 12: 661323, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531850

RESUMO

Tumors evade the immune system by inducing inflammation. In melanoma, tumor-derived IL-1ß drives inflammation and the expansion of highly immunosuppressive myeloid-derived suppressor cells (MDSCs). Similar in many tumors, melanoma is also linked to the downstream IL-6/STAT3 axis. In this study, we observed that both recombinant and tumor-derived IL-1ß specifically induce pSTAT3(Y705), creating a tumor-autoinflammatory loop, which amplifies IL-6 signaling in the human melanoma cell line 1205Lu. To disrupt IL-1ß/IL-6/STAT3 axis, we suppressed IL-1ß-mediated inflammation by inhibiting the NOD-like receptor protein 3 (NLRP3) using OLT1177, a safe-in-humans specific NLRP3 oral inhibitor. In vivo, using B16F10 melanoma, OLT1177 effectively reduced tumor progression (p< 0.01); in primary tumors, OLT1177 decreased pSTAT3(Y705) by 82% (p<0.01) and II6 expression by 53% (p<0.05). Disruption of tumor-derived NLRP3, either pharmacologically or genetically, reduced STAT3 signaling in bone marrow cells. In PMN-MDSCs isolated from tumor-bearing mice treated with OLT1177, we observed significant reductions in immunosuppressive genes such as Pdcd1l1, Arg1, Il10 and Tgfb1. In conclusion, the data presented here show that the inhibition of NLRP3 reduces IL-1ß induction of pSTAT3(Y705) preventing expression of immunosuppressive genes as well as activity in PMN-MDSCs.


Assuntos
Interleucina-1beta/imunologia , Interleucina-6/imunologia , Melanoma/imunologia , Células Supressoras Mieloides/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Fator de Transcrição STAT3/imunologia , Animais , Linhagem Celular Tumoral , Humanos , Tolerância Imunológica/efeitos dos fármacos , Tolerância Imunológica/imunologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Imunológicos , Células Supressoras Mieloides/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nitrilas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologia
18.
Int J Mol Sci ; 22(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34576006

RESUMO

Tumor immune escape is a common process in the tumorigenesis of non-small cell lung cancer (NSCLC) cells where programmed death ligand-1 (PD-L1) expression, playing a vital role in immunosuppression activity. Additionally, epidermal growth factor receptor (EGFR) phosphorylation activates Janus kinase-2 (JAK2) and signal transduction, thus activating transcription 3 (STAT3) to results in the regulation of PD-L1 expression. Chemotherapy with commercially available drugs against NSCLC has struggled in the prospect of adverse effects. Nobiletin is a natural flavonoid isolated from the citrus peel that exhibits anti-cancer activity. Here, we demonstrated the role of nobiletin in evasion of immunosuppression in NSCLC cells by Western blotting and real-time polymerase chain reaction methods for molecular signaling analysis supported by gene silencing and specific inhibitors. From the results, we found that nobiletin inhibited PD-L1 expression through EGFR/JAK2/STAT3 signaling. We also demonstrated that nobiletin exhibited p53-independent PD-L1 suppression, and that miR-197 regulates the expression of STAT3 and PD-L1, thereby enhancing anti-tumor immunity. Further, we evaluated the combination ability of nobiletin with an anti-PD-1 monoclonal antibody in NSCLC co-culture with peripheral blood mononuclear cells. Similarly, we found that nobiletin assisted the induction of PD-1/PD-L1 blockade, which is a key factor for the immune escape mechanism. Altogether, we propose nobiletin as a modulator of tumor microenvironment for cancer immunotherapy.


Assuntos
Antígeno B7-H1/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Flavonas/farmacologia , Neoplasias Pulmonares/imunologia , MicroRNAs/imunologia , Proteínas de Neoplasias/imunologia , RNA Neoplásico/imunologia , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/efeitos dos fármacos , Evasão Tumoral/efeitos dos fármacos , Células A549 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Transdução de Sinais/imunologia
19.
Inflamm Res ; 70(10-12): 1043-1061, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34476533

RESUMO

BACKGROUND: The insulin/IGF-1 signaling pathway has a major role in the regulation of longevity both in Caenorhabditis elegans and mammalian species, i.e., reduced activity of this pathway extends lifespan, whereas increased activity accelerates the aging process. The insulin/IGF-1 pathway controls protein and energy metabolism as well as the proliferation and differentiation of insulin/IGF-1-responsive cells. Insulin/IGF-1 signaling also regulates the functions of the innate and adaptive immune systems. The purpose of this review was to elucidate whether insulin/IGF-1 signaling is linked to immunosuppressive STAT3 signaling which is known to promote the aging process. METHODS: Original and review articles encompassing the connections between insulin/IGF-1 and STAT3 signaling were examined from major databases including Pubmed, Scopus, and Google Scholar. RESULTS: The activation of insulin/IGF-1 receptors stimulates STAT3 signaling through the JAK and AKT-driven signaling pathways. STAT3 signaling is a major activator of immunosuppressive cells which are able to counteract the chronic low-grade inflammation associated with the aging process. However, the activation of STAT3 signaling stimulates a negative feedback response through the induction of SOCS factors which not only inhibit the activity of insulin/IGF-1 receptors but also that of many cytokine receptors. The inhibition of insulin/IGF-1 signaling evokes insulin resistance, a condition known to be increased with aging. STAT3 signaling also triggers the senescence of both non-immune and immune cells, especially through the activation of p53 signaling. CONCLUSIONS: Given that cellular senescence, inflammaging, and counteracting immune suppression increase with aging, this might explain why excessive insulin/IGF-1 signaling promotes the aging process.


Assuntos
Envelhecimento/imunologia , Tolerância Imunológica , Fator de Crescimento Insulin-Like I/imunologia , Insulina/imunologia , Fator de Transcrição STAT3/imunologia , Animais , Senescência Celular , Humanos , Janus Quinases/imunologia , Transdução de Sinais
20.
Am J Hum Genet ; 108(9): 1590-1610, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34390653

RESUMO

Our study investigated the underlying mechanism for the 14q24 renal cell carcinoma (RCC) susceptibility risk locus identified by a genome-wide association study (GWAS). The sentinel single-nucleotide polymorphism (SNP), rs4903064, at 14q24 confers an allele-specific effect on expression of the double PHD fingers 3 (DPF3) of the BAF SWI/SNF complex as assessed by massively parallel reporter assay, confirmatory luciferase assays, and eQTL analyses. Overexpression of DPF3 in renal cell lines increases growth rates and alters chromatin accessibility and gene expression, leading to inhibition of apoptosis and activation of oncogenic pathways. siRNA interference of multiple DPF3-deregulated genes reduces growth. Our results indicate that germline variation in DPF3, a component of the BAF complex, part of the SWI/SNF complexes, can lead to reduced apoptosis and activation of the STAT3 pathway, both critical in RCC carcinogenesis. In addition, we show that altered DPF3 expression in the 14q24 RCC locus could influence the effectiveness of immunotherapy treatment for RCC by regulating tumor cytokine secretion and immune cell activation.


Assuntos
Carcinoma de Células Renais/genética , Cromossomos Humanos Par 14 , Proteínas de Ligação a DNA/genética , Loci Gênicos , Neoplasias Renais/genética , Fator de Transcrição STAT3/genética , Fatores de Transcrição/genética , Carcinogênese/genética , Carcinogênese/imunologia , Carcinogênese/patologia , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/terapia , Linhagem Celular Tumoral , Cromatina/química , Cromatina/imunologia , Montagem e Desmontagem da Cromatina/imunologia , Citocinas/genética , Citocinas/imunologia , Proteínas de Ligação a DNA/imunologia , Regulação da Expressão Gênica , Predisposição Genética para Doença , Genoma Humano , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoterapia/métodos , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Neoplasias Renais/terapia , Polimorfismo de Nucleotídeo Único , Fator de Transcrição STAT3/imunologia , Linfócitos T Citotóxicos , Fatores de Transcrição/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...