Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
1.
Mol Cell ; 83(15): 2641-2652.e7, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37402369

RESUMO

RNA polymerase III (Pol III) is responsible for transcribing 5S ribosomal RNA (5S rRNA), tRNAs, and other short non-coding RNAs. Its recruitment to the 5S rRNA promoter requires transcription factors TFIIIA, TFIIIC, and TFIIIB. Here, we use cryoelectron microscopy (cryo-EM) to visualize the S. cerevisiae complex of TFIIIA and TFIIIC bound to the promoter. Gene-specific factor TFIIIA interacts with DNA and acts as an adaptor for TFIIIC-promoter interactions. We also visualize DNA binding of TFIIIB subunits, Brf1 and TBP (TATA-box binding protein), which results in the full-length 5S rRNA gene wrapping around the complex. Our smFRET study reveals that the DNA within the complex undergoes both sharp bending and partial dissociation on a slow timescale, consistent with the model predicted from our cryo-EM results. Our findings provide new insights into the transcription initiation complex assembly on the 5S rRNA promoter and allow us to directly compare Pol III and Pol II transcription adaptations.


Assuntos
Fatores de Transcrição , Transcrição Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Transcrição TFIIIB/genética , Fator de Transcrição TFIIIB/metabolismo , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Microscopia Crioeletrônica , DNA/metabolismo
2.
PLoS One ; 18(6): e0287545, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37352136

RESUMO

BACKGROUND: Optineurin (OPTN) is associated with several human diseases, including amyotrophic lateral sclerosis (ALS), and is involved in various cellular processes, including autophagy. Optineurin regulates the expression of interferon beta (IFNß), which plays a central role in the innate immune response to viral infection. However, the role of optineurin in response to viral infection has not been fully clarified. It is known that optineurin-deficient cells produce more IFNß than wild-type cells following viral infection. In this study, we investigate the reasons for, and effects of, IFNß overproduction during optineurin deficiency both in vitro and in vivo. METHODS: To investigate the mechanism of IFNß overproduction, viral nucleic acids in infected cells were quantified by RT-qPCR and the autophagic activity of optineurin-deficient cells was determined to understand the basis for the intracellular accumulation of viral nucleic acids. Moreover, viral infection experiments using optineurin-disrupted (Optn-KO) animals were performed with several viruses. RESULTS: IFNß overproduction following viral infection was observed not only in several types of optineurin-deficient cell lines but also in Optn-KO mice and human ALS patient cells carrying mutations in OPTN. IFNß overproduction in Optn-KO cells was revealed to be caused by excessive accumulation of viral nucleic acids, which was a consequence of reduced autophagic activity caused by the loss of optineurin. Additionally, IFNß overproduction in Optn-KO mice suppressed viral proliferation, resulting in increased mouse survival following viral challenge. CONCLUSION: Our findings indicate that the combination of optineurin deficiency and viral infection leads to IFNß overproduction in vitro and in vivo. The effects of optineurin deficiency are elicited by viral infection, therefore, viral infection may be implicated in the development of optineurin-related diseases.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ciclo Celular , Proteínas de Membrana Transportadoras , Viroses , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/genética , Autofagia/genética , Proteínas de Ciclo Celular/genética , Imunidade Inata , Interferon beta/genética , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo , Proteínas de Membrana Transportadoras/genética , Camundongos Knockout
3.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175498

RESUMO

Viroids are small, non-coding, pathogenic RNAs with the ability to disturb plant developmental processes. This dysregulation redirects the morphogenesis of plant organs, significantly impairing their functionality. Citrus bark cracking viroid (CBCVd) causes detrimental developmental distortions in infected hops (Humulus lupulus) and causes significant economic losses. CBCVd can infect cells and tissues of the model plant tobacco (Nicotiana tabacum), provided it is delivered via transgenesis. The levels of CBCVd in tobacco were enhanced in plant hybrids expressing CBCVd cDNAs and either the tobacco or hop variant of TFIIIA-7ZF, a viroid-mediated splicing derivative of transcription factor IIIA, which is important for viroid replication by DNA-dependent RNA polymerase II. The TFIIIA-7ZF variants can change the tobacco morphogenesis if expressed in leaves and shoots. In addition to the splitting of shoots, the "pathomorphogenic" network in hybrid plants expressing CBCVd and HlTFIIIA-7ZF induced leaf fusions and malformations. Moreover, CBCVd can dramatically change another morphogenesis into teratomic and petal-like tissues if propagated above some limit in young transgenic tobacco microspores and anthers. By comparative RNA profiling of transgenic tobacco shoots bearing TFIIIA-7ZFs and CBCVd-transformed/infected anthers, we found a differential expression of many genes at p < 0.05. As the main common factor showing the differential up-regulation in shoot and anther tissues, a LITTLE ZIPPER 2-like transcription factor was found. We propose that this factor, which can interact as a competitive inhibitor of the also dysregulated homeobox-leucin zipper family protein (HD-ZIPIII) in apical meristem, is essential for a network responsible for some morphological changes and modifications of plant degradome within shoot meristem regulation and secondary xylem differentiation.


Assuntos
Citrus , Humulus , Pequeno RNA não Traduzido , Viroides , Viroides/metabolismo , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Casca de Planta/metabolismo , Doenças das Plantas/genética , Humulus/genética , Citrus/metabolismo
4.
Sci Immunol ; 7(77): eabq4531, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36399538

RESUMO

Herpes simplex virus 1 (HSV-1) infects several billion people worldwide and can cause life-threatening herpes simplex encephalitis (HSE) in some patients. Monogenic defects in components of the type I interferon system have been identified in patients with HSE, emphasizing the role of inborn errors of immunity underlying HSE pathogenesis. Here, we identify compound heterozygous loss-of-function mutations in the gene GTF3A encoding for transcription factor IIIA (TFIIIA), a component of the RNA polymerase III complex, in a patient with common variable immunodeficiency and HSE. Patient fibroblasts and GTF3A gene-edited cells displayed impaired HSV-1-induced innate immune responses and enhanced HSV-1 replication. Chromatin immunoprecipitation sequencing analysis identified the 5S ribosomal RNA pseudogene 141 (RNA5SP141), an endogenous ligand of the RNA sensor RIG-I, as a transcriptional target of TFIIIA. GTF3A mutant cells exhibited diminished RNA5SP141 expression and abrogated RIG-I activation upon HSV-1 infection. Our work unveils a crucial role for TFIIIA in transcriptional regulation of a cellular RIG-I agonist and shows that GTF3A genetic defects lead to impaired cell-intrinsic anti-HSV-1 responses and can predispose to HSE.


Assuntos
Encefalite por Herpes Simples , Herpesvirus Humano 1 , Humanos , Encefalite por Herpes Simples/genética , Encefalite por Herpes Simples/patologia , Pseudogenes , RNA , Ligantes , Fator de Transcrição TFIIIA/genética , Herpesvirus Humano 1/genética , Mutação
5.
Genome ; 65(10): 513-523, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36037528

RESUMO

Optineurin (OPTN) is involved in a variety of mechanisms, such as autophagy, vesicle trafficking, and nuclear factor kappa-B (NF-κB) signaling. Mutations in the OPTN gene have been associated with different pathologies, including glaucoma, amyotrophic lateral sclerosis, and Paget's disease of bone. Since the relationship between fish and mammalian OPTN is not well understood, the objective of the present work was to characterize the zebrafish optn gene and protein structure and to investigate its transcriptional regulation. Through a comparative in silico analysis, we observed that zebrafish optn presents genomic features similar to those of its human counterpart, including its neighboring genes and structure. A comparison of OPTN protein from different species revealed a high degree of conservation in its functional domains and three-dimensional structure. Furthermore, our in vitro transient-reporter analysis identified a functional promoter in the upstream region of the zebrafish optn gene, along with a region important for its transcription regulation. Site-directed mutagenesis revealed that the NF-κB motif is responsible for the activation of this region. In conclusion, with this study, we characterize zebrafish optn and our results indicate that zebrafish can be considered as an alternative model to study OPTN's biological role in bone-related diseases.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Membrana Transportadoras , NF-kappa B , Fator de Transcrição TFIIIA , Proteínas de Peixe-Zebra , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Genômica , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Int J Mol Sci ; 23(12)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35743272

RESUMO

Mutations in optineurin, a ubiquitin-binding adaptor protein, cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease of motor neurons linked to chronic inflammation and protein aggregation. The majority of ALS patients, including those carrying the optineurin mutations, exhibit cytoplasmic mislocalization, ubiquitination, and aggregation of nuclear TAR DNA-binding protein 43 kDa (TDP-43). To address the crosstalk between optineurin and TDP-43, we generated optineurin knockout (KO) neuronal and microglial cell lines using the CRISPR/Cas9 approach. Interestingly, we observed that loss of optineurin resulted in elevated TDP-43 protein expression in microglial BV2 but not neuronal Neuro 2a and NSC-34 cell lines. No changes were observed at the mRNA level, suggesting that this increase was post-translationally regulated. To confirm this observation in primary cells, we then used microglia and macrophages from an optineurin loss-of-function mouse model that lacks the C-terminal ubiquitin-binding region (Optn470T), mimicking optineurin truncations in ALS patients. As observed in the BV2 cells, we also found elevated basal levels of TDP-43 protein in Optn470T microglia and bone marrow-derived macrophages. To test if inflammation could further enhance TDP-43 accumulation in cells lacking functional optineurin, we stimulated them with lipopolysaccharide (LPS), and we observed a significant increase in TDP-43 expression following LPS treatment of WT cells. However, this was absent in both BV2 Optn KO and primary Optn470T microglia, which exhibited the same elevated TDP-43 levels as in basal conditions. Furthermore, we did not observe nuclear TDP-43 depletion or cytoplasmic aggregate formation in either Optn470T microglia or LPS-treated WT or Optn470T microglia. Taken together, our results show that optineurin deficiency and insufficiency post-translationally upregulate microglial TDP-43 protein levels and that elevated TDP-43 levels in cells lacking functional optineurin could not be further increased by an inflammatory stimulus, suggesting the presence of a plateau.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Inflamação , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/metabolismo , Mutação , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo , Ubiquitinas/genética
7.
Neurol Sci ; 43(9): 5391-5396, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35661277

RESUMO

INTRODUCTION: Optineurin (OPTN)-associated mutations have been implicated in the development of type 12 amyotrophic lateral sclerosis (ALS12). We reported a case of ALS with a new OPTN variant (p.D527fs) and reviewed relevant literature to better understand the phenotypes and pathophysiological mechanisms of ALS12. METHODS: We report a case of a 55-year-old female patient with a new heterozygous variant of the OPTN gene. A literature search of ALS cases associated with the OPTN gene mutations was performed in PubMed with the search criteria as [("amyotrophic lateral sclerosis") OR ("motor neuron disease")] AND ("OPTN"). RESULTS: The case of ALS with a new OPTN variant (p.D527fs) in our report manifested with bulbar involvement in onset and a rapidly progressive course. A literature review of 37 ALS patients with OPTN mutations included 20 males and 16 females with another patient whose gender was not described. The mean onset age of 37 ALS12 patients was 48 with the youngest 23 and the oldest 83 years old. Differences in onset age between male and female patients were not significant. Mean time from initiation to death was 61.8 ± 12.0 months. Patients present with either limb onset (73.5% cases) or bulbar onset (23.5% cases). CONCLUSION: Through the literature review, we summarized the clinical characteristics of ALS12. The phenotypes of the reported patients elucidate the genetic profiles and clinical phenotypes of ALS12. Clinicians should pay close attention to the role of receptor-interacting kinase 1 (RIPK1)-dependent necroptosis in the pathophysiologic development of ALS12, since necroptosis inhibitors are expected as potential therapeutic agents for treating ALS12.


Assuntos
Esclerose Lateral Amiotrófica , Fator de Transcrição TFIIIA , Esclerose Lateral Amiotrófica/genética , Proteínas de Ciclo Celular/genética , Feminino , Heterozigoto , Humanos , Masculino , Mutação/genética , Fenótipo , Fator de Transcrição TFIIIA/genética
8.
Differentiation ; 123: 1-8, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34844057

RESUMO

Mutations in optineurin (OPTN) have been identified in a small proportion of sporadic and familial amyotrophic lateral sclerosis (ALS) cases. Recent evidences suggest that OPTN would be involved in not only the pathophysiological mechanisms of motor neuron death of ALS but also myofiber degeneration of sporadic inclusion body myositis. However, the detailed role of OPTN in muscle remains unclear. Initially, we showed that OPTN expression levels were significantly increased in the denervated muscles of mice, suggesting that OPTN may be involved in muscle homeostasis. To reveal the molecular role of OPTN in muscle atrophy, we used cultured C2C12 myotubes treated with tumor necrosis factor-like inducer of apoptosis (TWEAK) as an in vitro model of muscle atrophy. Our data showed that OPTN had no effect on the process of muscle atrophy in this model. On the other hand, we found that myogenic differentiation was affected by OPTN. Immunoblotting analysis showed that OPTN protein levels gradually decreased during C2C12 differentiation. Furthermore, OPTN knockdown inhibited C2C12 differentiation, accompanied by reduction of mRNA and protein expression levels of myogenin and MyoD. These findings suggested that OPTN may have a novel function in muscle homeostasis and play a role in the pathogenesis of neuromuscular diseases.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Animais , Diferenciação Celular/genética , Camundongos , Atrofia Muscular/patologia , Proteína MyoD/genética , Mioblastos/metabolismo , Miogenina/genética , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo
10.
J Cell Sci ; 133(12)2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32376785

RESUMO

Optineurin (OPTN) is a multifunctional protein involved in autophagy and secretion, as well as nuclear factor κB (NF-κB) and IRF3 signalling, and OPTN mutations are associated with several human diseases. Here, we show that, in response to viral RNA, OPTN translocates to foci in the perinuclear region, where it negatively regulates NF-κB and IRF3 signalling pathways and downstream pro-inflammatory cytokine secretion. These OPTN foci consist of a tight cluster of small membrane vesicles, which are positive for ATG9A. Disease mutations in OPTN linked to primary open-angle glaucoma (POAG) cause aberrant foci formation in the absence of stimuli, which correlates with the ability of OPTN to inhibit signalling. By using proximity labelling proteomics, we identify the linear ubiquitin assembly complex (LUBAC), CYLD and TBK1 as part of the OPTN interactome and show that these proteins are recruited to this OPTN-positive perinuclear compartment. Our work uncovers a crucial role for OPTN in dampening NF-κB and IRF3 signalling through the sequestration of LUBAC and other positive regulators in this viral RNA-induced compartment, leading to altered pro-inflammatory cytokine secretion.


Assuntos
Glaucoma de Ângulo Aberto , Fator de Transcrição TFIIIA , Proteínas de Ciclo Celular , Citocinas/genética , Humanos , Proteínas de Membrana Transportadoras , NF-kappa B/genética , NF-kappa B/metabolismo , Transporte Proteico , Transdução de Sinais , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo
11.
PLoS One ; 15(1): e0227690, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31999691

RESUMO

Fish oogenesis is characterised by a massive growth of oocytes each reproductive season. This growth requires the stockpiling of certain molecules, such as ribosomal RNAs to assist the rapid ribosomal assembly and protein synthesis required to allow developmental processes in the newly formed embryo. Massive 5S rRNA expression in oocytes, facilitated by transcription factor 3A (Gtf3a), serves as marker of intersex condition in fish exposed to xenoestrogens. Our present work on Gtf3a gene evolution has been analysed in silico in teleost genomes and functionally in the case of the zebrafish Danio rerio. Synteny-analysis of fish genomes has allowed the identification of two gtf3a paralog genes, probably emerged from the teleost specific genome duplication event. Functional analyses demonstrated that gtf3ab has evolved as a gene specially transcribed in oocytes as observed in Danio rerio, and also in Oreochromis niloticus. Instead, gtf3aa was observed to be ubiquitously expressed. In addition, in zebrafish embryos gtf3aa transcription began with the activation of the zygotic genome (~8 hpf), while gtf3ab transcription began only at the onset of oogenesis. Under exposure to 100 ng/L 17ß-estradiol, fully feminised 61 dpf zebrafish showed transcription of ovarian gtf3ab, while masculinised (100 ng/L 17α-methyltestosterone treated) zebrafish only transcribed gtf3aa. Sex related transcription of gtf3ab coincided with that of cyp19a1a being opposite to that of amh and dmrt1. Such sex dimorphic pattern of gtf3ab transcription was not observed earlier in larvae that had not yet shown any signs of gonad formation after 26 days of oestradiol exposure. Thus, gtf3ab transcription is a consequence of oocyte differentiation and not a direct result of estrogen exposure, and could constitute a useful marker of gonad feminisation and intersex condition.


Assuntos
Ovário/metabolismo , Fator de Transcrição TFIIIA/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Ciclídeos/genética , Ciclídeos/crescimento & desenvolvimento , Ciclídeos/metabolismo , Transtornos do Desenvolvimento Sexual/genética , Evolução Molecular , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Duplicação Gênica , Masculino , Oogênese/genética , Filogenia , Caracteres Sexuais , Diferenciação Sexual/genética , Sintenia , Fator de Transcrição TFIIIA/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
12.
Dis Markers ; 2019: 5820537, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31198474

RESUMO

PURPOSE: To study the roles of sequence alterations in the optineurin (OPTN) gene-coding region in normal-tension glaucoma (NTG) among Chinese patients. METHODS: Genomic DNA was extracted from 190 NTG patients and 201 control subjects. The thirteen exons of OPTN were amplified by polymerase chain reaction and analyzed by direct sequencing. Detected sequence changes were compared between NTG patients and control subjects. RESULTS: Seven sequence changes in OPTN were identified in both NTG patients and control subjects. Among them, c.464G>A (T34 T), c.509C>T (T49T), c.806G>A (V148V), and c.959T>C (P199P) were synonymous codon changes, whilst c.655T>A (M98K), c.1996G>A (R545Q), and c.1582T>C (I407T) were missense changes. Two previously reported heterozygous mutations, c.458G>A (E50K) in exon 4 and c.691_692insAG in exon 6, were not found in this study. Out of these seven OPTN sequence variants, c.464G>A (T34T) was significantly associated with NTG in both the allelic and genotypic association analyses (allelic association: p = 0.0001, OR = 2.20, 95% CI: 1.46-3.31; genotypic association: p = 0.0001), whereas the association of other variants with NTG did not reach statistical significance (p > 0.05). Variants c.1582 T>C (I407T) and c.806G>A (V148V) were identified in one and two NTG patients, respectively, but not in the control subjects. CONCLUSIONS: This study confirmed the association of the OPTN T34T variant with NTG, suggesting that OPTN is a susceptibility gene for NTG in Chinese. Moreover, a variant with amino acid change (I407T) was identified in NTG but not in controls. Further studies are warranted to assess whether this variant is a causative mutation for NTG.


Assuntos
Glaucoma de Baixa Tensão/genética , Mutação de Sentido Incorreto , Fator de Transcrição TFIIIA/genética , Proteínas de Ciclo Celular , China , Heterozigoto , Humanos , Proteínas de Membrana Transportadoras , Polimorfismo de Nucleotídeo Único
13.
Neuron ; 101(6): 1057-1069, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897357

RESUMO

Amyotrophic lateral sclerosis (ALS) is an aggressive neurodegenerative disorder that orchestrates an attack on the motor nervous system that is unrelenting. Recent discoveries into the pathogenic consequences of repeat expansions in C9ORF72, which are the most common genetic cause of ALS, combined with the identification of new genetic mutations are providing novel insight into the underlying mechanism(s) that cause ALS. In particular, the myriad of functions linked to ALS-associated genes have collectively implicated four main pathways in disease pathogenesis, including RNA metabolism and translational biology; protein quality control; cytoskeletal integrity and trafficking; and mitochondrial function and transport. Through the identification of common disease mechanisms on which multiple ALS genes converge, key targets for potential therapeutic intervention are highlighted.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/genética , Mitocôndrias/metabolismo , RNA/metabolismo , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ciclo Celular , Grânulos Citoplasmáticos/metabolismo , Expansão das Repetições de DNA , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas de Membrana Transportadoras , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico/genética , Proteína FUS de Ligação a RNA/genética , Estresse Fisiológico , Superóxido Dismutase-1/metabolismo , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo , Resposta a Proteínas não Dobradas , Proteína com Valosina/genética
14.
Methods Mol Biol ; 1880: 601-610, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30610725

RESUMO

Investigating the precise spatiotemporal dynamics of mitophagy can provide insights into how mitochondrial quality control is regulated in different tissues and organisms. Here, we outline live imaging assays to quantitatively assess mitophagy dynamics in real time. This protocol describes both chemical and optogenetic techniques to induce mitochondrial damage with high spatial and temporal control. Using these assays, mitochondria can be tracked from before they sustain damage up to their engulfment by autophagosomes and acidification by lysosomes.


Assuntos
Autofagossomos/metabolismo , Microscopia Intravital/métodos , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Optogenética/métodos , Proteínas de Ciclo Celular , Corantes Fluorescentes/química , Genes Reporter/genética , Células HeLa , Humanos , Microscopia Intravital/instrumentação , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Lisossomos/metabolismo , Proteínas de Membrana Transportadoras , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Optogenética/instrumentação , Análise Espaço-Temporal , Imagem com Lapso de Tempo/instrumentação , Imagem com Lapso de Tempo/métodos , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
Front Immunol ; 9: 2647, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519240

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a group of neurodegenerative disorders that featured with the death of motor neurons, which leads to loss of voluntary control on muscles. The etiologies vary among different subtypes of ALS, and no effective management or medication could be provided to the patients, with the underlying mechanisms incompletely understood yet. Mutations in human Optn (Optineurin), particularly E478G, have been found in many ALS patients. In this work, we report that NF-κB activity was increased in Optn knockout (Optn-/-) MEF (mouse embryonic fibroblast) cells expressing OPTN of different ALS-associated mutants especially E478G. Inflammation was significantly activated in mice infected with lenti-virus that allowed overexpression of OPTNE478G mutation in the motor cortex, with marked increase in the secretion of pro-inflammatory cytokines as well as neuronal cell death. Our work with both cell and animal models strongly suggested that anti-inflammation treatment could represent a powerful strategy to intervene into disease progression in ALS patients who possess the distinctive mutations in OPTN gene.


Assuntos
Esclerose Lateral Amiotrófica/imunologia , Mutação de Sentido Incorreto , Neurônios/imunologia , Fator de Transcrição TFIIIA/imunologia , Substituição de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Proteínas de Ciclo Celular , Morte Celular/genética , Morte Celular/imunologia , Embrião de Mamíferos , Proteínas do Olho/genética , Proteínas do Olho/imunologia , Fibroblastos/imunologia , Fibroblastos/patologia , Humanos , Proteínas de Membrana Transportadoras , Camundongos , Neurônios/patologia , Fator de Transcrição TFIIIA/genética
16.
J Cell Sci ; 131(23)2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30404831

RESUMO

Autophagic dysfunction and protein aggregation have been linked to several neurodegenerative disorders, but the exact mechanisms and causal connections are not clear and most previous work was done in neurons and not in microglial cells. Here, we report that exogenous fibrillary, but not monomeric, alpha-synuclein (AS, also known as SNCA) induces autophagy in microglial cells. We extensively studied the dynamics of this response using both live-cell imaging and correlative light-electron microscopy (CLEM), and found that it correlates with lysosomal damage and is characterised by the recruitment of the selective autophagy-associated proteins TANK-binding kinase 1 (TBK1) and optineurin (OPTN) to ubiquitylated lysosomes. In addition, we observed that LC3 (MAP1LC3B) recruitment to damaged lysosomes was dependent on TBK1 activity. In these fibrillar AS-treated cells, autophagy inhibition impairs mitochondrial function and leads to microglial cell death. Our results suggest that microglial autophagy is induced in response to lysosomal damage caused by persistent accumulation of AS fibrils. Importantly, triggering of the autophagic response appears to be an attempt at lysosomal quality control and not for engulfment of fibrillar AS.This article has an associated First Person interview with the first author of the paper.


Assuntos
Lisossomos/metabolismo , Microglia/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fator de Transcrição TFIIIA/genética , alfa-Sinucleína/metabolismo , Autofagia , Proteínas de Ciclo Celular , Humanos , Proteínas de Membrana Transportadoras , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fator de Transcrição TFIIIA/metabolismo
17.
Clin Epigenetics ; 10(1): 129, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30348215

RESUMO

BACKGROUND: SUV39H2 (suppressor of variegation 3-9 homolog 2), which introduces H3K9me3 to induce transcriptional repression, has been reported to play critical roles in heterochromatin maintenance, DNA repair, and recently, carcinogenesis. Dysregulation of SUV39H2 expression has been observed in several types of cancers. However, neither the genomic landscape nor the clinical significance of SUV39H2 in lung adenocarcinoma has been probed comprehensively. METHODS: In this research, we conducted bioinformatics analysis to primarily sort out potential genes with dysregulated expressions. After we identified SUV39H2, RNA-seq was performed for a high-throughput evaluation of altered gene expression and dysregulated pathways, followed by a series of validations via RT-qPCR and bioinformatics analyses. Finally, to assess the potential oncogenic role of SUV39H2, we employed the invasion assay and clone formation assay in vitro and tumorigenesis assays in mouse models in vivo. RESULTS: Through bioinformatics analyses, we found that SUV39H2 underwent a severe upregulation in the tumor tissue, which was also confirmed in the surgically removed tissues. Overexpression of SUV39H2 was mainly associated with its amplification and with shorter patient overall survival. Then, the RNA-seq demonstrated that TPM4, STOM, and OPTN might be affected by the loss of function of SUV39H2. Finally, in vitro and in vivo experiments with SUV39H2 knockdown all suggested a potential role of SUV39H2 in both carcinogenesis and metastasis. CONCLUSIONS: SUV39H2 expression was elevated in lung adenocarcinoma. TPM4, OPTN, and STOM were potentially regulated by SUV39H2. SUV39H2 might be a potential oncogene in lung adenocarcinoma, mediating tumorigenesis and metastasis.


Assuntos
Adenocarcinoma de Pulmão/patologia , Histona-Lisina N-Metiltransferase/genética , Neoplasias Pulmonares/patologia , Análise de Sequência de RNA/métodos , Regulação para Cima , Células A549 , Adenocarcinoma de Pulmão/genética , Animais , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Feminino , Amplificação de Genes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Células MCF-7 , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras , Camundongos , Transplante de Neoplasias , Análise de Sobrevida , Fator de Transcrição TFIIIA/genética
18.
Biochim Biophys Acta Mol Cell Res ; 1865(11 Pt A): 1526-1538, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30327196

RESUMO

Optineurin (Optn) is an autophagy receptor that performs various functions in cargo-selective and non-selective autophagy. Here, we have identified and characterized a splice variant of mouse optineurin mRNA, which produces a truncated protein lacking N-terminal 157 amino acids (d157mOptn). This mRNA and protein are expressed in several tissues and cells. d157mOptn has an intact LC3-interacting region and a serine (S187) in it. However, unlike normal optineurin, the d157mOptn was not phosphorylated at this site when expressed in mammalian cells, and showed reduced interaction with TBK1 (tank binding kinase) that mediates phosphorylation at S187 (S177 in human OPTN). This phosphorylation of Optn required intact N-terminal sequence as well as functional C-terminal ubiquitin-binding domain. Unlike normal optineurin, d157mOptn was unable to promote autophagosome and autolysosome formation upon expression in Optn-deficient cells. d157mOptn was recruited to mutant huntingtin aggregates, but unlike wild type optineurin, it was unable to clear these aggregates by autophagy in neuronal NSC-34 cells. Phospho-TBK1 was seen around mutant Huntingtin aggregates in Optn overexpressing cells but it was reduced in cells overexpressing d157mOptn. Thus, we have identified an isoform of mouse optineurin which is defective in cargo-selective and non-selective autophagy possibly due to loss of phosphorylation and impaired interaction with TBK1. This isoform, which inhibits autophagosome formation in neuronal cells, might be involved in selectively modulating some of the functions of Optn, such as autophagy. Our results provide an insight into the role of N-terminal domain of Optn in various autophagic functions.


Assuntos
Autofagia/genética , Splicing de RNA , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo , Animais , Autofagossomos/metabolismo , Biomarcadores , Proteínas de Ciclo Celular , Linhagem Celular , Fibroblastos , Humanos , Proteína Huntingtina/metabolismo , Imuno-Histoquímica , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Knockout , Mutação , Neurônios/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
19.
Viruses ; 10(9)2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30227597

RESUMO

Viroids are circular noncoding RNAs that infect plants. Without encoding any protein, these noncoding RNAs contain the necessary genetic information for propagation in hosts. Nuclear-replicating viroids employ DNA-dependent RNA polymerase II (Pol II) for replication, a process that makes a DNA-dependent enzyme recognize RNA templates. Recently, a splicing variant of transcription factor IIIA (TFIIIA-7ZF) was identified as essential for Pol II to replicate potato spindle tuber viroid (PSTVd). The expression of TFIIIA-7ZF, particularly the splicing event, is regulated by a ribosomal protein (RPL5). PSTVd modulates its expression through a direct interaction with RPL5 resulting in optimized expression of TFIIIA-7ZF. This review summarizes the recent discoveries of host factors and regulatory mechanisms underlying PSTVd-templated transcription processes and raises new questions that may help future exploration in this direction. In addition, it briefly compares the machinery and the regulatory mechanism for PSTVd with the replication/transcription system of human hepatitis delta virus.


Assuntos
Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , RNA Viral , Solanum tuberosum/virologia , Transcrição Gênica , Viroides/fisiologia , Conformação de Ácido Nucleico , Doenças das Plantas/genética , Splicing de RNA , RNA Viral/química , RNA Viral/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo , Replicação Viral
20.
Biochem Biophys Res Commun ; 503(4): 2690-2697, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30100066

RESUMO

Optineurin (OPTN) mutations are linked to glaucoma pathology and E50K mutation shows massive cell death in photoreceptor cells and retinal ganglion cells. However, little is known about E50K-mediated mitochondrial dysfunction in photoreceptor cell degeneration. We here show that overexpression of E50K expression triggered BDNF deficiency, leading to Bax activation in RGC-5 cells. BDNF deficiency induced mitochondrial dysfunction by decreasing mitochondrial maximal respiration and reducing intracellular ATP level in RGC-5 cells. However, BDNF deficiency did not alter mitochondrial dynamics. Also, BDNF deficiency resulted in LC3-mediated mitophagosome formation in RGC-5 cells. These results strongly suggest that E50K-mediated BDNF deficiency plays a critical role in compromised mitochondrial function in glaucomatous photoreceptor cell degeneration.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Fator de Transcrição TFIIIA/genética , Proteína X Associada a bcl-2/genética , Trifosfato de Adenosina/biossíntese , Substituição de Aminoácidos , Animais , Fator Neurotrófico Derivado do Encéfalo/deficiência , Linhagem Celular , Regulação da Expressão Gênica , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/patologia , Mutação , Fosforilação Oxidativa , Fagossomos/metabolismo , Fagossomos/patologia , Células Fotorreceptoras de Vertebrados/patologia , Ratos , Transdução de Sinais , Fator de Transcrição TFIIIA/metabolismo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...