Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(20): 11215-11226, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747934

RESUMO

The ChIP-exo assay precisely delineates protein-DNA crosslinking patterns by combining chromatin immunoprecipitation with 5' to 3' exonuclease digestion. Within a regulatory complex, the physical distance of a regulatory protein to DNA affects crosslinking efficiencies. Therefore, the spatial organization of a protein-DNA complex could potentially be inferred by analyzing how crosslinking signatures vary between its subunits. Here, we present a computational framework that aligns ChIP-exo crosslinking patterns from multiple proteins across a set of coordinately bound regulatory regions, and which detects and quantifies protein-DNA crosslinking events within the aligned profiles. By producing consistent measurements of protein-DNA crosslinking strengths across multiple proteins, our approach enables characterization of relative spatial organization within a regulatory complex. Applying our approach to collections of ChIP-exo data, we demonstrate that it can recover aspects of regulatory complex spatial organization at yeast ribosomal protein genes and yeast tRNA genes. We also demonstrate the ability to quantify changes in protein-DNA complex organization across conditions by applying our approach to analyze Drosophila Pol II transcriptional components. Our results suggest that principled analyses of ChIP-exo crosslinking patterns enable inference of spatial organization within protein-DNA complexes.


Assuntos
Imunoprecipitação da Cromatina/métodos , Proteínas de Ligação a DNA/metabolismo , Exonucleases/química , RNA de Transferência/genética , Proteínas Ribossômicas/genética , Alinhamento de Sequência/métodos , Fatores de Transcrição/metabolismo , Algoritmos , Animais , Sítios de Ligação , Simulação por Computador , Proteínas de Ligação a DNA/química , Bases de Dados Genéticas , Drosophila/química , Drosophila/genética , Drosophila/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Polimerase III/química , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de DNA/métodos , Fator de Transcrição TFIIIB/química , Fator de Transcrição TFIIIB/genética , Fator de Transcrição TFIIIB/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição TFIII/química , Fatores de Transcrição TFIII/genética , Fatores de Transcrição TFIII/metabolismo , Sítio de Iniciação de Transcrição
2.
Nat Struct Mol Biol ; 27(3): 229-232, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066962

RESUMO

Maf1 is a conserved inhibitor of RNA polymerase III (Pol III) that influences phenotypes ranging from metabolic efficiency to lifespan. Here, we present a 3.3-Å-resolution cryo-EM structure of yeast Maf1 bound to Pol III, establishing that Maf1 sequesters Pol III elements involved in transcription initiation and binds the mobile C34 winged helix 2 domain, sealing off the active site. The Maf1 binding site overlaps with that of TFIIIB in the preinitiation complex.


Assuntos
RNA Polimerase III/química , Proteínas Repressoras/química , Proteínas de Saccharomyces cerevisiae/química , Fator de Transcrição TFIIIB/química , Fatores de Transcrição/química , Transcrição Gênica , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fator de Transcrição TFIIIB/genética , Fator de Transcrição TFIIIB/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Nature ; 553(7688): 301-306, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29345637

RESUMO

RNA polymerase (Pol) III transcribes essential non-coding RNAs, including the entire pool of transfer RNAs, the 5S ribosomal RNA and the U6 spliceosomal RNA, and is often deregulated in cancer cells. The initiation of gene transcription by Pol III requires the activity of the transcription factor TFIIIB to form a transcriptionally active Pol III preinitiation complex (PIC). Here we present electron microscopy reconstructions of Pol III PICs at 3.4-4.0 Å and a reconstruction of unbound apo-Pol III at 3.1 Å. TFIIIB fully encircles the DNA and restructures Pol III. In particular, binding of the TFIIIB subunit Bdp1 rearranges the Pol III-specific subunits C37 and C34, thereby promoting DNA opening. The unwound DNA directly contacts both sides of the Pol III cleft. Topologically, the Pol III PIC resembles the Pol II PIC, whereas the Pol I PIC is more divergent. The structures presented unravel the molecular mechanisms underlying the first steps of Pol III transcription and also the general conserved mechanisms of gene transcription initiation.


Assuntos
RNA Polimerase III/metabolismo , RNA Polimerase III/ultraestrutura , Iniciação da Transcrição Genética , Microscopia Crioeletrônica , DNA/química , DNA/metabolismo , DNA/ultraestrutura , Modelos Moleculares , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA Polimerase I/química , RNA Polimerase II/química , RNA Polimerase III/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Moldes Genéticos , Fator de Transcrição TFIIIB/química , Fator de Transcrição TFIIIB/metabolismo , Fator de Transcrição TFIIIB/ultraestrutura , Fatores de Transcrição TFII/química
4.
Nature ; 553(7688): 295-300, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29345638

RESUMO

RNA polymerase III (Pol III) and transcription factor IIIB (TFIIIB) assemble together on different promoter types to initiate the transcription of small, structured RNAs. Here we present structures of Pol III preinitiation complexes, comprising the 17-subunit Pol III and the heterotrimeric transcription factor TFIIIB, bound to a natural promoter in different functional states. Electron cryo-microscopy reconstructions, varying from 3.7 Å to 5.5 Å resolution, include two early intermediates in which the DNA duplex is closed, an open DNA complex, and an initially transcribing complex with RNA in the active site. Our structures reveal an extremely tight, multivalent interaction between TFIIIB and promoter DNA, and explain how TFIIIB recruits Pol III. Together, TFIIIB and Pol III subunit C37 activate the intrinsic transcription factor-like activity of the Pol III-specific heterotrimer to initiate the melting of double-stranded DNA, in a mechanism similar to that of the Pol II system.


Assuntos
Microscopia Crioeletrônica , DNA/metabolismo , DNA/ultraestrutura , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA Polimerase III/metabolismo , RNA Polimerase III/ultraestrutura , Sítios de Ligação , Domínio Catalítico , DNA/química , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , RNA Polimerase III/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fator de Transcrição TFIIIB/química , Fator de Transcrição TFIIIB/metabolismo , Fator de Transcrição TFIIIB/ultraestrutura , Fatores de Transcrição TFII/química , Iniciação da Transcrição Genética
5.
Nucleic Acids Res ; 46(3): 1157-1166, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29177422

RESUMO

Rpc82 is a TFIIE-related subunit of the eukaryotic RNA polymerase III (pol III) complex. Rpc82 contains four winged-helix (WH) domains and a C-terminal coiled-coil domain. Structural resolution of the pol III complex indicated that Rpc82 anchors on the clamp domain of the pol III cleft to interact with the duplex DNA downstream of the transcription bubble. However, whether Rpc82 interacts with a transcription factor is still not known. Here, we report that a structurally disordered insertion in the third WH domain of Rpc82 is important for cell growth and in vitro transcription activity. Site-specific photo-crosslinking analysis indicated that the WH3 insertion interacts with the TFIIB-related transcription factor Brf1 within the pre-initiation complex (PIC). Moreover, crosslinking and hydroxyl radical probing analyses revealed Rpc82 interactions with the upstream DNA and the protrusion and wall domains of the pol III cleft. Our genetic and biochemical analyses thus provide new molecular insights into the function of Rpc82 in pol III transcription.


Assuntos
DNA Fúngico/química , DNA/química , Regulação Fúngica da Expressão Gênica , RNA Polimerase III/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Fator de Transcrição TFIIIB/química , Iniciação da Transcrição Genética , Sequência de Aminoácidos , Sequência de Bases , Benzofenonas/química , Sítios de Ligação , Clonagem Molecular , Reagentes de Ligações Cruzadas/química , DNA/genética , DNA/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , Radical Hidroxila/química , Modelos Moleculares , Fenilalanina/análogos & derivados , Fenilalanina/química , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fator de Transcrição TFIIIB/genética , Fator de Transcrição TFIIIB/metabolismo
6.
Nat Commun ; 8(1): 130, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743884

RESUMO

Initiation of gene transcription by RNA polymerase (Pol) III requires the activity of TFIIIB, a complex formed by Brf1 (or Brf2), TBP (TATA-binding protein), and Bdp1. TFIIIB is required for recruitment of Pol III and to promote the transition from a closed to an open Pol III pre-initiation complex, a process dependent on the activity of the Bdp1 subunit. Here, we present a crystal structure of a Brf2-TBP-Bdp1 complex bound to DNA at 2.7 Å resolution, integrated with single-molecule FRET analysis and in vitro biochemical assays. Our study provides a structural insight on how Bdp1 is assembled into TFIIIB complexes, reveals structural and functional similarities between Bdp1 and Pol II factors TFIIA and TFIIF, and unravels essential interactions with DNA and with the upstream factor SNAPc. Furthermore, our data support the idea of a concerted mechanism involving TFIIIB and RNA polymerase III subunits for the closed to open pre-initiation complex transition.Transcription initiation by RNA polymerase III requires TFIIIB, a complex formed by Brf1/Brf2, TBP and Bdp1. Here, the authors describe the crystal structure of a Brf2-TBP-Bdp1 complex bound to a DNA promoter and characterize the role of Bdp1 in TFIIIB assembly and pre-initiation complex formation.


Assuntos
RNA Polimerase III/metabolismo , Fator de Transcrição TFIIIB/metabolismo , Iniciação da Transcrição Genética , Sequência de Aminoácidos , Cristalografia por Raios X , DNA/química , DNA/genética , DNA/metabolismo , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas/genética , Ligação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIIIB/química , Fator de Transcrição TFIIIB/genética
7.
FEBS Lett ; 590(10): 1488-97, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27112515

RESUMO

RNA polymerase III-transcribed U6 snRNA genes have gene-external promoters that contain TATA boxes. U6 TATA sequences are bound by TFIIIB that in Drosophila contains the three subunits TBP, Brf1, and Bdp1. The overall structure of TFIIIB is still not well understood. We have therefore studied the mode of TFIIIB binding to DNA by site-specific protein-DNA photo-cross-linking. The results indicate that a portion of Brf1 is sandwiched between Bdp1 and TBP upstream of the TATA box. Furthermore, Bdp1 traverses the DNA under the N-terminal stirrup of TBP to interact with the DNA (and very likely Brf1) downstream of the TATA sequence.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIIIB/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Reagentes de Ligações Cruzadas , Proteínas de Drosophila/química , Modelos Moleculares , Regiões Promotoras Genéticas , Ligação Proteica , TATA Box , Proteína de Ligação a TATA-Box/química , Fator de Transcrição TFIIIB/química
8.
Cell ; 163(6): 1375-87, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26638071

RESUMO

TFIIB-related factor 2 (Brf2) is a member of the family of TFIIB-like core transcription factors. Brf2 recruits RNA polymerase (Pol) III to type III gene-external promoters, including the U6 spliceosomal RNA and selenocysteine tRNA genes. Found only in vertebrates, Brf2 has been linked to tumorigenesis but the underlying mechanisms remain elusive. We have solved crystal structures of a human Brf2-TBP complex bound to natural promoters, obtaining a detailed view of the molecular interactions occurring at Brf2-dependent Pol III promoters and highlighting the general structural and functional conservation of human Pol II and Pol III pre-initiation complexes. Surprisingly, our structural and functional studies unravel a Brf2 redox-sensing module capable of specifically regulating Pol III transcriptional output in living cells. Furthermore, we establish Brf2 as a central redox-sensing transcription factor involved in the oxidative stress pathway and provide a mechanistic model for Brf2 genetic activation in lung and breast cancer.


Assuntos
Oxirredução , Fator de Transcrição TFIIIB/química , Fator de Transcrição TFIIIB/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , RNA Polimerase III/metabolismo , Saccharomyces cerevisiae , Alinhamento de Sequência , Transdução de Sinais
9.
Mol Cell Biol ; 35(16): 2831-40, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26055328

RESUMO

The RNA polymerase III (Pol III)-specific transcription factor Bdp1 is crucial to Pol III recruitment and promoter opening in transcription initiation, yet structural information is sparse. To examine its protein-binding targets within the preinitiation complex at the residue level, photoreactive amino acids were introduced into Saccharomyces cerevisiae Bdp1. Mutations within the highly conserved SANT domain cross-linked to the transcription factor IIB (TFIIB)-related transcription factor Brf1, consistent with the findings of previous studies. In addition, we identified an essential N-terminal region that cross-linked with the Pol III catalytic subunit C128 as well as Brf1. Closer examination revealed that this region interacted with the C128 N-terminal region, the N-terminal half of Brf1, and the C-terminal domain of the C37 subunit, together positioning this region within the active site cleft of the preinitiation complex. With our functional data, our analyses identified an essential region of Bdp1 that is positioned within the active site cleft of Pol III and necessary for transcription initiation.


Assuntos
RNA Polimerase III/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIIB/química , Fator de Transcrição TFIIIB/metabolismo , Ativação Transcricional , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Mapas de Interação de Proteínas , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA Polimerase III/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Alinhamento de Sequência
10.
Mol Cell Biol ; 34(3): 551-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24277937

RESUMO

TFIIB-related factor Brf1 is essential for RNA polymerase (Pol) III recruitment and open-promoter formation in transcription initiation. We site specifically incorporated a nonnatural amino acid cross-linker into Brf1 to map its protein interaction targets in the preinitiation complex (PIC). Our cross-linking analysis in the N-terminal domain of Brf1 indicated a pattern of multiple protein interactions reminiscent of TFIIB in the Pol active-site cleft. In addition to the TFIIB-like protein interactions, the Brf1 cyclin repeat subdomain is in contact with the Pol III-specific C34 subunit. With site-directed hydroxyl radical probing, we further revealed the binding between Brf1 cyclin repeats and the highly conserved region connecting C34 winged-helix domains 2 and 3. In contrast to the N-terminal domain of Brf1, the C-terminal domain contains extensive binding sites for TBP and Bdp1 to hold together the TFIIIB complex on the promoter. Overall, the domain architecture of the PIC derived from our cross-linking data explains how individual structural subdomains of Brf1 integrate the protein network from the Pol III active center to the promoter for transcription initiation.


Assuntos
Mapas de Interação de Proteínas , RNA Polimerase III/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIIB/metabolismo , Iniciação da Transcrição Genética , Sítios de Ligação/genética , Western Blotting , Mutação , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Estrutura Terciária de Proteína , RNA Polimerase III/química , RNA Polimerase III/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIIB/genética , Fator de Transcrição TFIIB/metabolismo , Fator de Transcrição TFIIIB/química , Fator de Transcrição TFIIIB/genética
11.
Nat Struct Mol Biol ; 20(8): 1008-14, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23851461

RESUMO

The general transcription factor TFIID provides a regulatory platform for transcription initiation. Here we present the crystal structure (1.97 Å) and NMR analysis of yeast TAF1 N-terminal domains TAND1 and TAND2 bound to yeast TBP, together with mutational data. We find that yeast TAF1-TAND1, which in itself acts as a transcriptional activator, binds TBP's concave DNA-binding surface by presenting similar anchor residues to TBP as does Mot1 but from a distinct structural scaffold. Furthermore, we show how TAF1-TAND2 uses an aromatic and acidic anchoring pattern to bind a conserved TBP surface groove traversing the basic helix region, and we find highly similar TBP-binding motifs also presented by the structurally distinct TFIIA, Mot1 and Brf1 proteins. Our identification of these anchoring patterns, which can be easily disrupted or enhanced, provides insight into the competitive multiprotein TBP interplay critical to transcriptional regulation.


Assuntos
Regulação da Expressão Gênica/fisiologia , Modelos Moleculares , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Fatores Associados à Proteína de Ligação a TATA/química , Proteína de Ligação a TATA-Box/química , Fator de Transcrição TFIID/química , Transcrição Gênica/fisiologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Cristalização , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIID/metabolismo , Fator de Transcrição TFIIIB/química , Fator de Transcrição TFIIIB/metabolismo
12.
Science ; 333(6049): 1637-40, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21921198

RESUMO

Eukaryotic and archaeal multisubunit RNA polymerases (Pols) are structurally related and require several similar components for transcription initiation. However, none of the Pol I factors were known to share homology with transcription factor IIB (TFIIB) or TFIIB-related proteins, key factors in the initiation mechanisms of the other Pols. Here we show that Rrn7, a subunit of the yeast Pol I core factor, and its human ortholog TAF1B are TFIIB-like factors. Although distantly related, Rrn7 shares many activities associated with TFIIB-like factors. Domain swaps between TFIIB-related factors show that Rrn7 is most closely related to the Pol III general factor Brf1. Our results point to the conservation of initiation mechanisms among multisubunit Pols and reveal a key function of yeast core factor/human SL1 in Pol I transcription.


Assuntos
Proteínas Pol1 do Complexo de Iniciação de Transcrição/química , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Polimerase I/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Humanos , Dados de Sequência Molecular , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIIB/química , Fator de Transcrição TFIIB/metabolismo , Fator de Transcrição TFIIIB/química , Fator de Transcrição TFIIIB/genética , Fator de Transcrição TFIIIB/metabolismo , Transcrição Gênica
13.
Biochemistry ; 47(50): 13197-206, 2008 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19086269

RESUMO

Transcription factor TFIIIB plays key roles in transcription by RNA polymerase III. Its three components (TBP, Brf1, and Bdp1) participate in crucial molecular events that include RNA polymerase recruitment, formation of the open initiation complex, and recycling of transcription. Although the details of the interaction among DNA, TBP, and Brf1 have been, in part, revealed through the crystal structure of their ternary complex, structural details of the Brf1-Bdp1 interaction are lacking. In this paper, nuclear magnetic resonance (NMR) is used to map the interaction interface between Bdp1 and Brf1 at single-amino acid resolution, using minimal functional segments of the two proteins. An NMR-derived structural model shows that the principal anchorage site of Brf1 is located on a convex surface of Bdp1 that encompasses helix 1 and helix 3 of its conserved SANT domain. The main Bdp1 anchorage site is provided by a small set of residues belonging to a Brf1 segment of residues 470-495.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIIB/química , Sequência de Aminoácidos , Cristalografia por Raios X , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Termodinâmica , Fator de Transcrição TFIIIB/genética , Fator de Transcrição TFIIIB/metabolismo
14.
J Biol Chem ; 283(52): 36108-17, 2008 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18974046

RESUMO

Yeast cells synthesize approximately 3-6 million molecules of tRNA every cell cycle at a rate of approximately 2-4 transcripts/gene/s. This high rate of transcription is achieved through many rounds of reinitiation by RNA polymerase (pol) III on stable DNA-bound complexes of the initiation factor TFIIIB. Studies in yeast have shown that the rate of reinitiation is increased by facilitated recycling, a process that involves the repeated reloading of the polymerase on the same transcription unit. However, when nutrients become limiting or stress conditions are encountered, RNA pol III transcription is rapidly repressed through the action of the conserved Maf1 protein. Here we examine the relationship between Maf1-mediated repression and facilitated recycling in a human RNA pol III in vitro system. Using an immobilized template transcription assay, we demonstrate that facilitated recycling is conserved from yeast to humans. We assessed the ability of recombinant human Maf1 to inhibit different steps in transcription before and after preinitiation complex assembly. We show that recombinant Maf1 can inhibit the recruitment of TFIIIB and RNA pol III to immobilized templates. However, RNA pol III bound to preinitiation complexes or in elongation complexes is protected from repression by Maf1 and can undergo several rounds of initiation. This indicates that recombinant Maf1 is unable to inhibit facilitated recycling. The data suggest that additional biochemical steps may be necessary for rapid Maf1-dependent repression of RNA pol III transcription.


Assuntos
Regulação Enzimológica da Expressão Gênica , RNA Polimerase III/metabolismo , Proteínas Repressoras/química , Animais , Bovinos , Células HeLa , Humanos , Técnicas In Vitro , Modelos Biológicos , Modelos Genéticos , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Repressoras/metabolismo , Fatores de Tempo , Fator de Transcrição TFIIIB/química , Transcrição Gênica
15.
Mol Cell Biol ; 28(12): 4204-14, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18391023

RESUMO

PTEN, a tumor suppressor whose function is frequently lost in human cancers, possesses a lipid phosphatase activity that represses phosphatidylinositol 3-kinase (PI3K) signaling, controlling cell growth, proliferation, and survival. The potential for PTEN to regulate the synthesis of RNA polymerase (Pol) III transcription products, including tRNAs and 5S rRNAs, was evaluated. The expression of PTEN in PTEN-deficient cells repressed RNA Pol III transcription, whereas decreased PTEN expression enhanced transcription. Transcription repression by PTEN was uncoupled from PTEN-mediated effects on the cell cycle and was independent of p53. PTEN acts through its lipid phosphatase activity, inhibiting the PI3K/Akt/mTOR/S6K pathway to decrease transcription. PTEN, through the inactivation of mTOR, targets the TFIIIB complex, disrupting the association between TATA-binding protein and Brf1. Kinetic analysis revealed that PTEN initially induces a decrease in the serine phosphorylation of Brf1, leading to a selective reduction in the occupancy of all TFIIIB subunits on tRNA(Leu) genes, whereas prolonged PTEN expression results in the enhanced serine phosphorylation of Bdp1. Together, these results demonstrate a new class of genes regulated by PTEN through its ability to repress the activation of PI3K/Akt/mTOR/S6K signaling.


Assuntos
Regulação Neoplásica da Expressão Gênica , PTEN Fosfo-Hidrolase/metabolismo , RNA Polimerase III/metabolismo , Fator de Transcrição TFIIIB/química , Ciclo Celular , Linhagem Celular Tumoral , Citoplasma/metabolismo , Humanos , Modelos Biológicos , Fosfatidato Fosfatase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Transdução de Sinais , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo
16.
Mol Cell Biol ; 27(24): 8492-501, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17923679

RESUMO

Mobile genetic elements that reside in gene-dense genomes face the problem of avoiding devastating insertional mutagenesis of genes in their host cell genomes. To meet this challenge, some Saccharomyces cerevisiae long terminal repeat (LTR) retrotransposons have evolved targeted integration at safe sites in the immediate vicinity of tRNA genes. Integration of yeast Ty3 is mediated by interactions of retrotransposon protein with the tRNA gene-specific transcription factor IIIB (TFIIIB). In the genome of the social amoeba Dictyostelium discoideum, the non-LTR retrotransposon TRE5-A integrates approximately 48 bp upstream of tRNA genes, yet little is known about how the retrotransposon identifies integration sites. Here, we show direct protein interactions of the TRE5-A ORF1 protein with subunits of TFIIIB, suggesting that ORF1p is a component of the TRE5-A preintegration complex that determines integration sites. Our results demonstrate that evolution has put forth similar solutions to prevent damage of diverse, compact genomes by different classes of mobile elements.


Assuntos
Dictyostelium/genética , Dictyostelium/metabolismo , Proteínas de Protozoários/metabolismo , RNA de Transferência/genética , Retroelementos/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Humanos , Dados de Sequência Molecular , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas de Protozoários/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Sequências Repetidas Terminais/genética , Fator de Transcrição TFIIIB/química , Fator de Transcrição TFIIIB/metabolismo , Técnicas do Sistema de Duplo-Híbrido
17.
Mol Cell Biol ; 26(16): 5946-56, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16880507

RESUMO

The binding of Brf1 to the tetratricopeptide repeat (TPR)-containing transcription factor IIIC (TFIIIC) subunit (Tfc4) represents a rate-limiting step in the ordered assembly of the RNA polymerase III initiation factor TFIIIB. Tfc4 contains multiple binding sites for Brf1 within its amino terminus and adjacent TPR arrays, but the access of Brf1 to these sites is limited by autoinhibition. Moreover, the Brf1 binding sites in Tfc4 overlap with sites important for the subsequent recruitment of another TFIIIB subunit, Bdp1, implying that repositioning of Brf1 is required after its initial interaction with Tfc4. As a starting point for dissecting the steps in TFIIIC-directed assembly of TFIIIB, we conducted yeast two-hybrid screens of Brf1 peptide libraries against different TPR-containing Tfc4 fragments. Short, biochemically active peptides were identified in three distinct regions of Brf1. Two peptides defined conserved but distal regions of Brf1 that participate in stable binding of Brf1 to TFIIIC-DNA. Remarkably, a third peptide that binds specifically to TPR6-9 of Tfc4 was found to promote the formation of both TFIIIC-DNA and Brf1-TFIIIC-DNA complexes and to reduce the mobility of these complexes in native gels. The data are consistent with this peptide causing a conformational change in TFIIIC that overcomes Tfc4 autoinhibition of Brf1 binding and suggest a structural model for the Brf1-Tfc4 interaction.


Assuntos
Peptídeos/metabolismo , Subunidades Proteicas/metabolismo , Fator de Transcrição TFIIIB/metabolismo , Fatores de Transcrição TFIII/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , DNA Fúngico/metabolismo , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Proteínas de Saccharomyces cerevisiae , Homologia de Sequência de Aminoácidos , Fatores Associados à Proteína de Ligação a TATA , Fator de Transcrição TFIIIB/química , Fatores de Transcrição TFIII/química , Técnicas do Sistema de Duplo-Híbrido
18.
Biol Chem ; 387(3): 277-84, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16542149

RESUMO

The human gene BDP1, localized on chromosome 5q13 in close proximity to the spinal muscular atrophy determining gene SMN, encodes a large protein consisting of 2254 amino acids (aa). In the first third of the gene, the subunit of the RNA polymerase III (Pol III) transcription factor complex (TFIIIB alpha/beta) is encoded. To further characterize the function of BDP1, we carried out a yeast two-hybrid screen using various parts of BDP1. With the clone BDP1-(1-640) we identified a novel interaction partner, ZNF297B. The ZNF297B gene is localized on chromosome 9q24 and encodes a zinc finger protein of 467 aa possessing the typical structure of a transcription factor. The interaction found in yeast was confirmed by co-immunoprecipitation and refined to the N-terminal region of ZNF297B-(1-127) containing the BTB/POZ domain and the N-terminal end of BDP1-(1-299). The ZNF297B transcript is 5.7 kb in length and ubiquitously expressed, with highest levels found in muscles. Immunofluorescence staining revealed a speckled pattern in the nuclei of HEK293 cells. Due to the essential role of BDP1 in Pol III transcription, we propose that ZNF297B may also regulate these transcriptional pathways.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Subunidades Proteicas/metabolismo , Fator de Transcrição TFIIIB/metabolismo , Sequência de Bases , Cromossomos Humanos Par 9/genética , Cromossomos Humanos Par 9/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Imunoprecipitação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Fator de Transcrição TFIIIB/química , Fator de Transcrição TFIIIB/genética
19.
J Biol Chem ; 281(20): 14321-9, 2006 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-16551611

RESUMO

The Brf1 subunit of the central RNA polymerase (pol) III transcription initiation factor TFIIIB is bipartite; its N-terminal TFIIB-related half is principally responsible for recruiting pol III to the promoter and for promoter opening near the transcriptional start site, whereas its pol III-specific C-terminal half contributes most of the affinities that hold the three subunits of TFIIIB together. Here, the principal attachment site of Brf1 for the Bdp1 subunit of TFIIIB has been mapped by a combination of structure-informed, site-directed mutagenesis and photochemical protein-DNA cross-linking. A 66-amino acid segment of Brf1 is shown to serve as a two-sided adhesive surface, with the side chains projecting away from its extended interface with TATA-binding protein anchoring Bdp1 binding. An extensive collection of N-terminal, C-terminal, and internal deletion proteins has been used to demarcate the interacting Bdp1 domain to a 66-amino acid segment that includes the SANT domain of this subunit and is phylogenetically the most conserved region of Bdp1.


Assuntos
Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIIB/química , Sequência de Aminoácidos , Reagentes de Ligações Cruzadas/farmacologia , DNA/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Fator de Transcrição TFIIIB/metabolismo , Fator de Transcrição TFIIIB/fisiologia
20.
J Biol Chem ; 281(15): 10461-72, 2006 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-16461347

RESUMO

Transcription from the yeast SNR6 (U6 small nuclear RNA) chromatin, a gene transcribed by the enzyme RNA polymerase III, depends on its transcription factor IIIC (TFIIIC) and the promoter elements (the intragenic box A and box B located downstream to its terminator) to which TFIIIC binds. The genes transcribed by polymerase III generally lack the upstream promoter elements where TFIIIC is known to recruit the transcription initiation factor TFIIIB. The TFIIIC-dependent chromatin remodeling of the gene in vitro that involves translational positioning of a nucleosome between boxes A and B is found to be essential for its transcriptional activation. We show here that the role of TFIIIC is not limited to the recruitment of TFIIIB on chromatin templates. The pre-binding of TFIIIB to the SNR6 TATA box in the upstream gene region does not alleviate TFIIIC requirement for transcriptional activation of the chromatin. Binding of TFIIIC to an array of pre-positioned nucleosomes results in an upward shift of the single nucleosome between boxes A and B. The approximately 40-bp shift of this nucleosome in the 3' to 5' direction leads to increased nuclease sensitivity of the approximately 40-bp DNA 3' to the upstream TATA box. Further chromatin remodeling accompanies the binding of TFIIIB in the next step. This two-step remodeling mechanism using the basal factors of the gene yields high transcription levels and generates a chromatin structure similar to that reported for the gene in vivo.


Assuntos
Cromatina/química , Regulação Fúngica da Expressão Gênica , Nucleossomos/química , RNA Nuclear Pequeno/química , Ativação Transcricional , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Cromatina/metabolismo , DNA/química , Drosophila , Proteínas Fúngicas/química , Genes Fúngicos , Modelos Genéticos , Nucleossomos/metabolismo , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Biossíntese de Proteínas , Proteínas Recombinantes de Fusão/química , Fator de Transcrição TFIIIB/química , Fatores de Transcrição TFIII/química , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...