Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 959: 176081, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37797674

RESUMO

Cardiac microvascular dysfunction contributes to cardiac hypertrophy (CH) and can progress to heart failure. Lutein is a carotenoid with various pharmacological properties, such as anti-apoptotic, anti-inflammatory, and antioxidant effects. Limited research has been conducted on the effects of lutein on pressure overload-induced CH. Studies have shown that CH is accompanied by ferroptosis in the cardiac microvascular endothelial cells (CMECs). This study aimed to investigate the effect of lutein on ferroptosis of CMECs in CH. The transcription factor interferon regulatory factor (IRF) is associated with immune system function, tumor suppression, and apoptosis. The results of this study suggested that pressure overload primarily inhibits IRF expression, resulting in endothelial ferroptosis. Administration of lutein increased the expression of IRF, providing protection to endothelial cells during pressure overload. IRF silencing downregulated solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) expression, leading to the induction of ferroptosis in CMECs. Lutein supplementation suppressed endothelial ferroptosis by upregulating IRF. These data suggest that IRF may function as a transcription factor for SLC7A11 and that lutein represses ferroptosis in CMECs by upregulating IRF expression. Therefore, targeting IRF may be a promising therapeutic strategy for effective cardioprotection in patients with CH and heart failure.


Assuntos
Ferroptose , Insuficiência Cardíaca , Humanos , Células Endoteliais , Luteína/farmacologia , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/farmacologia , Células Cultivadas , Cardiomegalia/metabolismo , Insuficiência Cardíaca/patologia
2.
Microbiol Spectr ; 11(3): e0077823, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37140433

RESUMO

The pathogenicity of Shigella, the intracellular pathogen responsible for human bacillary dysentery, depends on a coordinated and tightly regulated expression of its virulence determinants. This is the result of a cascade organization of its positive regulators, with VirF, a transcriptional activator belonging to the AraC-XylS family, in a pivotal position. VirF itself is submitted to several well-known regulations at the transcriptional level. In this work, we present evidence for a novel posttranslational regulatory mechanism of VirF mediated by the inhibitory interaction with specific fatty acids. By homology modeling and molecular docking analyses, we identify a jelly roll motif in the structure of ViF capable of interacting with medium-chain saturated and long-chain unsaturated fatty acids. In vitro and in vivo assays show that capric, lauric, myristoleic, palmitoleic, and sapienic acids interact effectively with the VirF protein, abolishing its transcription-promoting activity. This silences the virulence system of Shigella, leading to a drastic reduction in its ability to invade epithelial cells and proliferate in their cytoplasm. IMPORTANCE In the absence of a valid vaccine, the main therapeutic approach currently used to treat shigellosis is based on the use of antibiotics. The emergence of antibiotic resistance jeopardizes the future effectiveness of this approach. The importance of the present work resides both in the identification of a new level of posttranslational regulation of the Shigella virulence system and in the characterization of a mechanism offering new opportunities for the design of antivirulence compounds, which may change the treatment paradigm of Shigella infections by limiting the emergence of antibiotic-resistant bacteria.


Assuntos
Disenteria Bacilar , Shigella , Humanos , Virulência , Ácidos Graxos/metabolismo , Simulação de Acoplamento Molecular , Shigella flexneri/genética , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/farmacologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
3.
J Bacteriol ; 205(4): e0001523, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36920216

RESUMO

A novel approach to treat the highly virulent and infectious enteric pathogen Shigella flexneri, with the potential for reduced resistance development, is to target virulence pathways. One promising such target is the AraC-family transcription factor VirF, which activates downstream virulence factors. VirF harbors a conserved C-terminal DNA-binding domain (DBD) and an N-terminal dimerization domain (NTD). Previously, we studied the wild type (WT) and seven alanine DBD mutants of VirF binding to the virB promoter (N. J. Ragazzone, G. T. Dow, and A. Garcia, J Bacteriol 204:e00143-22, 2022, https://doi.org/10.1128/jb.00143-22). Here, we report studies of VirF binding to the icsA and rnaG promoters. Gel shift assays (electrophoretic mobility shift assays [EMSAs]) of WT VirF binding to these promoters revealed multiple bands at higher apparent molecular weights, indicating the likelihood of VirF dimerization when bound to DNA. For three of the mutants, we observed consistent effects on binding to the three promoters. For the four other mutants, we observed differential effects on promoter binding. Results of a cell-based, LexA monohybrid ß-galactosidase reporter assay [D. A. Daines, M. Granger-Schnarr, M. Dimitrova, and R. P. Silver, Methods Enzymol 358:153-161, 2002, https://doi.org/10.1016/s0076-6879(02)58087-3] indicated that WT VirF dimerizes in vivo and that alanine mutations to Y132, L137, and L147 significantly reduced dimerization. However, these mutations negatively impacted protein stability. We did purify enough of the Y132A mutant to determine that it binds in vitro to the virB and rnaG promoters, albeit with weaker affinities. Full-length VirF model structures, generated with I-TASSER, predict that these three amino acids are in a "dimerization" helix in the NTD, consistent with our results. IMPORTANCE Antimicrobial-resistant (AMR) infections continue to rise dramatically, and the lack of new approved antibiotics is not ameliorating this crisis. A promising route to reduce AMR is by targeting virulence. The Shigella flexneri virulence pathway is a valuable source for potential therapeutic targets useful to treat this infection. VirF, an AraC-family virulence transcription factor, is responsible for activating necessary downstream virulence genes that allow the bacteria to invade and spread within the human colon. Previous studies have identified how VirF interacts with the virB promoter and have even developed a lead DNA-binding inhibitor, but not much is known about VirF dimerization or binding to the icsA and rnaG promoters. Fully characterizing VirF can be a valuable resource for inhibitor discovery/design.


Assuntos
Proteínas de Ligação a DNA , Shigella flexneri , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Shigella flexneri/genética , Transcrição Gênica , Proteínas de Bactérias/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/farmacologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Fator de Transcrição AraC/genética , DNA/metabolismo , Regulação Bacteriana da Expressão Gênica
4.
Ann Hematol ; 102(5): 1063-1072, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36959484

RESUMO

The transcription factor interferon regulatory factor 8 (IRF8), as a member of the IRF family, is essential for myeloid cell differentiation. However, the precise role of IRF8 in the pathogenesis of acute myeloid leukemia (AML) remains unknown. By using multivariate analysis, we discovered that high IRF8 expression was an independent poor predictor of overall survival (OS) in AML patients from our clinical follow-up study. The proliferation of three AML cell lines was significantly inhibited by shRNA-mediated knockdown of IRF8, owing to cell cycle S-phase arrest. Furthermore, we demonstrated that knocking down IRF8 could suppress the expression of CyclinA and CyclinB1, resulting in a shift in cell cycle distribution. Loss of IRF8 in AML cells decreased the expression of STAT3 and phosphor-STAT3 (pSTAT3), which are key factors in JAK/STAT signal pathway and are important for AML progression. Using a xenograft mouse model, we discovered the antiproliferative effect of losing IRF8 in vivo. In conclusion, this study found that IRF8 may play a prognostic factor and therapeutic target in AML.


Assuntos
Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Seguimentos , Leucemia Mieloide Aguda/patologia , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/farmacologia , Transdução de Sinais , Linhagem Celular Tumoral , Proliferação de Células
5.
Cancer Gene Ther ; 30(6): 866-877, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36782048

RESUMO

IRF5, a nucleoplasm shuttling protein, is a pivotal transcription factor regulating immune system activity. It's well known that immunosuppression is involved in the development of gastric cancer. However, no data exist for the expression and function of IRF5 in gastric cancer. This study demonstrated that IRF5 was cytoplasm-enriched in gastric cancer cells. IRF5 promoted gastric cancer cell migration, which involved the inhibition of Wnt5a and E-cadherin proteins expression. IRF5 (LA) localized in nucleus had no significant effect on Wnt5a and E-cadherin expressions, while mutation of IRF5 (ΔNLS), which prevents IRF5 nuclear translocation, had more impact on these inhibitory effects. In addition, degradation rates of both Wnt5a and E-cadherin were enhanced by resiquimod, an IRF5 agonist. Further in vivo experiments indicated that IRF5 knockout of gastric cancer cells repressed their pulmonary metastasis in nude mice. Finally, the expression and clinical significance of IRF5 were analyzed using gastric cancer tissue microarrays, which suggested that the expression of IRF5 varied procedurally in different progressive stages of gastric cancer. Our data revealed that IRF5 cytoplasmic localization were associated with Wnt5a and E-cadherin degradation and gastric cancer cell metastasis. Inhibiting IRF5 expression and/or its cytoplasmic localization may provide a novel target for gastric cancer therapy.


Assuntos
Neoplasias Gástricas , Animais , Camundongos , Neoplasias Gástricas/patologia , Camundongos Nus , Caderinas/genética , Caderinas/metabolismo , Citoplasma/metabolismo , Citoplasma/patologia , Movimento Celular/genética , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/farmacologia , Linhagem Celular Tumoral
6.
Eur Surg Res ; 63(4): 257-268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35780774

RESUMO

INTRODUCTION: Ulcerative colitis (UC) is a chronic disease characterized by diffuse inflammation of the mucosa of colon and rectum. Interferon regulatory factor 4 (IRF4) mediates macrophage anti-inflammatory phenotype (alternatively activated macrophages [M2]). This study aimed to investigate the mechanism of IRF4 in lipopolysaccharide (LPS)-induced colonic mucosal epithelial cell proliferation via the regulation of macrophage polarization. METHODS: Human bone marrow-derived macrophages were subjected to interleukin 4 (IL-4) induction. M2 macrophages were identified using flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). IRF4 expression in M2 macrophages was detected using Western blot and qRT-PCR. IRF4 expression was silenced in M2 macrophages. IL-10 mRNA expression and protein level were detected using qRT-PCR and Western blot. The binding relation between IRF4 and IL-10 was verified using dual-luciferase and chromatin immunoprecipitation assays. Macrophages under different treatments were cocultured with LPS-induced human colonic mucosal epithelial cells. The levels of inflammatory factors (TNF-α, IL-6, and IL-1ß) were detected using enzyme-linked immunosorbent assay. The proliferation of inflammatory cells was measured using Cell Counting Kit-8 assay, and the healing of inflammatory cells was detected using wound healing assay. RESULTS: M2 macrophages alleviated LPS-induced inflammatory responses. IRF4 bound to IL-10 and promoted IL-10 expression. Inhibition of IRF4 reduced IL-10 expression and attenuated the alleviating effect of M2 macrophages on inflammatory responses. Inhibition of IRF4 combined with IL-10 overexpression enhanced the promoting effect of M2 macrophages on inflammatory healing. CONCLUSION: IRF4 promoted colonic mucosal epithelial cell proliferation by increasing IL-10 expression and regulating macrophage polarization to M2 phenotype, which might be related to UC mucosal healing.


Assuntos
Interleucina-10 , Lipopolissacarídeos , Humanos , Interleucina-10/metabolismo , Interleucina-10/farmacologia , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Macrófagos , Colo/metabolismo , Proliferação de Células , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/farmacologia
7.
Cell Mol Life Sci ; 79(6): 301, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35588018

RESUMO

Escalated innate immunity plays a critical role in SARS-CoV-2 pathology; however, the molecular mechanism is incompletely understood. Thus, we aim to characterize the molecular mechanism by which SARS-CoV-2 Spike protein advances human macrophage (MÏ´) inflammatory and glycolytic phenotypes and uncover novel therapeutic strategies. We found that human MÏ´s exposed to Spike protein activate IRAK4 phosphorylation. Blockade of IRAK4 in Spike protein-stimulated MÏ´s nullifies signaling of IRAK4, AKT, and baseline p38 without affecting ERK and NF-κB activation. Intriguingly, IRAK4 inhibitor (IRAK4i) rescues the SARS-CoV-2-induced cytotoxic effect in ACE2+HEK 293 cells. Moreover, the inflammatory reprogramming of MÏ´s by Spike protein was blunted by IRAK4i through IRF5 and IRF7, along with the reduction of monokines, IL-6, IL-8, TNFα, and CCL2. Notably, in Spike protein-stimulated MÏ´s, suppression of the inflammatory markers by IRAK4i was coupled with the rebalancing of oxidative phosphorylation over metabolic activity. This metabolic adaptation promoted by IRAK4i in Spike protein-activated MÏ´s was shown to be in part through constraining PFKBF3, HIF1α, cMYC, LDHA, lactate expression, and reversal of citrate and succinate buildup. IRAK4 knockdown could comparably impair Spike protein-enhanced inflammatory and metabolic imprints in human MÏ´s as those treated with ACE2, TLR2, and TLR7 siRNA. Extending these results, in murine models, where human SARS-CoV-2 Spike protein was not recognized by mouse ACE2, TLRs were responsible for the inflammatory and glycolytic responses instigated by Spike protein and were dysregulated by IRAK4i therapy. In conclusion, IRAK4i may be a promising strategy for severe COVID-19 patients by counter-regulating ACE2 and TLR-mediated MÏ´ hyperactivation. IRAK4i therapy counteracts MÏ´ inflammatory and glycolytic reprogramming triggered by Spike protein. This study illustrates that SARS-CoV-2 Spike protein activates IRAK4 signaling via ACE2 as well as TLR2 and TLR7 sensing in human MÏ´s. Remarkably, IRAK4i treatment can dysregulate both ACE-dependent and independent (via TLR sensing) SARS-CoV-2 Spike protein-activated inflammatory and metabolic imprints.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2 , Animais , Células HEK293 , Humanos , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/farmacologia , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Macrófagos/metabolismo , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 7 Toll-Like/metabolismo
8.
Drug Chem Toxicol ; 45(5): 2371-2378, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34225533

RESUMO

Silver nanoparticles (AgNPs) have been reported as stressors for the bivalves' immune system at different regulatory levels, impacting the detection step and receptors, and other mediators, as well as effector molecules. However, studies on how AgNPs impact the transmission of signals from receptors and whether they have an effect on mediators and transcription factors are still scarce. This study aims to investigate the effect of 12 hours of in vivo exposure to 100 µg/L of AgNPs on the gene expression of the cytosolic adaptor Myeloid, the differentiation protein 88 (MgMyD88-b), and the interferon regulatory factor (Me4-IRF) in the gills and digestive gland of Mytilus galloprovincialis, before and after blocking two major uptake pathways of nanoparticles (clathrin- and caveolae-mediated endocytosis). The results illustrate a tissue-specific gene expression of the MgMyD88-b and the Me4-IRF in the gills and digestive gland of M. galloprovincialis. In the gills, AgNPs did not significantly impact the expression of the two genes. However, blocking the caveolae-mediated endocytosis decreased the expression of Me4-IRF. However, inhibition of clathrin-mediated endocytosis in the digestive gland recorded a significant decrease in the expression of MgMyD88-b. Overall, the inhibition of the AgNPs' uptake routes have highlighted their potential interference with the immune response through the studied mediators' genes, which need to be studied further in future investigations.


Assuntos
Nanopartículas Metálicas , Mytilus , Poluentes Químicos da Água , Animais , Clatrina/metabolismo , Clatrina/farmacologia , Expressão Gênica , Brânquias , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/farmacologia , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Poluentes Químicos da Água/metabolismo
9.
Front Immunol ; 12: 818267, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35082798

RESUMO

Interferon regulatory factors (IRFs) are transcription factors found in both vertebrates and invertebrates that were recently identified and found to play an important role in antiviral immunity in black tiger shrimp Penaeus monodon. In this study, we investigated the mechanism by which P. monodon IRF (PmIRF) regulates the immune-related genes downstream of the cytosolic DNA sensing pathway. Depletion of PmIRF by double-stranded RNA-mediated gene silencing significantly reduced the mRNA expression levels of the IFN-like factors PmVago1, PmVago4, and PmVago5 and antilipopolysaccharide factor 6 (ALFPm6) in shrimp. In human embryonic kidney (HEK293T) cells transfected with PmIRF or co-transfected with DEAD-box polypeptide (PmDDX41) and simulator of IFN genes (PmSTING) expression plasmids, the promoter activity of IFN-ß, nuclear factor (NF-κB), and ALFPm6 was synergistically enhanced following stimulation with the nucleic acid mimics deoxyadenylic-deoxythymidylic acid sodium salt [poly(dA:dT)] and high molecular weight (HMW) polyinosinic-polycytidylic acid [poly(I:C)]. Both nucleic acid mimics also significantly induced PmSTING, PmIRF, and ALFPm6 gene expression. Co-immunoprecipitation experiments showed that PmIRF interacted with PmSTING in cells stimulated with poly(dA:dT). PmSTING, PmIRF, and PmDDX41 were localized in the cytoplasm of unstimulated HEK293T cells and PmIRF and PmDDX41 were translocated to the nucleus upon stimulation with the nucleic acid mimics while PmSTING remained in the cytoplasm. These results indicate that PmIRF transduces the pathogen signal via the PmDDX41-PmSTING DNA sensing pathway to induce downstream production of interferon-like molecules and antimicrobial peptides.


Assuntos
Peptídeos Antimicrobianos/genética , DNA/imunologia , Regulação da Expressão Gênica , Fatores Reguladores de Interferon/metabolismo , Interferons/genética , Proteínas de Membrana/metabolismo , Penaeidae/fisiologia , Animais , Peptídeos Antimicrobianos/metabolismo , Linhagem Celular , Células Cultivadas , Inativação Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Fatores Reguladores de Interferon/farmacologia , Interferons/metabolismo , Transdução de Sinais
11.
J Immunol ; 195(11): 5327-36, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26519527

RESUMO

Increased IFN-α production contributes to the pathogenesis of infectious and autoimmune diseases. Plasmacytoid dendritic cells (pDCs) from females produce more IFN-α upon TLR7 stimulation than pDCs from males, yet the mechanisms underlying this difference remain unclear. In this article, we show that basal levels of IFN regulatory factor (IRF) 5 in pDCs were significantly higher in females compared with males and positively correlated with the percentage of IFN-α-secreting pDCs. Delivery of recombinant IRF5 protein into human primary pDCs increased TLR7-mediated IFN-α secretion. In mice, genetic ablation of the estrogen receptor 1 (Esr1) gene in the hematopoietic compartment or DC lineage reduced Irf5 mRNA expression in pDCs and IFN-α production. IRF5 mRNA levels furthermore correlated with ESR1 mRNA levels in human pDCs, consistent with IRF5 regulation at the transcriptional level by ESR1. Taken together, these data demonstrate a critical mechanism by which sex differences in basal pDC IRF5 expression lead to higher IFN-α production upon TLR7 stimulation in females and provide novel targets for the modulation of immune responses and inflammation.


Assuntos
Células Dendríticas/imunologia , Fatores Reguladores de Interferon/metabolismo , Interferon-alfa/biossíntese , Caracteres Sexuais , Receptor 7 Toll-Like/metabolismo , Animais , Células Cultivadas , Receptor alfa de Estrogênio/genética , Feminino , Regulação da Expressão Gênica , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/farmacologia , Interferon-alfa/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , RNA Mensageiro/biossíntese , Proteínas Recombinantes/farmacologia , Transdução de Sinais/genética
12.
Am J Reprod Immunol ; 65(5): 460-5, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21463376

RESUMO

PROBLEM: Innate immune activation of human cells, for some intracellular pathogens, is advantageous for vacuole morphology and pathogenic viability. It is unknown whether innate immune activation is advantageous to Chlamydia trachomatis viability. METHOD OF STUDY: Innate immune activation of HEp-2 cells during Chlamydia infection was conducted using lipopolysaccharide (LPS), polyI:C, and wedelolactone (innate immune inhibitor) to investigate the impact of these conditions on viability of Chlamydia. RESULTS: The addition of LPS and polyI:C to stimulate activation of the two distinct innate immune pathways (nuclear factor kappa beta and interferon regulatory factor) had no impact on the viability of Chlamydia. However, when compounds targeting either pathway were added in combination with the specific innate immune inhibitor (wedelolactone) a major impact on Chlamydia viability was observed. This impact was found to be due to the induction of apoptosis of the HEp-2 cells under these conditions. CONCLUSION: This is the first time that induction of apoptosis has been reported in C. trachomatis-infected cells when treated with a combination of innate immune activators and wedelolactone.


Assuntos
Apoptose , Infecções por Chlamydia/imunologia , Chlamydia trachomatis/crescimento & desenvolvimento , Cumarínicos/farmacologia , Imunidade Inata/efeitos dos fármacos , Fatores Reguladores de Interferon/metabolismo , NF-kappa B/metabolismo , Linhagem Celular , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/efeitos dos fármacos , Chlamydia trachomatis/imunologia , Regulação da Expressão Gênica , Humanos , Quinase I-kappa B/metabolismo , Quinase I-kappa B/farmacologia , Fatores Reguladores de Interferon/farmacologia , Lipopolissacarídeos/farmacologia , Viabilidade Microbiana
13.
J Leukoc Biol ; 83(3): 680-91, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18089853

RESUMO

The IFN consensus sequence-binding protein (ICSBP; also referred to as IFN regulatory factor 8) is a transcription factor which is expressed in myeloid and B cells. In previous studies, we found that ICSBP activated transcription of the gene encoding gp91(PHOX) (the CYBB gene), a rate-limiting component of the phagocyte respiratory burst oxidase expressed exclusively after the promyelocyte stage of myelopoiesis. Previously, we found that CYBB transcription was dependent on phosphorylation of specific ICSBP tyrosine residues. Since ICSBP is tyrosine-phosphorylated during myelopoiesis, this provided a mechanism of differentiation stage-specific CYBB transcription. In the current studies, we found that ICSBP was a substrate for Src homology-containing tyrosine phosphatase 2 (SHP2-PTP) in immature myeloid cells but not during myelopoiesis. Therefore, SHP2-PTP inhibited CYBB transcription and respiratory burst activity in myeloid progenitor cells by dephosphorylating ICSBP. In contrast, we found that ICSBP was a substrate for a leukemia-associated, constitutively active mutant form of SHP2, described previously, throughout differentiation. Consistent with this, constitutive SHP2 activation blocked ICSBP-induced CYBB transcription and respiratory burst activity in differentiating myeloid cells. ICSBP-deficiency and constitutive SHP2 activation have been described in human myelodysplastic syndromes. As these two abnormalities may coexist, our results identified a potential molecular mechanism for impaired phagocyte function in this malignant myeloid disease.


Assuntos
Fatores Reguladores de Interferon/farmacologia , Glicoproteínas de Membrana/genética , NADPH Oxidases/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Transcrição Gênica/efeitos dos fármacos , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Diferenciação Celular , Células Cultivadas , Ativação Enzimática , Genes Reporter , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Fagócitos/fisiologia , Biossíntese de Proteínas , Transfecção , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...