Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 2976, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016977

RESUMO

The recycling of ribosomes at stop codons for use in further rounds of translation is critical for efficient protein synthesis. Removal of the 60S subunit is catalyzed by the ATPase Rli1 (ABCE1) while removal of the 40S is thought to require Tma64 (eIF2D), Tma20 (MCT-1), and Tma22 (DENR). However, it remains unclear how these Tma proteins cause 40S removal and control reinitiation of downstream translation. Here we used a 40S ribosome footprinting strategy to directly observe intermediate steps of ribosome recycling in cells. Deletion of the genes encoding these Tma proteins resulted in broad accumulation of unrecycled 40S subunits at stop codons, directly establishing their role in 40S recycling. Furthermore, the Tma20/Tma22 heterodimer was responsible for a majority of 40S recycling events while Tma64 played a minor role. Introduction of an autism-associated mutation into TMA22 resulted in a loss of 40S recycling activity, linking ribosome recycling and neurological disease.


Assuntos
Fatores de Iniciação em Eucariotos/metabolismo , Iniciação Traducional da Cadeia Peptídica , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transtorno do Espectro Autista/genética , Códon de Iniciação , Códon de Terminação , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/isolamento & purificação , Técnicas de Inativação de Genes , Glutarredoxinas/genética , Humanos , Mutação , Fases de Leitura Aberta/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
2.
Methods Mol Biol ; 725: 63-76, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21528447

RESUMO

Most complexes involved in RNA silencing were thought to be concentrated in cytoplasmic sites called P-bodies in the absence of stress. Accumulating evidence suggests that distinct cellular organelles or sites may be involved in the maturation of RNA-induced silencing complexes (RISC), decapping and deadenylation of miRNA-repressed mRNA, transport of translationally repressed mRNA, and disassembly of RISC complexes. Significant fractions of proteins essential for RNA silencing associate with membranes in general (GW182, AGO, and DICER), or more specifically with endoplasmic reticulum and Golgi (AGO), or endosomes and multivesicular bodies (AGO, GW182). In contrast, mRNA decapping and decay occur mainly in the cytoplasm. Continuous density gradients capable of partitioning these cellular compartments are valuable tools in efforts to decipher the complexes, trafficking and regulation of RISC throughout its biogenesis, action and turnover.


Assuntos
Autoantígenos/isolamento & purificação , Autoantígenos/metabolismo , Bioquímica/métodos , Fatores de Iniciação em Eucariotos/isolamento & purificação , Fatores de Iniciação em Eucariotos/metabolismo , Proteínas de Ligação a RNA/isolamento & purificação , Proteínas de Ligação a RNA/metabolismo , Vesículas Transportadoras/metabolismo , Transporte Biológico/fisiologia , Linhagem Celular , Centrifugação com Gradiente de Concentração , Precipitação Fracionada , Células HeLa , Humanos , RNA/isolamento & purificação , RNA/metabolismo
3.
Methods Enzymol ; 431: 33-45, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17923229

RESUMO

The discovery of Green Fluorescent Protein (GFP) and the development of technology that allows specific proteins to be tagged with GFP has fundamentally altered the types of question that can be asked using cell biological methods. It is now possible not only to study where a protein is within a cell, but also feasible to study the precise dynamics of protein movement within living cells. We have exploited these technical developments and applied them to the study of translation initiation factors in yeast, focusing particularly on the key regulated guanine nucleotide exchange step involving eIF2B and eIF2. This chapter summarizes current methodologies for the tagging and visualization of GFP-tagged proteins involved in translation initiation in live yeast cells.


Assuntos
Fatores de Iniciação em Eucariotos/isolamento & purificação , Fatores de Iniciação em Eucariotos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Marcadores de Afinidade/metabolismo , Transporte Biológico , Técnicas de Cultura de Células , Fatores de Iniciação em Eucariotos/genética , Recuperação de Fluorescência Após Fotodegradação/métodos , Microscopia de Fluorescência , Modelos Biológicos , RNA/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Distribuição Tecidual , Transformação Genética
4.
Methods Enzymol ; 429: 83-104, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17913620

RESUMO

In vitro assembly of eukaryotic translation initiation complexes requires purification of ribosomal subunits, eukaryotic initiation factors, and initiator tRNA from natural sources and therefore yields only limited material for functional and structural studies. In this chapter, we describe a robust, affinity chromatography-based method for the isolation of eukaryotic 48S initiation complexes from rabbit reticulocyte lysate (RRL). Both canonical and internal ribosome entry site (IRES)-containing mRNAs labeled with a streptomycin aptamer sequence at the 3' end can be used to purify milligram quantities of 48S particles in a simple, two-step procedure. The 48S complexes purified with this method are properly assembled at the initiation codon, contain the expected RNA and protein components in a 1:1 stoichiometry, and are functional intermediates along the initiation pathway.


Assuntos
Cromatografia de Afinidade/métodos , Fatores de Iniciação em Eucariotos/isolamento & purificação , Fatores de Iniciação em Eucariotos/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/síntese química , Animais , Aptâmeros de Nucleotídeos/síntese química , Extratos Celulares , Sistema Livre de Células , Centrifugação com Gradiente de Concentração , Immunoblotting , Coelhos , Reticulócitos/metabolismo , Estreptomicina/química
5.
RNA Biol ; 4(2): 76-84, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17637574

RESUMO

MicroRNAs (miRNAs) constitute a class of small non-coding RNAs that regulate gene expression on the level of translation and/or mRNA stability. Mammalian miRNAs associate with members of the Argonaute (Ago) protein family and bind to partially complementary sequences in the 3' untranslated region (UTR) of specific target mRNAs. Computer algorithms based on factors such as free binding energy or sequence conservation have been used to predict miRNA target mRNAs. Based on such predictions, up to one third of all mammalian mRNAs seem to be under miRNA regulation. However, due to the low degree of complementarity between the miRNA and its target, such computer programs are often imprecise and therefore not very reliable. Here we report the first biochemical identification approach of miRNA targets from human cells. Using highly specific monoclonal antibodies against members of the Ago protein family, we co-immunoprecipitate Ago-bound mRNAs and identify them by cloning. Interestingly, most of the identified targets are also predicted by different computer programs. Moreover, we randomly analyzed six different target candidates and were able to experimentally validate five as miRNA targets. Our data clearly indicate that miRNA targets can be experimentally identified from Ago complexes and therefore provide a new tool to directly analyze miRNA function.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , MicroRNAs/metabolismo , RNA Mensageiro/genética , Animais , Proteínas Argonautas , Linhagem Celular , Fator de Iniciação 2 em Eucariotos/isolamento & purificação , Fatores de Iniciação em Eucariotos/isolamento & purificação , Humanos , MicroRNAs/genética , MicroRNAs/isolamento & purificação , RNA Mensageiro/isolamento & purificação , RNA Mensageiro/metabolismo , Ratos
6.
EMBO J ; 26(13): 3109-23, 2007 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-17568775

RESUMO

Eukaryotic translation initiation factor eIF5B is a ribosome-dependent GTPase that mediates displacement of initiation factors from the 40S ribosomal subunit in 48S initiation complexes and joining of 40S and 60S subunits. Here, we determined eIF5B's position on 80S ribosomes by directed hydroxyl radical cleavage. In the resulting model, eIF5B is located in the intersubunit cleft of the 80S ribosome: domain 1 is positioned near the GTPase activating center of the 60S subunit, domain 2 interacts with the 40S subunit (helices 3, 5 and the base of helix 15 of 18S rRNA and ribosomal protein (rp) rpS23), domain 3 is sandwiched between subunits and directly contacts several ribosomal elements including Helix 95 of 28S rRNA and helix 44 of 18S rRNA, domain 4 is near the peptidyl-transferase center and its helical subdomain contacts rpL10E. The cleavage data also indicate that binding of eIF5B might induce conformational changes in both subunits, with ribosomal segments wrapping around the factor. Some of these changes could also occur upon binding of other translational GTPases, and may contribute to factor recognition.


Assuntos
Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/metabolismo , Radical Hidroxila/metabolismo , Ribossomos/metabolismo , Sequência de Bases , Cisteína/genética , Cisteína/metabolismo , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/isolamento & purificação , Humanos , Modelos Moleculares , Mutação/genética , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Ribossômico/química , RNA Ribossômico/genética
7.
RNA ; 12(5): 751-64, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16565414

RESUMO

All three kingdoms of life employ two methionine tRNAs, one for translation initiation and the other for insertion of methionines at internal positions within growing polypeptide chains. We have used a reconstituted yeast translation initiation system to explore the interactions of the initiator tRNA with the translation initiation machinery. Our data indicate that in addition to its previously characterized role in binding of the initiator tRNA to eukaryotic initiation factor 2 (eIF2), the initiator-specific A1:U72 base pair at the top of the acceptor stem is important for the binding of the eIF2.GTP.Met-tRNA(i) ternary complex to the 40S ribosomal subunit. We have also shown that the initiator-specific G:C base pairs in the anticodon stem of the initiator tRNA are required for the strong thermodynamic coupling between binding of the ternary complex and mRNA to the ribosome. This coupling reflects interactions that occur within the complex upon recognition of the start codon, suggesting that these initiator-specific G:C pairs influence this step. The effect of these anticodon stem identity elements is influenced by bases in the T loop of the tRNA, suggesting that conformational coupling between the D-loop-T-loop substructure and the anticodon stem of the initiator tRNA may occur during AUG codon selection in the ribosomal P-site, similar to the conformational coupling that occurs in A-site tRNAs engaged in mRNA decoding during the elongation phase of protein synthesis.


Assuntos
Fatores de Iniciação em Eucariotos/metabolismo , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , RNA de Transferência de Metionina/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Sequência Conservada , Fator de Iniciação 1 em Eucariotos/isolamento & purificação , Fator de Iniciação 1 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/isolamento & purificação , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 5 em Eucariotos/isolamento & purificação , Fator de Iniciação 5 em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/isolamento & purificação , Guanosina Trifosfato/metabolismo , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , Puromicina/análogos & derivados , Puromicina/análise , Puromicina/biossíntese , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA de Transferência de Metionina/química , RNA de Transferência de Metionina/genética , RNA de Transferência de Metionina/isolamento & purificação , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética
8.
RNA ; 12(4): 683-90, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16484374

RESUMO

In vitro assembly of translation initiation complexes from higher eukaryotes requires purification of ribosomal subunits, eukaryotic initiation factors, and initiator tRNA from natural sources, and therefore yields only limited material for functional and structural studies. Here we describe a robust, affinity chromatography-based purification of eukaryotic 48S initiation complexes from rabbit reticulocyte lysate (RRL), which significantly reduces the number of individual purification steps. Hybrid RNA molecules, consisting of either a canonical 5' UTR or an internal ribosome entry site (IRES) RNA followed by a short open reading frame and a streptomycin aptamer sequence, are incubated in RRL to form 48S complexes. The assembly reaction is then applied to a dihydrostreptomycin-sepharose column; bound complexes are washed and specifically eluted upon addition of streptomycin. The eluted fractions are further purified by centrifugation through a sucrose density gradient to yield pure 48S particles. Using this purification scheme, properly assembled IRES-mediated as well as canonical 48S complexes were purified in milligram quantities.


Assuntos
Cromatografia de Afinidade/métodos , Fatores de Iniciação em Eucariotos/isolamento & purificação , Regiões 5' não Traduzidas , Animais , Sequência de Bases , Northern Blotting , Western Blotting , Primers do DNA , Coelhos
9.
J Biol Chem ; 281(13): 8469-75, 2006 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16461768

RESUMO

Eukaryotic initiation factor 5B (eIF5B) is a GTPase that facilitates joining of the 60 S ribosomal subunit to the 40 S ribosomal subunit during translation initiation. Formation of the resulting 80 S initiation complex triggers eIF5B to hydrolyze its bound GTP, reducing the affinity of the factor for the complex and allowing it to dissociate. Here we present a kinetic analysis of GTP hydrolysis by eIF5B in the context of the translation initiation pathway. Our data indicate that stimulation of GTP hydrolysis by eIF5B requires the completion of early steps in translation initiation, including the eIF1- and eIF1A-dependent delivery of initiator methionyl-tRNA to the 40 S ribosomal subunit and subsequent GTP hydrolysis by eIF2. Full activation of GTP hydrolysis by eIF5B requires the extreme C terminus of eIF1A, which has previously been shown to interact with the C terminus of eIF5B. Disruption of either isoleucine residue in the eIF1A C-terminal sequence DIDDI reduces the rate constant for GTP hydrolysis by approximately 20-fold, whereas changing the aspartic acid residues has no effect. Changing the isoleucines in the C terminus of eIF1A also disrupts the ability of eIF5B to facilitate subunit joining. These data indicate that the interaction of the C terminus of eIF1A with eIF5B promotes ribosomal subunit joining and possibly provides a checkpoint for correct complex formation, allowing full activation of GTP hydrolysis only upon formation of a properly organized 80 S initiation complex.


Assuntos
Fator de Iniciação 1 em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Iniciação Traducional da Cadeia Peptídica , Ribossomos/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Escherichia coli/genética , Fator de Iniciação 1 em Eucariotos/química , Fator de Iniciação 1 em Eucariotos/genética , Fator de Iniciação 1 em Eucariotos/isolamento & purificação , Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/isolamento & purificação , Polarização de Fluorescência , GTP Fosfo-Hidrolases/análise , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Histidina/química , Hidrólise , Isoleucina/metabolismo , Cinética , Metionina/metabolismo , Modelos Biológicos , Radioisótopos de Fósforo , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Radioisótopos de Enxofre
10.
Plant Cell ; 17(11): 2940-53, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16227452

RESUMO

Ribosomal protein L24 (RPL24) is implicated in translation reinitiation of polycistronic genes. A newly isolated Arabidopsis thaliana short valve1 (stv1) mutant, in which one of the RPL24-encoding genes, RPL24B, is deleted, shows specific defects in the apical-basal patterning of the gynoecium, in addition to phenotypes induced by ribosome deficiency. A similar gynoecium phenotype is caused by mutations in the auxin response factor (ARF) genes ETTIN (ETT) and MONOPTEROS (MP), which have upstream open reading frames (uORFs) in their 5'-transcript leader sequences. Gynoecia of a double mutant of stv1 and a weak ett mutant allele are similar to those of a strong ett allele, and transformation with a uORF-eliminated ETT construct partially suppressed the stv1 gynoecium phenotype, implying that STV1 could influence ETT translation through its uORFs. Analyses of 5'-leader-reporter gene fusions showed that the uORFs of ETT and MP negatively regulate the translation of the downstream major ORFs, indicating that translation reinitiation is an important step for the expression of these proteins. Taken together, we propose that perturbation of translation reinitiation of the ARF transcripts causes the defects in gynoecium patterning observed in the stv1 mutant.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Ligação a DNA/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Flores/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Ribossômicas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Sequência de Bases , DNA Complementar/análise , DNA Complementar/genética , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/isolamento & purificação , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Biossíntese de Proteínas/fisiologia , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/isolamento & purificação
11.
Arch Biochem Biophys ; 413(2): 243-52, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12729623

RESUMO

Yeast mitochondrial initiation factor 2 (ymIF2) is encoded by the nuclear IFM1 gene. A His-tagged version of ymIF2, lacking its predicted mitochondrial presequence, was expressed in Escherichia coli and purified. Purified ymIF2 bound both E. coli fMet-tRNA(f)(Met) and Met-tRNA(f)(Met), but binding of formylated initiator tRNA was about four times higher than that of the unformylated species under the same conditions. In addition, the isolated ymIF2 was compared to E. coli IF2 in four other assays commonly used to characterize this initiation factor. Formylated and nonformylated Met-tRNA(f)(Met) were bound to E. coli 30S ribosomal subunits in the presence of ymIF2, GTP, and a short synthetic mRNA. The GTPase activity of ymIF2 was found to be dependent on the presence of E. coli ribosomes. The ymIF2 protected fMet-tRNA(f)(Met) to about the same extent as E. coli IF2 against nonenzymatic deaminoacylation. In contrast to E. coli IF2, the complex formed between ymIF2 and fMet-tRNA(f)(Met) was not stable enough to be analyzed in a gel shift assay. In similarity to other IF2 species isolated from bacteria or bovine mitochondria, the N-terminal domain could be eliminated without loss of initiator tRNA binding activity.


Assuntos
Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/isolamento & purificação , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Aminoácidos/metabolismo , Animais , Bovinos , Cromatografia em Camada Fina , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Guanosina Trifosfato/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Plasmídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência de Metionina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Ribossomos/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...