Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 81(7): 1453-1468.e12, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33662273

RESUMO

Splicing is a central RNA-based process commonly altered in human cancers; however, how spliceosomal components are co-opted during tumorigenesis remains poorly defined. Here we unravel the core splice factor SF3A3 at the nexus of a translation-based program that rewires splicing during malignant transformation. Upon MYC hyperactivation, SF3A3 levels are modulated translationally through an RNA stem-loop in an eIF3D-dependent manner. This ensures accurate splicing of mRNAs enriched for mitochondrial regulators. Altered SF3A3 translation leads to metabolic reprogramming and stem-like properties that fuel MYC tumorigenic potential in vivo. Our analysis reveals that SF3A3 protein levels predict molecular and phenotypic features of aggressive human breast cancers. These findings unveil a post-transcriptional interplay between splicing and translation that governs critical facets of MYC-driven oncogenesis.


Assuntos
Neoplasias da Mama/metabolismo , Carcinogênese/metabolismo , Células-Tronco Neoplásicas/metabolismo , Biossíntese de Proteínas , Fatores de Processamento de RNA/biossíntese , Spliceossomos/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Feminino , Humanos , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Processamento de RNA/genética , Spliceossomos/genética
2.
Eur Neuropsychopharmacol ; 30: 44-55, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-29174947

RESUMO

The RBFOX1 gene (or A2BP1) encodes a splicing factor important for neuronal development that has been related to autism spectrum disorder and other neurodevelopmental phenotypes. Evidence from complementary sources suggests that this gene contributes to aggressive behavior. Suggestive associations with RBFOX1 have been identified in genome-wide association studies (GWAS) of anger, conduct disorder, and aggressive behavior. Nominal association signals in RBFOX1 were also found in an epigenome-wide association study (EWAS) of aggressive behavior. Also, variants in this gene affect temporal lobe volume, a brain area that is altered in several aggression-related phenotypes. In animals, this gene has been shown to modulate aggressive behavior in Drosophila. RBFOX1 has also been associated with canine aggression and is upregulated in mice that show increased aggression after frustration of an expected reward. Associated common genetic variants as well as rare duplications and deletions affecting RBFOX1 have been identified in several psychiatric and neurodevelopmental disorders that are often comorbid with aggressive behaviors. In this paper, we comprehensively review the cumulative evidence linking RBFOX1 to aggression behavior and provide new results implicating RBFOX1 in this phenotype. Most of these studies (genetic and epigenetic analyses in humans, neuroimaging genetics, gene expression and animal models) are hypothesis-free, which strengthens the validity of the findings, although all the evidence is nominal and should therefore be taken with caution. Further studies are required to clarify in detail the role of this gene in this complex phenotype.


Assuntos
Agressão/fisiologia , Agressão/psicologia , Estudos de Associação Genética/métodos , Fatores de Processamento de RNA/genética , Animais , Epigênese Genética/fisiologia , Variação Genética/fisiologia , Estudo de Associação Genômica Ampla/métodos , Humanos , Fatores de Processamento de RNA/biossíntese
3.
Elife ; 82019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31429825

RESUMO

Brain-derived neurotrophic factor (BDNF) is a potent modulator of brain synaptic plasticity. Signaling defects caused by dysregulation of its Ntrk2 (TrkB) kinase (TrkB.FL) and truncated receptors (TrkB.T1) have been linked to the pathophysiology of several neurological and neurodegenerative disorders. We found that upregulation of Rbfox1, an RNA binding protein associated with intellectual disability, epilepsy and autism, increases selectively hippocampal TrkB.T1 isoform expression. Physiologically, increased Rbfox1 impairs BDNF-dependent LTP which can be rescued by genetically restoring TrkB.T1 levels. RNA-seq analysis of hippocampi with upregulation of Rbfox1 in conjunction with the specific increase of TrkB.T1 isoform expression also shows that the genes affected by Rbfox1 gain of function are surprisingly different from those influenced by Rbfox1 deletion. These findings not only identify TrkB as a major target of Rbfox1 pathophysiology but also suggest that gain or loss of function of Rbfox1 regulate different genetic landscapes.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/fisiologia , Potenciação de Longa Duração , Glicoproteínas de Membrana/biossíntese , Proteínas Tirosina Quinases/biossíntese , Fatores de Processamento de RNA/biossíntese , Regulação para Cima , Animais , Perfilação da Expressão Gênica , Camundongos , Isoformas de Proteínas/biossíntese , Análise de Sequência de RNA
4.
J Psychiatry Neurosci ; 44(1): 19, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30565903

RESUMO

Background: Estrogen therapy (ET), an effective treatment for perimenopausal depression, often fails to ameliorate symptoms when initiated late after the onset of menopause. Our previous work has suggested that alternative splicing of RNA might mediate these differential effects of ET. Methods: Female Sprague­Dawley rats were treated with estradiol (E2) or vehicle 6 days (early ET) or 180 days (late ET) after ovariectomy (OVX). We investigated the differential expression of RNA splicing factors and tryptophan hydroxylase 2 (TPH2) protein using a customized RT2 Profiler PCR Array, reverse-transcription polymerase chain reaction, immunoprecipitation and behaviour changes in clinically relevant early and late ET. Results: Early ET, but not late ET, prolonged swimming time in the forced swim test and reduced anxiety-like behaviours in the elevated plus maze. It reversed OVX-increased (SFRS7 and SFRS16) or OVX-decreased (ZRSR2 and CTNNB1) mRNA levels of splicing factors and ERß splicing changes in the brains of OVX rats. Early ET, but not late ET, also increased the expression of TPH2 and decreased monoamine oxidase A levels in the dorsal raphe in the brains of OVX rats. In late ET, only diarylpropionitrile (an ERß-specific agonist) achieved similar results ­ not E2 (an ERα and ERß agonist) or propylpyrazoletriol (an ERα-specific agonist). Limitations: Our experimental paradigm mimicked early and late ET in the clinical setting, but the contribution of age and OVX might be difficult to distinguish. Conclusion: These findings suggest that ERß alternative splicing and altered responses in the regulatory system for serotonin may mediate the antidepressant efficacy of ET associated with the timing of therapy initiation. It is likely that ERß-specific ligands would be effective estrogen-based antidepressants late after the onset of menopause.


Assuntos
Antidepressivos/farmacologia , Estradiol/farmacologia , Resposta de Imobilidade Tônica/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Fatores de Processamento de RNA/biossíntese , Animais , Encéfalo/metabolismo , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/metabolismo , Feminino , Monoaminoxidase/metabolismo , Nitrilas/farmacologia , Ovariectomia , Fenóis/farmacologia , Propionatos/farmacologia , Pirazóis/farmacologia , Ratos , Fatores de Tempo , Triptofano Hidroxilase/biossíntese
5.
Exp Neurol ; 308: 80-89, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29981323

RESUMO

The intrinsic axon regeneration capacity is crucial for peripheral nerve regeneration after injury. Identifying key molecules involved in this process makes great contribution to the investigation of peripheral nerve injury repair. Alternative splicing (AS) is an important regulation mode of eukaryotic gene expression, which has been widely studied both in physiological and pathological processes. However, less is known about the role of AS in peripheral nerve regeneration. In this work, to identify the AS events associated with axon regeneration capacity, we analyzed the AS events during sciatic nerve injury repair by RNA sequencing (RNA-Seq) and replicate multivariate analysis of transcript splicing (rMATS). The differential AS events were underwent gene ontology enrichment and pathway analyses. Moreover, we identified a significantly increased AS event of neuronal cell adhesion molecule Nrcam (Nrcam-S), and demonstrated down-regulation of Nrcam-S by specific siRNAs inhibited axon regeneration of Dorsal Root Ganglion (DRG) neurons after sciatic nerve injury in vitro and in vivo. Additionally, we found expression levels of RNA binding proteins (RBPs) CUGBP Elav-like family member 3 (CELF3) and RNA binding protein fox-1 homolog 2 (Rbfox2) were markedly increased after sciatic nerve injury. Our data may serve as a resource useful for further understanding how AS contributes to molecular regulations in DRG during sciatic nerve regeneration.


Assuntos
Processamento Alternativo/genética , Moléculas de Adesão Celular/genética , Regeneração Nervosa/genética , Traumatismos dos Nervos Periféricos/fisiopatologia , Animais , Axônios , Proteínas CELF/biossíntese , Gânglios Espinais/metabolismo , Masculino , Compressão Nervosa , Traumatismos dos Nervos Periféricos/metabolismo , Fatores de Processamento de RNA/biossíntese , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/lesões
6.
Hypertension ; 70(6): 1183-1192, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28993448

RESUMO

Calcium influx from activated voltage-gated calcium channel CaV1.2 in vascular smooth muscle cells is indispensable for maintaining myogenic tone and blood pressure. The function of CaV1.2 channel can be optimized by alternative splicing, one of post-transcriptional modification mechanisms. The splicing factor Rbfox2 is known to regulate the CaV1.2 pre-mRNA alternative splicing events during neuronal development. However, Rbfox2's roles in modulating the key function of vascular CaV1.2 channel and in the pathogenesis of hypertension remain elusive. Here, we report that the proportion of CaV1.2 channels with alternative exon 9* is increased by 10.3%, whereas that with alternative exon 33 is decreased by 10.5% in hypertensive arteries. Surprisingly, the expression level of Rbfox2 is increased ≈3-folds, presumably because of the upregulation of a dominant-negative isoform of Rbfox2. In vascular smooth muscle cells, we find that knockdown of Rbfox2 dynamically increases alternative exon 9*, whereas decreases exon 33 inclusion of CaV1.2 channels. By patch-clamp studies, we show that diminished Rbfox2-induced alternative splicing shifts the steady-state activation and inactivation curves of vascular CaV1.2 calcium channel to hyperpolarization, which makes the window current potential to more negative. Moreover, siRNA-mediated knockdown of Rbfox2 increases the pressure-induced vascular myogenic tone of rat mesenteric artery. Taken together, our data indicate that Rbfox2 modulates the functions of vascular CaV1.2 calcium channel by dynamically regulating the expressions of alternative exons 9* and 33, which in turn affects the vascular myogenic tone. Therefore, our work suggests a key role for Rbfox2 in hypertension, which provides a rational basis for designing antihypertensive therapies.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Regulação da Expressão Gênica , Hipertensão/genética , Miócitos de Músculo Liso/metabolismo , Fatores de Processamento de RNA/genética , RNA/genética , Proteínas Repressoras/genética , Vasoconstrição/fisiologia , Animais , Artérias/metabolismo , Artérias/patologia , Artérias/fisiopatologia , Pressão Sanguínea , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Humanos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Técnicas de Patch-Clamp , Fatores de Processamento de RNA/biossíntese , Ratos , Proteínas Repressoras/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Mol Cell Biochem ; 436(1-2): 189-199, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28589370

RESUMO

The EDA+ fibronectin splicing variant is overexpressed in psoriatic non-lesional epidermis and sensitizes keratinocytes to mitogenic signals. However, regulation of its abundance is only partially understood. In our recent cDNA microarray experiment, we identified three SR-rich splicing factors-splicing factor, arginine/serine-rich 18 (SFRS18), peptidyl-prolyl cis-trans isomerase G (PPIG), and luc-7 like protein 3 (LUC7L3)-which might be implicated in the preactivated states of keratinocytes in psoriatic non-involved skin and could also contribute to the regulation of fibronectin mRNA maturation. In this study, we investigated the role of LUC7L3, PPIG, and SFRS18 in psoriasis and in the mRNA maturation process of fibronectin. Regarding tissue staining experiments, we were able to demonstrate a characteristic distribution of the splicing factors in healthy, psoriatic non-involved and involved epidermis. Moreover, the expression profiles of these SR-rich proteins were found to be very similar in synchronized keratinocytes. Contribution of splicing facwwtors to the EDA+ fibronectin formation was also confirmed: their siRNA silencing leads to altered fibronectin mRNA and protein expression patterns, suggesting the participation in the EDA domain inclusion. Our results indicate that LUC7L3, PPIG, and SFRS18 are not only implicated in EDA+ fibronectin formation, but also that they could possess multiple roles in psoriasis-associated molecular abnormalities.


Assuntos
Fibronectinas/biossíntese , Queratinócitos/metabolismo , Psoríase/metabolismo , Fatores de Processamento de RNA/biossíntese , Splicing de RNA , RNA Mensageiro/metabolismo , Adolescente , Adulto , Ciclofilinas/biossíntese , Feminino , Humanos , Queratinócitos/patologia , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares , Psoríase/patologia , Proteínas de Ligação a RNA/biossíntese
8.
Exp Hematol ; 49: 56-67.e5, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28167288

RESUMO

Sideroblastic anemia is characterized by the presence of ring sideroblasts (RSs), which are caused by iron accumulation in the mitochondria of erythroblasts and are present in both the acquired and congenital forms of the disease. However, the mechanism leading to RS formation remains elusive. Acquired sideroblastic anemia is usually observed in myelodysplastic syndrome (MDS). Because a subset of MDS harbors a somatic mutation of TET2, it may be involved in iron metabolism and/or heme biosynthesis in erythroblasts. Tet2 knockdown (Tet2trap) induced exhibited mild normocytic anemia and elevated serum ferritin levels in 4-month-old mice. Although typical RSs were not observed, increased mitochondrial ferritin (FTMT) amounts were observed in the erythroblasts of Tet2-knockdown mice. Quantitative real-time polymerase chain reaction demonstrated significant dysregulation of genes involved in iron and heme metabolism, including Hmox1, Fech, Abcb7, and Sf3b1 downregulation. After the identification of a cytosine-guanine island in the promoters of Fech, Abcb7, and Sf3b1, we evaluated DNA methylation status and found significantly higher methylation levels at the CpG sites in the erythroblasts of Tet2-knockdown mice. Furthermore, Tet2 knockdown in erythroblasts resulted in decreased heme concentration and accumulation of FTMT. Therefore, TET2 plays a role in the iron and heme metabolism in erythroblasts.


Assuntos
Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Eritroblastos/metabolismo , Heme/metabolismo , Ferro/metabolismo , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/metabolismo , Transportadores de Cassetes de Ligação de ATP/biossíntese , Anemia/genética , Anemia/metabolismo , Animais , Metilação de DNA , Dioxigenases , Heme/genética , Heme Oxigenase-1/biossíntese , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Knockout , Fosfoproteínas/biossíntese , Fatores de Processamento de RNA/biossíntese , Reação em Cadeia da Polimerase em Tempo Real
9.
Int J Cancer ; 140(8): 1870-1880, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28120505

RESUMO

The role of progenitor/stem cells in pituitary tumorigenesis, resistance to pharmacological treatments and tumor recurrence is still unclear. This study investigated the presence of progenitor/stem cells in non-functioning pituitary tumors (NFPTs) and tested the efficacy of dopamine receptor type 2 (DRD2) and somatostatin receptor type 2 (SSTR2) agonists to inhibit in vitro proliferation. They found that 70% of 46 NFPTs formed spheres co-expressing stem cell markers, transcription factors (DAX1, SF1, ERG1) and gonadotropins. Analysis of tumor behavior showed that spheres formation was associated with tumor invasiveness (OR = 3,96; IC: 1.05-14.88, p = 0.036). The in vitro reduction of cell proliferation by DRD2 and SSTR2 agonists (31 ± 17% and 35 ± 13% inhibition, respectively, p < 0.01 vs. basal) occurring in about a half of NFPTs cells was conserved in the corresponding spheres. Accordingly, these drugs increased cyclin-dependent kinase inhibitor p27 and decreased cyclin D3 expression in spheres. In conclusion, they provided further evidence for the existence of cells with a progenitor/stem cells-like phenotype in the majority of NFPTs, particularly in those with invasive behavior, and demonstrated that the antiproliferative effects of dopaminergic and somatostatinergic drugs were maintained in progenitor/stem-like cells.


Assuntos
Carcinogênese/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Hipofisárias/tratamento farmacológico , Receptores de Dopamina D2/genética , Receptores de Somatostatina/genética , Adulto , Carcinogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclina D3/biossíntese , Inibidor de Quinase Dependente de Ciclina p27/biossíntese , Receptor Nuclear Órfão DAX-1/biossíntese , Dopaminérgicos/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/genética , Canal de Potássio ERG1/biossíntese , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Gonadotropinas/biossíntese , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Fatores de Processamento de RNA/biossíntese , Receptores de Dopamina D2/agonistas , Receptores de Somatostatina/agonistas , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia
10.
Nucleic Acids Res ; 45(7): 4142-4157, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-27998933

RESUMO

miRNAs play important roles during mammalian spermatogenesis. However, the function of most miRNAs in spermatogenesis and the underlying mechanisms remain unknown. Here, we report that miR-202 is highly expressed in mouse spermatogonial stem cells (SSCs), and is oppositely regulated by Glial cell-Derived Neurotrophic Factor (GDNF) and retinoic acid (RA), two key factors for SSC self-renewal and differentiation. We used inducible CRISPR-Cas9 to knockout miR-202 in cultured SSCs, and found that the knockout SSCs initiated premature differentiation accompanied by reduced stem cell activity and increased mitosis and apoptosis. Target genes were identified with iTRAQ-based proteomic analysis and RNA sequencing, and are enriched with cell cycle regulators and RNA-binding proteins. Rbfox2 and Cpeb1 were found to be direct targets of miR-202 and Rbfox2 but not Cpeb1, is essential for the differentiation of SSCs into meiotic cells. Accordingly, an SSC fate-regulatory network composed of signaling molecules of GDNF and RA, miR-202 and diverse downstream effectors has been identified.


Assuntos
Células-Tronco Germinativas Adultas/metabolismo , Ciclo Celular/genética , MicroRNAs/metabolismo , Fatores de Processamento de RNA/biossíntese , Células-Tronco Germinativas Adultas/citologia , Animais , Técnicas de Inativação de Genes , Masculino , Meiose/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Proteômica , Análise de Sequência de RNA , Espermatogênese/genética , Fatores de Transcrição/biossíntese , Fatores de Poliadenilação e Clivagem de mRNA/biossíntese
11.
Hum Mol Genet ; 25(23): 5083-5093, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28007900

RESUMO

Splicing regulation is an important step of post-transcriptional gene regulation. It is a highly dynamic process orchestrated by RNA-binding proteins (RBPs). RBP dysfunction and global splicing dysregulation have been implicated in many human diseases, but the in vivo functions of most RBPs and the splicing outcome upon their loss remain largely unexplored. Here we report that constitutive deletion of Rbm17, which encodes an RBP with a putative role in splicing, causes early embryonic lethality in mice and that its loss in Purkinje neurons leads to rapid degeneration. Transcriptome profiling of Rbm17-deficient and control neurons and subsequent splicing analyses using CrypSplice, a new computational method that we developed, revealed that more than half of RBM17-dependent splicing changes are cryptic. Importantly, RBM17 represses cryptic splicing of genes that likely contribute to motor coordination and cell survival. This finding prompted us to re-analyze published datasets from a recent report on TDP-43, an RBP implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), as it was demonstrated that TDP-43 represses cryptic exon splicing to promote cell survival. We uncovered a large number of TDP-43-dependent splicing defects that were not previously discovered, revealing that TDP-43 extensively regulates cryptic splicing. Moreover, we found a significant overlap in genes that undergo both RBM17- and TDP-43-dependent cryptic splicing repression, many of which are associated with survival. We propose that repression of cryptic splicing by RBPs is critical for neuronal health and survival. CrypSplice is available at www.liuzlab.org/CrypSplice.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Demência Frontotemporal/genética , Degeneração Neural/genética , Proteínas do Tecido Nervoso/genética , Fatores de Processamento de RNA/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Biologia Computacional/métodos , Modelos Animais de Doenças , Éxons/genética , Demência Frontotemporal/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Degeneração Neural/patologia , Proteínas do Tecido Nervoso/biossíntese , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Splicing de RNA/genética , Fatores de Processamento de RNA/biossíntese , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/genética
12.
Pathology ; 48(5): 434-40, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27311867

RESUMO

The aim of this study was to perform an immunohistochemical comparison of uterine tumour resembling ovarian sex cord-stromal tumour (UTROSCT) and other uterine lesions with sex cord-like (SCL) differentiation. Six UTROSCTs and 10 potential histological mimics with focal SCL elements were examined, the latter comprising three endometrial stromal nodules, three low-grade endometrial stromal sarcomas, three Müllerian adenosarcomas, and one case of adenomyosis. All cases were stained immunohistochemically for SF1, FOXL2, calretinin and inhibin, and for the less specific markers smooth muscle actin, desmin, CD10, CD56, CD99, cytokeratin, oestrogen receptor and progesterone receptor. Three, four, six and three UTROSCT expressed SF1, FOXL2, calretinin and inhibin, respectively. However, calretinin staining was focal (≤50% cells positive) in five of the cases. Three potential histological mimics demonstrated calretinin, FOXL2 and/or inhibin staining but none was SF1 positive. Most cases in both groups expressed the less specific immunomarkers. SF1 and FOXL2 immunoreactivity in UTROSCT further supports the concept that these tumours demonstrate genuine sex cord-stromal differentiation. While calretinin was the most sensitive UTROSCT marker, staining was usually focal and expression was also seen in two of 10 potential histological mimics. SF1 staining was 100% specific for UTROSCT in this series but this finding should be confirmed in larger studies.


Assuntos
Biomarcadores Tumorais/análise , Fatores de Processamento de RNA/biossíntese , Tumores do Estroma Gonadal e dos Cordões Sexuais/diagnóstico , Neoplasias Uterinas/diagnóstico , Adulto , Idoso , Diagnóstico Diferencial , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Fatores de Processamento de RNA/análise
13.
Hum Mol Genet ; 25(14): 3106-3116, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27206982

RESUMO

A large haplotype on chromosome 19p13.11 tagged by rs10401969 in intron 8 of SURP and G patch domain containing 1 (SUGP1) is associated with coronary artery disease (CAD), plasma LDL cholesterol levels, and other energy metabolism phenotypes. Recent studies have suggested that TM6SF2 is the causal gene within the locus, but we postulated that this locus could harbor additional CAD risk genes, including the putative splicing factor SUGP1 Indeed, we found that rs10401969 regulates SUGP1 exon 8 skipping, causing non-sense-mediated mRNA decay. Hepatic Sugp1 overexpression in CD1 male mice increased plasma cholesterol levels 20-50%. In human hepatoma cell lines, SUGP1 knockdown stimulated 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) alternative splicing and decreased HMGCR transcript stability, thus reducing cholesterol synthesis and increasing LDL uptake. Our results strongly support a role for SUGP1 as a novel regulator of cholesterol metabolism and suggest that it contributes to the relationship between rs10401969 and plasma cholesterol.


Assuntos
LDL-Colesterol/genética , Colesterol/genética , Doença da Artéria Coronariana/genética , Metabolismo dos Lipídeos/genética , Fatores de Processamento de RNA/genética , Processamento Alternativo/genética , Animais , Colesterol/sangue , LDL-Colesterol/sangue , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/patologia , Éxons/genética , Regulação da Expressão Gênica , Haplótipos , Células Hep G2 , Humanos , Masculino , Camundongos , Polimorfismo de Nucleotídeo Único , Fatores de Processamento de RNA/biossíntese , Estabilidade de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...